
Oxford Resources for IB

Diploma Programme

2025 EDITION

COMPUTER
SCIENCE
COURSE COMPANION

Bill MacKenty

Lindsey Stephenson

OXFORD

kerboodlie

Take learning online

with Kerboodle

Find out

more and
Kerboodle is a digital learning platform that works alongside your print sign up for

textbooks to create a supportive learning environment. Available for UK and free triall &

international curricula, Kerboodle helps you save time and reinforces student afTee triati EF

learning with a range of supportive resources.

Use Kerboodle to:

e fnable learning anywhere with online and offline access to digital books

® Enhance student engagement with activities and auto-marked quizzes

® Boost performance and exam confidence with assessment materials

® Supportindependent learning with easy access across devices

® Deliver responsive teaching underpinned by in-depth reports

® Save time with tools to help you plan, teach, and monitor student progress

® Improve the classroom experience by highlighting specific content

® (et fast access with single sign-on via school Microsoft or Google accounts

For the best teaching and

learning experience use

Kerboodle with your print

resources!

Need help?

Contact your local Educational Consultant: www.oxfordsecondary.com/contact-us

Oxford Resources for IB

Diploma Programme

2025 EDITION

COMPUTER SCIENCE

COURSE COMPANION

Bill MacKenty

Lindsey Stephenson

James Abela OXFORD
SSSSSSSSSSSSSSS

OXFORD
UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It

furthers the University's objective of excellence in research, scholarship,

and education by publishing worldwide. Oxford is a registered trade

mark of Oxford University Press in the UK and in certain other countries.

© Oxford University Press 2025

The moral rights of the authors have been asserted

First published in 2025

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, transmitted, used for text and data mining,

or used for training artificial intelligence, in any form or by any means,

without the prior permission in writing of Oxford University Press, or as

expressly permitted by law, by licence or under terms agreed with the

appropriate reprographics rights organization. Enguiries concerning

reproduction outside the scope of the above should be sent to the

Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form and you must impose

this same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

978-1-382-06392-0

978-1-382-06393-7 (ebook)

10987654321

The manufacturing process conforms to the environmental regulations

of the country of origin.

Printed in Great Britain by Bell and Bain Ltd., Glasgow

The manufacturer's authorised representative in the EU for product

safety is Oxford University Press Espafia S.A. of El Parque Empresarial
San Fernando de Henares, Avenida de Castilla, 2 - 28830 Madrid

(www.oup.es/en or product.safety@oup.com). OUP Espafa S.A. also
acts as importer into Spain of products made by the manufacturer.

Acknowledgements

The “In cooperation with IB” logo signifies the content in this textbook has

been reviewed by the IB to ensure it fully aligns with current IB curriculum

and offers high-quality guidance and support for IB teaching and learning.

The Publisher wishes to thank the International Baccalaureate

Organization for permission to reproduce their intellectual property.

The authors have the following acknowledgements and thanks:

Bill MacKenty would like to dedicate this book to his wife Dagmara and

daughter Jana. He would also like to thank his students and supportive

administrators.

Lindsey Stephenson would like to thank Mamica, Dad and Jamie for all the

support, the original Design crew for advice, and her friends and family.

The publisher and authors would like to thank the following for
permission to use photographs and other copyright material:

Cover: da-kuk / E+ / Getty Images. Photos: p2: Wang Zhibo /

Shutterstock; p3(t): Gorodenkoff / Shutterstock; p3(b): laroslav Neliubov /

Shutterstock; p5: Andrew Derr / Shutterstock; p6: Skrypnykov Dmytro /
Shutterstock; p7(l): © Stefans02; p7(r): MZinchenko / Shutterstock; p8: S.

Singha / Shutterstock; p11:BLKstudio / Shutterstock; p22: Macrovector /

Shutterstock; p25(t): effjott.art / Shutterstock; p25(b): patruflo /

Shutterstock; p26(t): Maxx-Studio / Shutterstock; p26{m): Poravute

Siriphiroon / Shutterstock; p26(b): Proxima Studio / Shutterstock; p27(tl):

Science Photo Library / Alamy Stock Photo; p27(tm): Dimedrol68 /

Shutterstock; p27(tr): Andrei Shumskiy / Shutterstock; p27(mt):nikkytok /

Shutterstock; p27(mb): Pixel-Shot / Shutterstock; p27(b): Derek Brumby /

Shutterstock; p28: leo_photo / Shutterstock; p32(l): Ar_TH / Shutterstock;

P32(r): Gorodenkoff / Shutterstock; p34: iWissawa / Shutterstock; p38:

Jason Winter / Shutterstock; p49(t): Fouad A. Saad / Shutterstock; p49(b):

VectorArtFactory / Shutterstock; p50: pingebat / Shutterstock; pS1(t):
Dan74 / Shutterstock; p51(m): Hsyn20 / Shutterstock; p51(b): Andrew

Rybalko / Shutterstock; p52: Sasin Paraksa / Shutterstock; p67: posztos /

Shutterstock; p68: Iconic Bestiary / Shutterstock; p74: Frogella /

Shutterstock; p75(t): MyPro / Shutterstock; p75(b): Rob Bouwman /

Shutterstock; p78: izzuanroslan / Shutterstock; p80: catinsyrup /

Shutterstock; p81(t): releon8211 / Shutterstock; p81(b): eamesBot /

Shutterstock; p84: Skyline Graphics / Shutterstock; p86(t): libor.pal /

Shutterstock; p86{mt): Meaw_stocker / Shutterstock; p86(mb): Yuthtana

artkla / Shutterstock; p86(b): Reproduced with permission of Meggitt SA ;

p87(t): Elkins Eye Visuals / Shutterstock; p87(m): Cultura Creative /

Shutterstock; p87(b):Black Salmon / Shutterstock; p88(t): Sombat

Muycheen / Shutterstock; p88(b): New Africa / Shutterstock; p91: Dabarti

CGI / Shutterstock; p93: ViDI Studio / Shutterstock; p100: EschCollection /

Stone / Getty Images; p108: Zdenék Maly / Alamy Stock Photo; p109(t):
VTECH Vector and Footage / Shutterstock; p109(b): Oasishifi /

Shutterstock; p110(t):PromKaz / Shutterstock; p110(b): Skrypnykov

Dmytro / Shutterstock; p112: JirawatSrimai / Shutterstock; p113: Cisco;

p116: BestForBest / Shutterstock; p117(t): elenabsl / Shutterstock;

p117(b): kozhedub_nc / Shutterstock; p124: Aji Asmara / Shutterstock;

p125: Aji Asmara / Shutterstock; p134:MyPro / Shutterstock; p135:

The 360 Degree / Wikimedia Commons (CC BY-5A 4.0); p141:

Ninetechno / Shutterstock; p147(t): zentilia / Shutterstock; p147(m):

vinap / Shutterstock; p147(b): Alfmaler / Shutterstock; p149: Pabkov /

Shutterstock; p151: vs_vadim / Shutterstock; p166: Eugene Mymrin /

Moment / Getty Images; p172: World Data Center for Climate; p193:

GGDesigns / Shutterstock; p223: Cultura Creative / Shutterstock; p226(t):

Just Jus / Shutterstock; p226(b):Prostock-studio / Shutterstock; p227:

Dmitry Kalinovsky / Shutterstock; p229: didesign021 / Shutterstock; p236:

Andriy Onufriyenko / Moment / Getty Images; p237: VectorMine /

Shutterstock; p239: mentalmind / Shutterstock; p240(t):sfam_photo /

Shutterstock; p240(b): Visual Generation / Shutterstock; p242:

MONOPOLY919 / Shutterstock; p243:Doggygraph / Shutterstock; p244:
catris photos / Shutterstock; p256: Photobond / Shutterstock; p260:

Odua Images / Shutterstock; p262: Sunward Art / Shutterstock; p279:

Sidartha Carvalho / Shutterstock; p280: Dream01 / Shutterstock;

p284:Andrey_Popov / Shutterstock; p287: chuckchee / Shutterstock;

p288: fokke baarssen / Shutterstock; p292: Qpt / Shutterstock; p301:
Rebeca R.5 / Shutterstock; p302: Rebeca RS / Shutterstock; p311:

Zapp2Photo / Shutterstock; p312(t):Prostock-studio / Shutterstock;

p312(b): a-image / Shutterstock; p316: Cravetiger / Moment / Gelty

Images; p318(t): fizkes / Shutterstock; p318(b): ADragan /

Shutterstock; p319(t): SurfsUp / Shutterstock; p319(b): Tero Vesalainen /

Shutterstock; p320: VectorMine / Shutterstock; p323: Peoplelmages.
com - Yuri A / Shutterstock; p326: Wiktoria Matynia / Shutterstock; p336:
Andriy Onufriyenko / Moment / Getty Images; p337: Wenzel Design /

Shutterstock; p338: Suvit Topaiboon / Shutterstock; p359: Pixel-Shot /

Shutterstock; p362: Lindsay Edwards / Oxford University Press; p363:

Mijak / Shutterstock; p396: Mark Medcalf / Shutterstock; p416: andresr /

E+ / Getty Images; p417: zynpdoodle / Shutterstock; p418(t): Eric Isselee /
Shutterstock; p418({b): Andrew Ong / Shutterstock; p422(t):mpohodzhay /

Shutterstock; p422(m): Nicescene / Shutterstock; p422(b): Peoplelmages.

com - Yuri A / Shutterstock; p426: Mikael Damkier / Shutterstock; p431:

Jason / Shutterstock; p435(t):Yandong Yang / Shutterstock; p435(b):

Karramba Production / Shutterstock; p437: Dragon Images / Shutterstock;

p473:worldswildlifewonders / Shutterstock; p480: chaythawin /

Shutterstock; p492:1ight p o e t/ Shutterstock; p523:PHOTOCREO
Michal Bednarek/ Shutterstock; p528: Studio Romantic / Shutterstock;

Pp535: Rawpixel / Shutterstock; p548: Atiwan Janprom / Shutterstock.

Microsoft screenshots © Microsoft 2024. Used with permission from
Microsoft.

PyCharm IDE and JetBrains DataGrip screenshots © 2000-2024

JetBrains s.r.o.

Eclipse IDE screenshots © Eclipse Foundation AISBL. All Rights Reserved.

Artwork by Q2A Media, Nathan Jarvis, Green Tree Designing Studio Pvt.,

and Oxford University Press.

Every effort has been made to contact copyright holders of material

reproduced in this book. Any omissions will be rectified in subsequent

printings if notice is given to the publisher.

Links to third party websites are provided by Oxford in good faith
and for information only. Oxford disclaims any responsibility for the

materials contained in any third party website referenced in this work.

Contents
A
 C
o
n
c
e
p
t
s
 o
f
 c
o
m
p
u
t
e
r
 s
c
i
e
n
c
e

B
 C
o
m
p
u
t
a
t
i
o
n
a
l
 t
hi

nk
in

g
a
n
d
 p
r
o
b
l
e
m
-
s
o
l
v
i
n
g

Al Computer fundamentals ... e 2

All Computer hardware and Operation e e O

Al.2 Data representation and computer [0giC ... e 30

Al.3 Operating systems and control SyStemst e ea e eenee ... OO

Al4 T@Enslation (HLONIY) o et e e e e e ae et e e e e e s aeasaesnssn s aseeaaeenesnsesnsasns 3O
Al End-of-topic QUeSstiONS e 98

B2 N BIWOTKS et e ettt et et e an e e 100

A2 Network funNdameEntals. e e et ee et e e e e e eae e se e esnesaennesnesnaenennensennsanennes 1O

A2.2 NEIWOTK ArChItECIUNE e et e e et et e e eaeenesananeenesneensnnsneennennennen | 24

A2.3 (D = (14T 4 T (o] o U RURURPRRRR 47

A2.4 NEWOTK SEOUNLY . ..ottt e e e e e e e eeeaa s e ansaaaannaaannnaasnnaasnnnaennnaeennnne |O4

A2 End-of-topic QUeSHIONS .. e 165

ABDAtabases ... e e et ettt h it e e e e et e e e ae e aanat e eans 166
A3 Database fundameEntals. ... e e e e e et 167
A2 Dalabase dESIGN . ..ot e et e e e aat e ee et neaaeetaant e aeannn e aaesanneaanaen 173
A3.3 Dalabase PrOgramMiNg oo ee et e e et e e e et eaeeee e e eeaasn e aeesse i aaeetaans e aeannnanaaesnnneaenaen 191
A3.4 Alternative databases and data warehouses (HL ONly).............ooviiiiiii e 215
A3 End-of-topic QUESTIONSo e e 235

Ad Machine learming ... 236

A4l Machine learning fundamentals et enan e 237

A4.2 Datapreprocessing (HLONIY) ..o ... 251

A4.3 Machine learning approaches (HLonly)...........oooo e 204
Ad.4 Ethical considerations ... 307

Ad End-of-topicquestions 314

B1 Computational thinking ... e e anans 316

B1.1 Approaches to computational thinking ... e 317

Bl End-of-topic questions 335

B2 PrOogramimingttt e e e e e e e e e et et eteaaesnnesnanatenaenanneananaaennn 336

B2.1 Programming fundamentals..... ... e arn e e e e e eeennes 33T

B2.2 Data SIUCTUIES ...ttt e e et e et e e s et s ee e snaeaneeans e eeerannaaesnnnneeensennees SO0

B2.3 Programming CONSIIUCES ettt et e e e e e e e e e esnneee e aesnaaennnnaas 302

B2.4 Programming algorithms et e e e e e eee e aaa i aaannnaas 3/ O

B2.5 Flle PrOCESSING ...ttt et e e e e e e e eee e e e e ennaaannaannnaaannaannnnennnnaeennanennnens D07

B2 End-of-topic QUeSHIONS. ... e 413

B3 Object-oriented programming (OOP)oooiiiii i 416
B3.1 Fundamentals of OOP for asingle Class oo e e e 417
B3.2 Fundamentals of OOP for multiple classes (HLONIY)oooeiiieeeeee e 473
B3 End-of-topic QUEeSTIONS. e e 542

B4 Abstract data types (ADTs) (HLonly) ... e 548
B4.1 Fundamentals of ADTs ... o e, D49

B4 End-of-topic questions. 581

Answers: www.oxfordsecondary.com/ib-compsci-support

Introduction

The Diploma Programme (DP) computer science course is designed for students in the 16 to 19 age group. The

curriculum seeks to examine key concepts in computer science: computer fundamentals, networks, databases and

machine learning, and then apply practical skills to support the computational thinking process to solve problems. As

with all the components of the DP, this course fosters the IB learner profile attributes (see page vi) in the members of

the school community.

Syllabus structure
Topics are organized into two separate themes:

* Theme A: Concepts of computer science

* Theme B: Computational thinking and problem-solving

These themes represent the connection between abstract ideas of how computing system operate (Theme A) and

their application using the practical skills of computer science to solve problems through the process of computational

thinking (Theme B).

Theme A: Concepts of computer science Theme B: Computational thinking and

problem-solving

A1 Computer fundamentals

Al.1 Computer hardware and operation

Al.2 Data representation and computer logic

Al.3 Operating systems and control systems

Al.4 Translation (HL only)

B1 Computational thinking

B1.1 Approaches to computational thinking

A2 Networks

A2.1 Network fundamentals

A2.2 Network architecture

AZ2.3 Data transmissions

A2.4 Network security

B2 Programming

B2.1 Programming fundamentals

B2.2 Data structures

B2.3 Programming constructs

B2.4 Programming algorithms

B2.5 File processing

A3 Databases

A3.1 Database fundamentals

A3.2 Database design

A3.3 Database programming

A3.4 Alternative databases and data warehouses (HL only)

B3 Object-oriented programming (OOP)

B3.1 Fundamentals of OOP for a single class

B3.2 Fundamentals of OOP for multiple classes (HL Only)

A4 Machine learning

A4.1 Machine learning fundamentals

A4.2 Data preprocessing (HL only)

A4.3 Machine learning approaches (HL only)

A4 .4 Ethical considerations

B4 Abstract data types (ADTs) (HL only)
B4.1 Fundamentals of ADTs

Coding within the
computer science course
You will not be surprised to learn that there is quite a lot

of coding in the computer science course. However,

this course is accessible, especially at standard level,

if you are willing to put in the work. Everyone learning

to code experiences moments of failure followed by

moments of joy when things finally click. Everyone

learns coding at their own pace but, most importantly,

everyone can learn to code. There are lots of resources

to help you, including this book!

Getting started
This book covers a lot of theory, with no assumption

of prior knowledge. You may find it useful to begin by

reading the programming topic. There are practice

questions to test your learning. The book also includes

lots of worked examples and activities to help you get

started with your coding.

Many people also find it useful to follow along with

online videos when coding. There are many websites

to help you if you get stuck, and the coding community

can be very supportive.

Practice makes perfect
As with any other skill you might learn throughout your

lifetime—speaking another language, driving, painting,

playing piano—practice makes perfect! It is true that

the more you practise a skill, the easier it becomes, and

coding is no exception.

Computational thinking is the ability to understand

and identify solutions to problems. When you first start

on your coding journey, the vocabulary and coding

syntax can be a lot to remember. Writing down what

you want to do—your solution—step-by-step, and then

translating this into code can help you develop both

your computational thinking and your coding skills.

When learning to code, you will probably have to

reference example code repeatedly, checking all

spaces, full stops and quotation marks. The more you

practise this, the more you will remember commands

without needing to reference code. As you become

more confident, the code you are referencing will

become more complex and you will be able to develop

more intricate programs. Don’t worry if you find

yourself referencing previous code even after a few

months—most coders do!

Resilience
Part of the fun of coding is problem-solving. It is

very rare that code works straight away. This can

be frustrating when you are learning, but it is fun to

practise resilience and try another way until you solve

the problem. The best coders learn from their mistakes,

so the more mistakes you make, the more you learn!

The best thing you can do when learning to code is just

to try and then try again.

@ Self-management skills

When starting to learn to code, it is often useful

to copy and paste the coding fragments into a

document and then add notes to help you remember

what they do. The first time you encounter an error,

take a screenshot of the error and write the solution

with the screenshot. The next time you encounter the

error, you will know how to solve it.

Create a new document or folder to store all your

notes on coding and problem-solving. Maintain this

document throughout the course, adding notes as

your coding skills develop.

Looking at past IB examination questions will help

you to understand what code you need to memorize

for the exam. However, keep in mind that not all past

paper questions will be relevant for this course.

Find some past papers for this course. As you

progress through the course, work through the

questions and annotate your answers. Reference

the relevant section of your notes for easier revision,

and add tips to help you remember things you find

challenging.

Where to get help
When learning to code, the following resources may

be useful.

* Your teacher: Teachers are usually a good place

to start when learning a new skill.

* Textbooks: There are many books dedicated to

learning to code.

* Online communities: These are a good place to

get specific help when a section of code does

not work.

Friends: Working together to develop code can be

helpful. Talking through your ideas and working

together to solve problems helps you to learn.

Learning to code can be challenging but it can also be

rewarding. Wherever you are on your coding journey,

practising coding and talking about coding will help

you to learn.

Course book definition
The IB Diploma Programme course books are resource

materials designed to support students throughout

their two-year Diploma Programme course of study

in a particular subject. They will help students gain an

understanding of what is expected from the study of

an IB Diploma Programme subject while presenting

content in a way that illustrates the purpose and aims

of the IB. They reflect the philosophy and approach of

the IB and encourage a deep understanding of each

subject by making connections to wider issues and

providing opportunities for critical thinking.

The books mirror the IB philosophy of viewing the

curriculum in terms of a whole-course approach:

the use of a wide range of resources, international

mindedness, the IB learner profile and the IB Diploma

Programme core requirements, theory of knowledge,

the extended essay, and creativity, activity and

service (CAS).

Each book can be used in conjunction with other

materials and, indeed, students of the IB are required

and encouraged to draw conclusions from a variety

of resources. Suggestions for additional and further

reading are given in each book and suggestions for

how to extend research are provided.

In addition, the course companions provide advice

and guidance on the specific course assessment

requirements and on academic honesty protocol.

They are distinctive and authoritative without being

prescriptive.

IB mission statement
The International Baccalaureate aims to develop

inquiring, knowledgeable and caring young people

who help to create a better and more peaceful world

through intercultural understanding and respect.

To this end, the organization works with schools,

governments and international organizations to

develop challenging programmes of international

education and rigorous assessment.

These programmes encourage students across the

world to become active, compassionate and lifelong

learners who understand that other people, with their

differences, can also be right.

The IB learner profile
The aim of all IB programmes is to develop

internationally minded people who work to create

a better and more peaceful world. The aim of the

programme is to develop this person through ten

learner attributes, as described below.

Inquirers: They develop their natural curiosity.

They acquire the skills necessary to conduct inquiry

and research and show independence in learning.

They actively enjoy learning, and this love of learning

will be sustained throughout their lives.

Knowledgeable: They explore concepts, ideas and

issues that have local and global significance. In so

doing, they acquire in-depth knowledge and develop

understanding across a broad and balanced range of

disciplines.

Thinkers: They exercise initiative in applying thinking

skills critically and creatively to recognize and approach

complex problems and to make reasoned, ethical

decisions.

Communicators: They understand and express

ideas and information confidently and creatively in

more than one language and in a variety of modes of

communication. They work effectively and willingly in

collaboration with others.

Principled: They act with integrity and honesty, and

with a strong sense of fairness, justice and respect for

the dignity of the individual, groups and communities.

They take responsibility for their own actions and the

consequences that accompany them.

Open-minded: They understand and appreciate their

own cultures and personal histories and are open to the

perspectives, values and traditions of other individuals

and communities. They are accustomed to seeking and

evaluating a range of points of view and are willing to

grow from the experience.

Caring: They show empathy, compassion and respect

towards the needs and feelings of others. They have

a personal commitment to service and to act to make

a positive difference to the lives of others and to the

environment.

Risk-takers: They approach unfamiliar situations and

uncertainty with courage and forethought and have

the independence of spirit to explore new roles,

ideas and strategies. They are brave and articulate in

defending their beliefs.

Balanced: They understand the importance of

intellectual, physical and emotional balance to achieve

personal well-being for themselves and others.

Reflective: They give thoughtful consideration to their

own learning and experience. They are able to assess

and understand their strengths and limitations in order

to support their learning and personal development.

A note on academic
integrity
It is of vital importance to acknowledge and

appropriately credit the owners of information when

that information is used in your work. After all, owners

of ideas (intellectual property) have property rights.

To have an authentic piece of work, it must be based on

your individual and original ideas with the work of

others fully acknowledged. Therefore, all assignments,

written or oral, completed for assessment must use

your own language and expression. Where sources

are used or referred to, whether in the form of direct

quotation or paraphrase, such sources must be

appropriately acknowledged.

How do | acknowledge the work
of others?
The way that you acknowledge that you have used the

ideas of other people is through the use of footnotes

and bibliographies.

Footnotes (placed at the bottom of a page) or endnotes

(placed at the end of a document) are to be provided

when you quote or paraphrase from another document

or closely summarize the information provided in

another document. You do not need to provide a

footnote for information that is part of a “body of

knowledge”. That is, definitions do not need to be

footnoted as they are part of the assumed knowledge.

Bibliographies should include a formal list of the

resources that you used in your work.

“Formal” means that you should use one of the several

accepted forms of presentation. This usually involves

separating the resources that you use into different

categories (for example, books, magazines, newspaper

articles, internet-based resources and works of art)

and providing full information so that a reader or

viewer of your work can find the same information.

A bibliography is compulsory in the extended essay.

What constitutes malpractice?
Malpractice is behaviour that results in, or may resultin,

you or any student gaining an unfair advantage in one

or more assessment component. Malpractice includes

plagiarism and collusion.

Plagiarism is defined as the representation of the ideas

or work of another person as your own. The following

are some of the ways to avoid plagiarism:

* using the words and ideas of another person to

support your arguments must be acknowledged

* passages that are quoted verbatim must

be enclosed within quotation marks and

acknowledged

* email messages, and any other electronic media,

must be treated in the same way as books and

journals

the sources of all photographs, maps,

illustrations, computer programs, data, graphs,

audio-visual and similar material must be

acknowledged if they are not your own work

* when referring to works of art, whether music,

film dance, theatre arts or visual arts and where

the creative use of a part of a work takes place,

the original artist must be acknowledged.

Collusion is defined as supporting malpractice by

another student. This includes:

* allowing your work to be copied or submitted for

assessment by another student

* duplicating work for different assessment

components and/or diploma requirements.

Other forms of malpractice include any action that

gives you an unfair advantage or affects the results of

another student. Examples include taking unauthorized

material into an examination room, misconduct during

an examination and falsifying a CAS record.

How to use this book

The aim of this book is to develop conceptual understanding, aid in skills

development and provide opportunities to cement knowledge and

understanding through practice.

Feature boxes and sections throughout the book are designed to support these

aims, by signposting content relating to particular ideas and concepts, as well as

opportunities for practice. This is an overview of these features:

Developing conceptual understanding

Guiding questions

Each topic begins with a guiding question to get you thinking. When you

start studying a topic, you might not be able to answer these questions

confidently or fully, but by studying that topic, you will be able to answer

them with increasing depth. Hence, you should consider these as you

work through the topic and come back to them when you revise your

understanding.

@ Linking questions

Linking questions within each topic highlight the connections between

content discussed there and other parts of the course.

Theory of knowledge (TOK)

This is an important part of the IB Diploma Programme. It focuses on critical

thinking and understanding how we arrive at our knowledge of the world.

The TOK features in this book pose questions for you that highlight these

issues.

Parts of the book have a coloured bar on the edge of the page or next to

a question. This indicates that the material is for students studying the DP

computer science course at higher level. AHL means “additional higher level”.

Link features in the margin will direct you to other parts of the book where a

concept is explored further or in a different context. They may also direct you

to prior knowledge or a skill you will need, or give a different way to think

about something.

viii

Developing skills

These approaches to learning (ATL) features prompt you to develop The key practical skills

strategies to support the ATL skills of communication, self-management, in computer science are

research, thinking and social skills. algorithmic thinking and
programming. These boxes

highlight opportunities to

practical skills as part of the

This feature explores examples of computer science applied to solving computational thinking process.
real-world problems.

These sections of the book provide guidance on how to apply the These introduce the definitions
computational thinking process to your computational solution, which is of important terminology used in

the internal assessment for computer science, and how to prepare for your COmMPLREN SCence.

Paper 1 and Paper 2 examinations.

Practising

Worked examples

These are step-by-step examples of how to answer questions. You should

review these examples carefully, preferably after attempting the question

yourself.

Practice questions

These are designed to give you further practice at using your knowledge and

to allow you to check your own understanding and progress.

These give you an opportunity to apply your knowledge and skills, often in

a practical way.

End-of-topic questions
Use these questions at the end of each topic to draw together concepts from that topic and

to practise answering exam-style questions.

Computer fundamentals

What principles underpin the operation of a

computer, from low-level hardware functionality to

operating system interactions?

AN Computer hardware
and operation

Syllabus understandings

A1.1.1 Describe the functions and interactions of the main CPU components

A1.1.2 Describe the role ofa GPU

A1.1.3 Explain the differences between the CPU and the GPU

A1.1.4 Explain the purposes of different types of primary memory

A1.1.5 Describe the fetch, decode and execute cycle

E A1.1.6 Describe the process of pipelining in multi-core architectures

A1.1.7 Describe internal and external types of secondary memory storage

A1.1.8 Describe the concept of compression

A1.1.9 Describe different types of services in cloud computing

A1.1.1 Describe the functions and A Figure 1 What s inside a CPU?

interactions of the main CPU components _
In this section, you will learn about the function and interaction of computer

hardware, focusing specifically on the central processing unit (CPU), which is the Components Distinct functional

engine of a computing system. units that perform specific

operations essential for processing
You will explore components of the CPU, such as the arithmetic logic unit (ALU)

and control unit (CU). You will discuss the roles and interactions of registers,

including the instruction register (IR), program counter (PC), memory address

register (MAR), memory data register (MDR), and accumulator (AC). Additionally,

you will examine the various buses—control, data, and address—that facilitate

communication within the CPU and across the system. This section also covers

different types of processaors, from single-core to multi-core processors, as well as

specialized co-processors.

instructions.

The CPU

The CPU is the primary computational engine of the computer, responsible A Figure2 ACPU
for executing instructions. It plays a central role in coordinating data

movement within the system, working in conjunction with other components. You will learn in more detail how

Understanding its components and their interactions is fundamental to these parts work together in

understanding computer operations. section A1.1.5 The fetch, decode
) . and execute cycle.

The CPU contains components, registers and buses. <

Al Computer fundamentals

TOK

To what extent does understanding

the fundamentals of a system help a

person use it?

Consider this question in the

context of both a car engine

and a computer. Does your

answer change, depending on

the context? Now consider the

same question in the context of

something less tangible, like human

rights or your physical health.

Does understanding how a system

works change the way a person can

use it?

Components

A component refers to a distinct functional unit or part within the CPU that has

a specific role in the processor’s operation. The CPU—being the computational

engine of the computer—contains key components which work together to

execute instructions.

Key components inside of the CPU include the following.

Arithmetic logic unit (ALU) Performs arithmetic and logical operations. It is

where the actual computation happens, such as addition, subtraction, and

logical operations like AND, OR, NOT, and so on.

Control unit (CU) Responsible for orchestrating the fetch—-decode—execute cycle.

lts primary functions include decoding and interpreting instructions fetched from

memory and generating control signals to activate the appropriate hardware units

within the CPU. This involves parsing the instruction’s opcode (operation code),

which determines the specific action such as reading data, writing data, performing

calculations or testing logic (ADD, SUB, AND, OR, and so on).

Registers

A register is a small-capacity, very fast storage location available within the CPU,

used to store data temporarily during the execution of programs. It is capable of

holding instructions, storage addresses or data.

Table 1 Key registers inside a CPU

Register Description

Holds the current instruction being executed. It acts as

a temporary holding area for the instruction before it is

decoded and executed.

Instruction

register (IR)

A register that stores the address of the next instruction

Program counter | to be executed. Itis incremented automatically after each

(PC) instruction is executed, pointing to the next instruction in the

program'’s memory location.

Stores the address in memory where the next piece of data

Memory address | or instruction is to be found or stored.

register (MAR) The MAR interfaces directly with the system’s memory

address bus.

Memory data Holds the data or instruction that is being transferred to or

register (MDR) from primary memory.

A special-purpose register used to store intermediate results

of operations. It is often used for arithmetic and logical

operations. It can also be used as a temporary storage

Accumulator (AC) | location for other data.

While commonly used with arithmetic/logic operations,

accumulators can also function as temporary storage for

various types of data.

Buses

A bus is a shared communication pathway which transfers data between

components within a computer. Key buses connecting a CPU with other

components include the following.

Al.l Computer hardware and operation

Control bus Carries control signals from the Control Unit (CU) to other

components, managing actions and timing. These signals can be unidirectional

or bidirectional. Examples of control signals are read/write commands, interrupt

signals, timing, and acknowledgment signals.

Data bus A pathway for transferring actual data between the CPU, memory, and

other components. Its width (e.g., 32-bit, 64-bit) influences transfer speed. The

data bus is bidirectional, allowing data flow in both directions.

Address bus A pathway which carries memory addresses from the CPU to

specify where data should be read or written.

Types of CPU processors

Single-core processors possess one processing unit (core) integrated into

a single circuit. This core is the fundamental unit that reads and executes

instructions from processes. With a singular processing path, it handles

one instruction at a time, following a sequential execution model. This

architecture was standard in early CPUs, where task completion relied on the

linear processing of instructions. Its primary limitation is in executing parallel

processing demands. As computational tasks become more complex and

multitasking becomes essential, single-core processors face limitations in

performance, leading to potential bottlenecks in processing efficiency.

Parallel processing A computing technique in which multiple processors

or cores within a single machine, or across multiple machines, simultaneously

execute different parts of a task or multiple tasks to improve the overall speed

and efficiency of computation.

Architecture The design and organization of a computer system’s hardware

and software components. This includes the structure and functionality to

perform computational tasks.

Multi-core processors consist of two or more independent cores, each

capable of processing instructions simultaneously. These cores are integrated

onto a single integrated circuit die (chip) or multiple dies in the same package.

This architecture enables the processor to handle multiple instructions at once,

significantly improving performance over single-core designs, especially for

multitasking and parallel processing tasks. Each core can execute a different

thread (sequence of instructions) concurrently, enhancing computational speed

and efficiency. Multi-core processors are better suited to modern computing

needs, including advanced multitasking, complex computations, and

high-demand applications. They offer improved performance and efficiency

by distributing workloads across multiple processing units.

Co-processors are specialized processors designed to supplement the main

CPU, offloading specific tasks to optimize performance. They can be integrated

into the CPU or exist as separate entities. By taking on specific tasks, such

as graphics rendering, mathematical calculations, or data encryption, co-

processors free the main CPU to focus on general processing tasks. This division

of labour enhances the overall system performance and efficiency. Common

examples include graphics processing units (GPUs) for rendering images and

videos and data signal processors (DSPs) for handling signal processing tasks.

= 99 =

Quad-core

CPU

L

[NERER

Dual-core

CPU

A Figure 3 Multi-core CPUs. A multi-core

CPU can have more than 128 cores

A Figure4 GPUsare common examples

of co-processors

A Figure 5 Components and registers are

on the CPU chip. Buses connect the inside

of the CPU to outside components such

as memory

Rendering The process of

generating an image from a model by

executing a series of computational

operations that transform 3D scene

datainto a 2D image.

Al Computer fundamentals

@ Self-management skills

The correct use of subject-specific terminology is essential to your ability

to communicate your knowledge and understanding of key concepts in

computer science. Correct terminology enables the efficient transfer of highly

technical information between computer scientists.

In this section, you learned about the main computer components: what they

do and how they work. Make a glossary that has an entry for each term that

includes this information, such as in the example below.

Term (Abbreviation) | Definition Linked terms

Core component of the

CPU, where the actual

computation happens.

Arithmetic logic unit

(ALU)

Central processing unit

(CPU), control unit (CU)

Include page references so you can find where the term was used in this

book — this can be useful for revision.

Continue to add terms to your glossary throughout the course.

A1.1.2 Describe the role of a GPU

A graphics processing unit (GPU) is a specialized electronic circuit containing

numerous processing cores. For example, the Nvidia GeForce RTX 4080 has

9728 cores.

A GPU is designed to rapidly manipulate and alter memory, accelerating the

creation of images for output to a display device. Unlike central processing

units (CPUs), which handle a broad range of computations, GPUs possess a

highly parallel structure, ideal for complex graphical calculations. GPUs can be

integrated (part of a CPU) or discrete (on a separate card). GPUs communicate

with software using APls such as DirectX and OpenGL. As well as processing

A Figure6 Amodern GPU graphics, GPUs are increasingly used for machine learning and other
computationally intensive workloads.

GPU architecture

GPUs have a distinct architecture which sets them apart from conventional CPUs

and allows them to process large blocks of data concurrently, leading to more

efficient processing for certain types of tasks.

Al.l Computer hardware and operation

Table 2 Features and characteristics of GPUs

GPU feature | Characteristic Example

i i In image processing, a task such as applying a filter to an image
Unlike CPUs, which have a few cores 9 _D_] 9 PPIYINg A . 9
o . ; can be divided into smaller tasks where the filter is applied to

Parallel optimized for sequential, serial) .) L
. - different parts of the image simultaneously. A GPU, with its

processing processing, GPUs have thousands of) .
L) thousands of cores, can process multiple pixels at the same

capabilities | smaller cores designed for parallel . L . . .
- time, significantly reducing the time required to apply the filter

processing. .
to the entire image.

GPUs are optimized for high In graphics rendering, such as in video games or 3D

Hiah throughput, meaning they can process | simulations, a GPU’s high throughput allows it to process

9 alarge amount of data simultaneously. | and display complex scenes in real-time. It can calculate the
throughput o - . : - .

This is particularly beneficial in graphics | colour, position and texture of thousands of pixels concurrently,

rendering and complex calculations. enabling detailed graphics.

In the context of high-resolution video rendering, the GPU
GPUs are equipped with high-speed . . g 9:

. relies on its VRAM to store and manage the textures and data
memory (VRAM), which handles the .)

. needed for rendering scenes. The high-speed memory allows
Memory large textures and data sets required

. - - ; for the rapid manipulation of this data, enabling the rendering
in high-resolution video rendering and) .)

- . of high-resolution video in real-time without buffering or
complex scientific calculations. o

significant delays.

Real-world applications that require graphics rendering
and machine learning

GPUs are indispensable for rendering complex graphics in video games. They

enable the rendering of high-resolution textures, realistic lighting effects and

smooth frame rates, enhancing the gaming experience, providing higher frame

rates, and off-loading rendering work from the CPU.

Consider Figure 7. Notice the lighting, shading, and colours in the sky and grass.

Think of the individual leaves on the tree. Each of those colours, pixels, and

shapes needs to be calculated and rendered. Itis a lot of computational work,

especially if the player is moving around (because the lighting and perspective of

the shapes change) and the grass and clouds are moving in the breeze.

A Figure 7 A screenshot of an alien world from the game No Man’s Sky

D
R
 R

A Figure 8 GPUs have thousands

of cores capable of handling multiple

operations simultaneously. This is beneficial

for multidimensional data sets where

operations often need to be performed

across various dimensions in parallel

Al Computer fundamentals

You will learn more about machine

learning in topic A4 Machine

learning.

A Figure9 Researchers can use models

and simulations to test drugs or understand

disease. Human DNA has 3.1 billion base

pairs—that is a lot of possible combinations

to model and simulatel

A Figure 10 GPUs can facilitate very rapid

changes to lighting, colours and more. In

this image, every single pixel needs to be

assigned a colour and brightness

GPUs are increasingly used in Al and machine learning. Their ability to perform

parallel processing allows for faster processing of large data sets which is

essential in training neural networks. For example, neural networks, which are

at the heart of many Al applications, require the processing of large amounts

of data during their training phase. These training processes involve extensive

matrix multiplications and other operations which can be parallelized effectively

ona GPU.

Scientific computing and large simulations

GPUs are used in various scientific fields for large simulations and data analysis.

Their parallel processing capabilities allow for quicker computations in areas

such as physics simulations, climate modelling and bicinformatics. For example,

in biocinformatics, GPUs play an important role in the processing and analysis of

genetic information. One specific application is in genome sequencing, where

GPUs are used to align sequences and identify genetic variations quickly. This

process involves comparing a massive number of DNA sequences (millions of

seguences) against reference genomes to identify mutations and variations, a task

that is highly parallelizable.

Graphics design and video editing

In graphics design, especially in the creation of 3D models and environments,

GPUs enable designers to visualize their work in real-time. For example, when

using software such as Blender or Autodesk Maya, GPUs are utilized to render

complex scenes, including lighting effects, shadows and textures, in real-time.

A1.1.3 Explain the differences between the

CPU and the GPU

Design philosophy, usage scenarios

Design philosophy

The design philosophy of CPU architecture emphasizes flexibility and

generalizability, enabling CPUs to efficiently process a wide variety of

instructions and data types. In addition, CPUs are designed for low latency,

meaning they prioritize getting things done quickly, even ifit is just one task at a

time. Flexibility, generalization, and low latency translate to design choices where

CPUs typically have a smaller number of cores compared to GPUs, but each core

is more powerful with features such as larger caches and complex logic units.

This allows CPUs to handle a wider variety of instructions efficiently.

Another design choice is a focus on branch prediction. CPUs excel at predicting

which instruction will be needed next and fetching it in advance. This minimizes

wasted time and keeps the core running smoothly.

Finally, instruction versatility is an important design choice. CPUs are built to

understand and execute a large set of instructions, making them ideal for running

general-purpose software such as web browsers, office applications, and even

video games (though not for the intensive graphics processing needed in some

games).

Al.l Computer hardware and operation

The GPU is built for high throughput. It is optimized for tasks that can be

decomposed into smaller, independent pieces. GPUs have a large number

of cores, each less powerful than a CPU core but designed for simpler tasks.

This allows GPUs to process a large amount of data simultaneously. GPUs are

optimized for single instruction, multiple data (SIMD) operations, where the same

instruction is applied to many data elements at once. GPUs are designed to move

data efficiently between cores and memory, prioritizing high bandwidth over

complex logic components in each core.

Usage scenarios

Usage scenarios for CPUs include running operating systems and managing

system resources, executing general-purpose software tasks, decoding and

handling user input (mouse clicks, key presses), and multitasking between

different applications.

Usage scenarios in GPUs include processing graphics and rendering images

and videos for gaming and video editing, accelerating scientific simulations

and machine learning algorithms, encoding and decoding video streams, and

cryptocurrency mining.

Core architecture, processing power, memory access,
power efficiency

Core architecture

An element in the core architecture of a CPU is the instruction set architecture

(ISA), which defines the fundamental operations a CPU can perform. Each

instruction in an ISA specifies a particular operation involving arithmetic

operations, data movement, logical operations, control flow changes, or system

interactions. Unique to a CPU are specific types of instructions such as system

management instructions and complex branching instructions.

GPUs also have an ISA. Each instruction in a GPU's ISA is designed towards

handling extensive arithmetic operations and data movement, and there is less

emphasis on complex logical operations and control flow changes compared

to CPUs. This is because GPUs are optimized for throughput over task versatility.

Unigue to a GPU's ISA are specific types of instructions optimized for graphics

rendering and parallel data processing tasks, such as the following.

SIMD instructions: Allow a single operation to be applied simultaneously to a

large set of data, which is ideal for the parallel nature of graphics processing and

certain types of computational tasks in scientific computing and deep learning.

Texture mapping and manipulation instructions: Essential for graphics

processing, these instructions handle tasks like pixel interpolation and texture

fetching, which are important for rendering images and videos.

Processing power

Processing power refers to the ability of the device to perform computational

tasks. It is a measure of how much work a CPU or GPU can perform in a given

amount of time, which directly impacts the performance of software applications

running on these processors. Different factors can influence the processing

power of a CPU or GPU; for example, the number of cores, clock speed, thermal

management, and power delivery to the processor.

TOK

CPUs and GPUs are specialized to

solve specific types of problems.

Working together, they can

leverage their specializations

to solve much more complex

problems than they could

individually.

To what extent do the differences

between GPUs and CPUs influence

our understanding and approach

to computational efficiency and

problem-solving in modern

computing?

In what ways can other systems

be combined to solve more

complex problems? Are our most

stubborn problems the result of not

combining the right systems?

Instruction set architecture

(ISA) The element of the CPU
that specifies the commands

that a processor can understand

and execute, such as arithmetic

operations, data handling, and

control instructions.

Processing power The ability of

the CPU to execute instructions,

often quantified in terms of clock

speed.

Clock speed The frequency at

which a CPU executes instructions.

It is typically measured in gigahertz

(GHz).

Al Computer fundamentals

GPUs were devised to render

graphics, off-loading that work

from the CPU. In 2024, GPUs

are indispensable for machine

learning and are perfect for highly

repetitive tasks.

To what extent do CPU

design choices influence our

understanding of their role and

efficiency in processing diverse

instructions? These choices may

include prioritizing flexibility,

generalizability or low latency. How

does the CPU’s ability to work with

diverse instructions compare to the

specialized tasks handled by GPUs?

The nature of the choices made

during design can dictate how a

system is used in the future. Should

systems be highly specialized?

Do any design choices for current

systems limit our ability to solve

highly complex problems?

CPUs are designed with fewer, more powerful cores than GPUs. They feature

higher clock speeds and advanced technologies such as branch prediction and

out-of-order execution, which optimize sequential task processing. Multithreading

capabilities and a high instructions per cycle (IPC) rate enable CPUs to efficiently

manage multiple tasks and complex computational instructions.

GPUs possess a large parallel architecture with hundreds to thousands of cores,

enabling efficient handling of large-scale parallel processing tasks. High memory

bandwidth and specialized cores, such as tensor cores, enhance their ability to

process large blocks of data quickly and effectively. The SIMD capabilities allow

GPUs to perform the same operation on multiple data points at once, maximizing

throughput for suitable tasks. While individual GPU cores may operate at a lower

clock speed and with simpler instructions compared to CPU cores, the sheer

number ofthese cores allows for a tremendous amount of parallel processing

power. Remember, the “simple instructions” in GPU cores are designed for

parallel execution, making them specialized rather than inherently less powerful.

Memory access

Memory access in the context of computing hardware such as CPUs and GPUs

refers to how these processors retrieve and manipulate data stored in computer

memory. Each type of processor handles memory access differently based on its

architectural design, which impacts its overall performance.

CPUs utilize a memory hierarchy to manage data access efficiently (for more on

this, refer to A1.1.4). This hierarchy typically includes several levels of caches

(L1, L2, and sometimes L3). This hierarchy is optimized to minimize memary

latency—the delay from issuing a memory request to receiving the data. CPUs

often operate in multi-core environments, necessitating mechanisms such as

cache coherence protocols. These protocols ensure that multiple CPU cores

have a consistent view of the data in the memory, preventing data conflicts and

ensuring data integrity across the cores.

Modern GPUs often use a unified memory architecture, which allows them

to access a large, shared pool of memory which both the GPU and CPU can

address. GPUs are designed with high bandwidth memory. These memory types

are optimized for the high-throughput requirements of GPU tasks, enabling

fast data transfer rates that support the processing capabilities of hundreds to

thousands of parallel cores. Unlike CPUs, which are optimized for low-latency

access, GPUs prioritize memory throughput.

To summarize memory access, CPUs utilize low-latency memory because they

need to rapidly switch between tasks, retrieve data from memory, and execute

operations based on that data with minimal delay. GPUs utilize high memory

throughput because they handle large volumes of data and need to feed

hundreds to thousands of parallel cores simultaneously.

Power efficiency

CPUs and GPUs use electrical power to perform computational tasks. Power

efficiency is a significant aspect of processor design and operation, especially in

environments where energy consumption impacts cost, thermal management,

and system longevity.

For CPUs, power efficiency is often defined by how much computing work can

be performed per watt. This ratio measures the computational output relative to

power consumption, providing a benchmark to compare the efficiency of different

CPU models. Higher performance per watt indicates a more power-efficient CPU.

Al.l Computer hardware and operation

Modern CPUs incorporate advanced power management technologies that

adjust the power usage based on the workload. Techniques such as dynamic

voltage and frequency scaling (DVFS) allow CPUs to reduce power consumption

when full processing power is not needed. Another aspect of power efficiency is

thermal design power (TDP). TDP is the maximum amount of heat generated by a

CPU that the cooling system in a computer is designed to dissipate under normal

conditions. Efficient CPUs manage to deliver more performance while staying

within a lower TDP envelope.

GPUs, particularly those used in high-performance computing and gaming, also

prioritize power efficiency, given their potential for high power consumption.

Since GPUs handle many tasks simultaneously, their power efficiency often

benefits from their ability to spread workload across many cores, reducing the

power per task when compared with serial processing. Like CPUs, many GPUs

incorporate features that help reduce power usage when full graphical power is

not required, such as lowering clock speeds or powering down idle cores. GPUs

are generally more power-efficient at parallel processing tasks than CPUs.

CPUs and GPUs working together: Task division, data
sharing, and coordinating execution

CPUs and GPUs must collaborate effectively to optimize computing tasks.

Understanding how they work together is important.

CPUs are designed for general-purpose processing, and GPUs are designed

for parallel processing capability. General-purpose processing is executing

a variety of instructions with complex logic and decision-making. Parallel

processing is performing the same operation simultaneously on multiple pieces

of data. You can think of this like the roles in a professional kitchen: the head chef

(CPU) ensures everything is in order. The specialized cooks (GPU) handle the

high-volume tasks.

Task division

When CPUs and GPUs work together, tasks are typically divided based on

their nature and requirements. Sequential and control-intensive tasks remain

the domain of the CPU, which manages the system, performs logic and

control operations, and processes tasks that require frequent decision-making.

Some examples of tasks executed by a CPU are OS management, network

communication, and input/output handling.

Parallelizable data-intensive tasks are offloaded to the GPU, where hundreds or

thousands of smaller, independent tasks can be executed simultaneously. This

includes operations such as matrix multiplications in machine learning algorithms,

pixel processing in graphics rendering, and data analysis in scientific computations.

Data sharing

For CPUs and GPUs to work together effectively, they must share data. Initially, data

is stored in primary memory, accessible by the CPU. For the GPU to process this

data, it must be transferred to the GPU’s memory through the peripheral component

interconnect express (PCle) bus, which can be a bottleneck. Some architectures

offer unified memory, allowing both the CPU and GPU to access the same physical

memory space, simplifying data sharing and minimizing transfer overheads.

A Figure 11 Managing heat is direc

related to performance

Al Computer fundamentals

Volatile memory Requires power

to maintain the stored data. When

the power is tumed off, the data is

lost. An example of volatile memory

is RAM (random-access memory).

Non-volatile memory Retains

stored information even when

the power is tumed off. Examples

include ROM (read-only memory),

SSDs (solid state drives), and HDDs

(hard disk drives).

Coordinating execution

Coordinating the execution between CPUs and GPUs involves using

programming languages such as CUDA (for Nvidia GPUs) and OpenCL. These

languages provide the necessary tocls to manage how tasks are divided between

CPUs and GPUs, including memory management and task synchronization. This

often involves synchronization primitives like barriers or events. Modern systems

can dynamically allocate tasks to CPUs and GPUs based on the current workload

and the nature of the tasks, optimizing for performance and energy efficiency.

A barrier is a synchronization mechanism used to ensure that multiple threads or

processes reach a certain point in execution before any are allowed to proceed.

Think of it as a checkpoint in a race that all runners (threads) must reach before the

race can continue to the next segment. In parallel programming, barriers are used

to implement a point of synchronization where threads pause their execution until

all participating threads have reached the barrier point. Once the last thread arrives

at the barrier, all threads are released to proceed with their subsequent operations.

An event is a synchronization primitive that allows threads to wait for certain

conditions to be met before continuing their execution. Unlike barriers, which

synchronize a group of threads at a predefined point, events are more flexible

and can be used to signal one or more waiting threads that a specific condition

has occurred, such as the completion of a task or the availability of required data.

A1.1.4 Explain the purposes of different

types of primary memory

Registers, cache (L1, L2, L3), random-access memory

(RAM), and read-only memory (ROM)

Primary memory serves as the central workspace for the CPU, facilitating the

storage and quick access to data and instructions which are in active use.

Registers

The fastest and smallest type of memory, built directly into the CPU. They store

data, instructions and addresses the CPU is actively executing. This memory is

volatile. The fundamental unit of data handled by a CPU’s architecture is the

“word size”, which describes the size of a register. In general, registers hold

32 or 64 bits of data.

Cache (L1, L2, L3)

High-speed memory residing on or close to the CPU. Caches bridge the speed

gap between registers and RAM, holding frequently used data and instructions

for quick retrieval. This memory is volatile.

* |1 cache typically ranges from 32 KB to 256 KB per core, with data and

instruction caches separate in some architectures.

* |2 cache typically ranges from 256 KB to 16 MB per core or shared across

multiple cores.

* |3 cache typically ranges from 2 MB to 32 MB shared across all cores in

aCPU.

Al.l Computer hardware and operation

Main memory (RAM)

The primary workspace of the computer. RAM temporarily stores the currently

running operating system, processes, and active data and instructions. This

memory is volatile. RAM capacity is typically measured in gigabytes (GB). In

2024, 16 GB of RAM would be adequate for multitasking, light gaming, and

content creation, while 32+ GB would be ideal for power users, heavy gaming,

video editing, and professional applications. 32-bit operating systems generally

have a limit of around 4 GB of RAM, while 64-bit systems can address a much

larger amount of RAM. The authors are quite certain these memory baselines will

increase significantly in the future.

Read-only memory (ROM)

A non-volatile memory that stores essential instructions and data for the computer

to start up (for example, the BIOS or firmware). Data in ROM is typically not

modifiable during normal computer operation, although it is modifiable via

special processes. ROM's role is primarily for firmware storage and it is not

directly involved in the day-to-day memory access hierarchy involving registers,

cache and RAM. ltis better considered as a separate entity focused on system

boot-up and low-level startup operations.

The interaction of the CPU with different types of memory
to optimize performance

Computing systems are designed to be as efficient as possible. The CPU

interacts with different types of memory in a hierarchical manner to optimize

performance. This interaction is guided by the principles of minimizing latency

and maximizing throughput for data and instruction access. Latency is the

time it takes for data to move from its source to its destination. Latency is

usually described as low or high. Throughput is the amount of data that can be

processed or transmitted in a given amount of time.

The hierarchical memory system, from registers to RAM, serves an important role

in this optimization process. The CPU interacts with these different memory types

as follows.

Registers

Direct interaction: The CPU has internal registers, which are the fastest type of

memory available. These registers are used to store immediate data which the

CPU needs for current operations, such as operands for arithmetic operations,

address pointers, and the results of operations.

One of the guiding principles in hierarchical memory design is to keep

frequently used, related data as close to the CPU as possible: this enables

faster processing of data and instructions.

How does the hierarchical structure of memory components influence our

understanding of processing speed and data accessibility in computer systems?

Grouping similar data involves making assumptions about how data is similar.

How might assumptions about relatedness of data be helpful or problematic?

Latency The time delay between

the transmission of a data packet

and its reception. It is typically

measured in milliseconds. Latency

represents the total time taken for

the data to travel from the source

to the destination. It is synonymous

with the term “lag”.

Smallest - Fastest

Registers (closest to the CPU):

Tiny, ultra-fast memory for

immediate calculations.

Cache (L1, L2, L3): Still very fast.

Holds recently used data for

quick access by the CPU.

BN e
Main memory (RAM): Holds the currently

running programs and their data.

Slower than cache but larger capacity.

I
Storage (SSD, hard drive): Mass storage

for files and data not in immediate use.

Largest capacity but also the slowest.

Largest Slowest

A Figure 12 The hierarchical memory

system. The closer the memory is to the

CPU, the faster and smaller in capacity it is

Al Computer fundamentals

Optimization: By utilizing registers for the most immediately necessary data

and instructions, the CPU minimizes the need to access slower types of memory,

significantly speeding up processing times.

Cache (L1, L2, L3)

Hierarchical use: Cache memory serves as a high-speed intermediary between

the CPU and the slower main memory (RAM). ltis divided into levels (L1, L2, L3)

based on proximity to the CPU, with L1 being the smallest and fastest, and L3

being larger and slightly slower but still faster than RAM.

Data and instruction prefetching: Modern CPUs use sophisticated algorithms

to predict which data and instructions will be needed socn, and pre-emptively

load them into the cache. This anticipatory action reduces the time the CPU

spends waiting for data, thus optimizing performance.

Spatial and temporal locality: Caches exploit the principles of spatial (data

near recently accessed data is likely to be accessed soon) and temporal (recently

accessed data is likely to be accessed again soon) locality to keep relevant data

close at hand, further optimizing performance.

Main memory (RAM)

Central data repository: RAM holds the operating system, applications and

data that are currently in use. It provides a much larger space for data storage

compared to caches and registers.

Interaction through memory controller: The CPU interacts with RAM via

the memory controller, a chipset that manages data transactions between the

CPU and RAM. This controller plays a critical role in managing access times and

optimizing the flow of data between the CPU and RAM.

Virtual memory: The system can use a portion of the hard drive (or SSD) as

virtual memory, extending the available memory space. The CPU manages the

swapping of data between RAM and virtual memory, though this process is

significantly slower than accessing RAM directly.

Read-only memory (ROM)

Boot-up process: While not directly involved in the CPU's data processing

tasks, ROM contains the firmware or BIOS necessary for the initial booting of the

computer and basic hardware initialization. The CPU accesses this read-only data

at startup to load the operating system from secondary storage (for example,

HDD or SSD) into RAM.

The relevance of terms “cache miss” and “cache hit”

The CPU first checks the registers for the data it needs. If the data is not found

in the registers, the CPU checks the L1 cache, then the L2 cache, and then L3

cache, and finally the main memory (RAM). Sometimes, the CPU finds the data it

needs (a hit) and sometimes the data is not found (a miss).

A cache hit occurs when the CPU finds the data it needs in a cache. This is the

fastest case, as the CPU can access the data almost instantaneously. A cache

miss occurs when the data is not found in the cache. In this case, the CPU needs

to fetch the data from main memory, which is slower than accessing the cache.

Al.l Computer hardware and operation

To minimize cache misses, the CPU uses a variety of techniques, including the

following.

Prefetching: The CPU can predict which data it will need in the future and fetch

it into the cache before it is actually needed.

Memory allocation: The operating system can allocate data to appropriate

memory locations based on usage patterns to maximize cache hits.

Cache replacement policies: The operating system can choose which data to

evict from the cache when it is full to optimize cache hit rates.

By optimizing the interaction between the CPU and different types of memary,

the CPU can significantly improve the performance of computer systems.

Figure 13 shows some additional points to remember about the interaction of the

CPU with different types of memory.

Table 3 |ust how fast is memory?

Unit of time Definition Examples

1 nanosecond

(ns)
one billionth of a second

The time to execute one machine

cycle by an Intel Pentium 4 1 GHz

MiCroprocessor.

Light travels 12 inches (30 cm) in 1 ns.

1 microsecond

(ps)
one millionth of a second

The time to execute one

machine cycle by an Intel 80186

MiCroprocessor.

1 millisecond one thousandth of a

The length of the flash strobe on a

camera.

Smallest Fastest

The CPU prefers to access

registers for the fastest

possible access to data.

L1 cache is the fastest type of

memory thatis not located

directly on the CPU.

N e
L2 cache is slower than L1

cache but still faster than

main memaory.

I I
L3 cache is slower than

L2 cache but still faster

than main memory.

BN
Main memory is the largest
type of memory but also

slower than cache memory.

N 2
ROM is the slowest type of memory but is

non-volatile, meaning it retains its contents

when the power is turned off.

(ms) second It takes around 50-80 ms to blink Largest Slowest

an eye. : , A Figure 13 The interaction of the CPU
gsiecond 1 second m:l:;:gfe atll(r;:]z t_o say ‘one with different types of memory

Type of memory Access time Size Latency

Register 0.2-0.5 nanoseconds Smallest Lowest

Level 1(L1) cache 3-7 nanoseconds Small Lower

Level 2 (L2) cache 5-10 nanoseconds Larger than L1 cache Moderate

Level 3 (L3) cache 10-40 nanoseconds Larger than L2 cache Moderate to high

Main memory (RAM) 50-70 nanoseconds Largest Highest

Al Computer fundamentals

Fetch A1.1.5 Describe the fetch, decode and

execute cycle
The fetch-decode-execute cycle is the fundamental cycle of instruction

execution in a computer. This cycle is also known as the instruction cycle. When

you run a program, itis executed by your CPU. The fetch-decode-execute cycle

describes how instructions are executed.

Decode

It consists of three main steps.

A Figure 14 The fetch-decode-execute 1. Fetch: The CPU fetches an instruction from memory.
cle

< 2. Decode: The CPU decodes the instruction, which means it interprets the

instruction into a set of low-level operations that the CPU can execute.

3. Execute: The CPU executes the instruction, which means it carries out the

low-level operations that were specified in the decoded instruction.

The fetch-decode—-execute cycle is repeated for each instruction in a program.

The speed of the CPU is largely determined by how quickly and efficiently

it can execute this cycle. Executing a single machine language instruction

involves a sequence of operations which are performed by the CPU. These

operations can be broadly categorized into three main phases: fetch, decode

and execute.

Representing primary memory

Table 4 Example reference table Whenever you think about primary memory (RAM), drawing a table like Table 4

showing memory address and can be helpful. This is a simplified representation where the memory address is

corresponding data or instructions on the left, and the corresponding data or instructions are on the right. This is

especially useful when working with the fetch-decode-execute cycle because

Address Data/Instructions it helps you understand the relationship between addresses and their contents

in RAM.
01 42

02 69 In the Table 4 example:

03 LOAD 01 ¢ address 01 and O2 store data values

04 ADD 01, 02 * address 03 contains a LOAD instruction to load data from address O1

05 STORE 04, 03 * address 04 has an ADD instruction to add the contents of addresses 01

and 02

* address 05 includes a STORE instruction to store the result from address 04

into address 03.

This example is quite basic, and real primary memory is much more complex,

with all values stored in binary. However, using this representation can help you

conceptualize how the fetch-decode-execute cycle operates in practice.

Fetch phase

In the fetch phase (Figure 15), the CPU retrieves a machine language instruction

from main memory (typically RAM). This involves the CPU sending a request

to the memory to fetch the instruction. The address of the instruction to be

fetched is stored in the memory address register (MAR), and the fetched

instruction is then transferred to a special register called the instruction register

A Figure15 Fetch (IR) in the CPU.

Al.l Computer hardware and operation

Decode phase

In the decode phase (Figure 16), the CPU interprets the machine language instruction

fetched during the previous phase. This phase is managed primarily by the CPU's

control unit, which decodes the instruction by analysing these components:

* opcode (operation code): dictates the type of operation

* operands: the data to be operated on

* addressing modes: determine how to locate the operands.

Additionally, the decode phase involves checking the validity of the instruction

and ensuring that the operands are within an acceptable range. This phase also

calculates the effective address of the operands, which is the actual memory

address where the operands are located.

Execute phase

During the execute phase, the CPU performs the operation specified by the

instruction decoded in the previous phase. The specific operation carried out is

dictated by the opcode. Common operations include the following.

Arithmetic operations: Addition, subtraction, multiplication, and division,

typically performed by the ALU.

Logical operations: Logical functions like AND, OR, and NOT, also managed by

the ALU.

Memory access operations: Load (reading data from memory into a register)

and store (writing data from a register to memory) operations, which involve

interaction with the system’s memory.

A Figure 16 Decode

A Figure17 Execute

Control operations: Conditional and unconditional jumps which alter the flow

of execution based on specific conditions.

TOK

Recognising patterns is an important part of being a

computer scientist. The fetch-decode-execute cycle is

a pattern that is still used today. Modern computers can

cycle through this pattern more than a billion times a

second. What patterns could be developed today that

may be helpful in the future?

Outside of computing, are there patterns of doing

work that are better than other patterns?

Outside of computing, how do you identify if some

working patterns are better than other patterns?

Consider this in the context of completing homework for

school. You might work for 30 minutes, then takea 10

minute break and repeat this cycle until you have finished

the work. Is that the best pattern? How do you know?

How does knowledge of a cycle of instruction shape

our perception of computational efficiency and

program execution?

@ Research skills

Opcodes (operation codes)

Opcodes are part of the instruction in a machine

language program which specifies the operation to be

performed. Here are some examples of opcodes in

assembly language, which is directly related to machine

code opcodes.

* MOV Move datafrom one location to another.

* ADD Add two operands.

* SUB Subtract one operand from another.

* MUL Multiply two operands.

Each opcode corresponds to a specific machine

language instruction. The binary codes for these

operations can differ between each architecture, such as

x86, ARM or MIPS.

Research the following opcodes to find out what

operations they specify: DIV, AND, OR, JMP.

Al Computer fundamentals

Worked example 1

The instruction ADD R1, R2, R3 adds the values in registers R2 and R3 and stores the result in register R1.

Describe the fetch, decode and execute phases of an ADD instruction cycle ina CPU.

Solution

Fetch phase

1. Memory address: The program counter (PC) points to

the memory address where the instruction is stored.

Fetch: The CPU fetches the instruction ADDR1, R2,

R3 from this address.

IR: The fetched instruction is placed into the

instruction register (IR).

Decode phase

1. Control unit: The control unit reads the instruction in

the IR.

2. Decoding: The control unit decodes the instruction

and understands it needs to perform an addition.

Worked example 2

3.

4.

Operands: It identifies R2 and R3 as the source

registers containing the operands.

Destination: It identifies R1 as the destination register

where the result will be stored.

Execute phase

1.

2.

3.

ALU operation: The ALU receives the contents of

R2 and R3.

Addition: The ALU performs the addition Value in

R2 + Value in R3.

Store Result: The result of the addition is stored back

into R1.

The instruction CMP R1, R2 compares the values in registers R1 and R2 and sets the CPU status flags (for example,

zero flag, carry flag) based on the comparison result. Describe the fetch, decode and execute phases of a CMP

instruction cycle in a CPU.

Solution

Fetch phase

1. Memory address: The PC holds the memory address

of the next instruction to be executed, which is where

the CMP R1, R2 instruction is stored.

Fetch: The CPU fetches the CMP R1, R2 instruction

from the memory location specified by the PC.

IR: The fetched instruction CMPR1, R2 is placed into

the IR.

Decode phase

1. Control unit: The control unit reads the instruction in

the IR to understand what needs to be done.

Decoding: The control unit decodes the instruction and

determines that it is a compare operation. |t understands

that it needs to compare the values in R1 and R2.

Operands: The CU identifies R1 and R2 as the source

registers containing the operands for the comparison.

No Destination: Unlike arithmetic operations, CMP

does not have a destination register for storing results,

as it only affects the status flags.

Execute phase

1. ALU operation: The ALU receives the values stored in

registers R1 and R2.

Comparison: The ALU compares the values in R1 and

R2. This operation involves subtracting the value in R2

from the value in R1 to determine the result.

Set flags: Based on the comparison result, the ALU

updates the status flags:

» Zeroflag: SetifR1is equal to R2.

* Negative flag: Set if R1 is less than R2.

* Carryflag: Setif there is a borrow in subtraction

(often used in unsigned comparisons).

* Qverflow flag: Set if there is an arithmetic

overflow (less relevant for a basic compare).

PC update: The PCis incremented to point to the next

instruction in sequence, preparing the CPU for the

next fetch phase.

Al.l Computer hardware and operation

Worked example 3

Outline how a CPU processes a command for calculating an average score.

Solution

1. Initial setup

* Scores: Stored in consecutive memory addresses.

* Number of scores: Stored in a special memory

location.

* Sum of scores: Accumulated in Register R1.

* Current score: Loaded into Register R2.

* Counter: Number of scores processed, kept in

Register R3.

* Average: To be calculated and stored in

Register R4.

2. Fetch-decode-execute cycle 1: Initialize registers

* Fetch: LOAD R1, #0 (Initialize R]tozero

for sum)

* Decode: Recognize LOAD operation. Operand is

immediate value #0.

* Execute: SetR1to 0.

* Fetch: LOAD R3, #0 (Initialize R3 as counter).

* Decode: Decode to a load immediate value

into R3.

e Execute: Set R3 to O.

3. Load number of scores

* Fetch: LOAD R5, address_of num_scores

(Load number of scores into R5).

* Decode: Decode to load from memory address

into R5.

Execute: Access memory and put the number of

scores into R5.

Sum scores loop

Loop start: Check if R3 (counter) is less than R5

(total scores).

Fetch:LOAD R2, (address_of_ scores +

R3) (Load current score to R2).

Decode: Decode load instruction, calculate

address as offset by R3.

Execute: Access memory, load score into R2.

Fetch:ADD R1, R1, R2(Add currentscore to

sum).

Decode: Recognize add operation, operands R1

and R2.

Execute: Compute sum, store back in R1.

Fetch: ADD R3, R3, #1 (Increment counter).

Decode: Decode addition, immediate increment.

Execute: Increment R3 by 1.

Conditional loop: Check if R3 is still less than R5.

Execute: IfR3 <R5, jump back to loop start.

Calculate average

Fetch: DIV R4, R1, RS5 (Dividesum by

number of scores to get average).

Decode: Decode divide operation.

Execute: Perform division, store result in R4.

Al Computer fundamentals

Control bus

[|
Address bus

A Figure 18 Interaction between buses

and registers. Arrows indicate data flow

Bits and bytes are units of data.

You will learn more about them in

subtopic Al.2.

The interaction between memory and registers via the
three buses (address, data, and control)

Data, instructions, and control signals need to be transferred between a CPU and

off-chip components in an organized, predictable and efficient manner.

This movement between memory and registers is facilitated through a set of three

buses.

A bus is a communication system which transfers data between various

components within a computer. The term is used to refer to both the physical

connection—wires and printed circuit tracks—as well as the protocols (rules and

signalling standards) used to manage the communication.

The three buses are the address bus, data bus, and control bus. These buses

form the communication channels between the CPU, main memory, and other

components within a computer system. Sometimes these three buses are

referred to collectively as the system bus.

Address bus

The address bus carries memaory addresses from the CPU to the memary

controller. The memory address specifies the location of the data or instruction

that the CPU wants to access. The address bus is typically a parallel bus, meaning

it consists of multiple wires, one for each bit of the memory address. The number

of wires in the address bus determines the maximum amount of memory that the

CPU can address.

Data bus

The data bus carries data between the CPU and memory. It can be used to

transfer both instructions and data. The data bus is typically a parallel bus,

meaning it consists of multiple wires, one for each byte of data. The width of the

data bus determines the maximum amount of data that can be transferred in a

single operation.

Control bus

The control bus carries various control signals necessary for managing

and coordinating the interactions between the CPU and other system

components such as the memory. These signals include—but are not limited

to—read, write, and acknowledge. The read signal prompts the memory

controller to retrieve data from a specified address and send it to the CPU.

The write signal initiates a data storage operation at a specific memory

address. The acknowledge signal confirms the completion of a data transfer.

Additional signals on the control bus may include interrupt requests, which

allow peripherals to request CPU attention, and clock signals, which help

synchronize data transfers and ensure that operations occur at the correct

times and in the right sequence.

The three buses work together to enable the CPU to read data from memory,

write data to memory, and access instructions from memory. The address bus

specifies which memory location to access, the data bus transfers the data

between the CPU and memory, and the control bus provides the signals that

control the data transfer.

Al.l Computer hardware and operation

Examples of the interaction between memory and registers

Worked example 4

Outline how a CPU processes a command to read the value stored at memory location Ox1A3B.

Solution

: Address | The CPU sends the memory address Ox1A3B to the memory controller via the address bus. This bus

bus carries the memory address specifying where the data the CPU needs is located.

5 Control | The CPU sends a read signal over the control bus to the memory controller. This signal instructs the

bus memory controller to retrieve data from the address specified.

3 Data Once the memory controller receives the read signal, it fetches the data from memory location Ox1A3B

bus and sends it back to the CPU using the data bus. This bus carries the actual data from memory to the CPU.

Control | An acknowledge signal is sent back to the CPU via the control bus once the data has been successfully

bus transferred to indicate that the read operation is complete.

Worked example 5

Qutline how a CPU processes a command to write the value Ox7E to memory location Ox4F2.

Solution

1 Address The CPU uses the address bus to send the target memory address Ox4F2 to the memory controller,

bus indicating where the data should be stored.

The value Ox7E is sent to the memory controller via the data bus. This bus carries the data that the
2 | Databus) .

CPU intends to store in memory.

Control The CPU sends a write signal to the memory controller over the control bus. This signal commands

3 bus the memory controller to store the data received on the data bus at the address provided by the

address bus.

Control After the data has been written to the specified memory location, the memory controller sends an

4 | bus, acknowledge signal back to the CPU via the control bus, confirming that the write operation has

continued | been successfully completed.

A1.1.6 Describe the process of pipelining in

multi-core architectures

Pipelining

Pipelining allows a processor to execute multiple instructions at the same time.

This can significantly improve the overall throughput of the system.

The following laundry analogy is not perfect, but it helps to explain pipelining.

Non-pipelined laundry

1. Wash: Put a load of clothes in the washing machine and wait for the cycle

to finish.

Pipelining A technique for

improving the performance of

computer processing by dividing

the execution of a process into

2. Dry: Transfer the wet clothes to the dryer and wait for them to dry. multiple parts and allowing those

3. Fold: Take the dry clothes out and fold them.
parts to operate simultaneously.

Al Computer fundamentals

Multi-core architecture A

computing architecture where a

single physical processor contains

multiple integrated cores. A

processor can have a single core or

multiple cores.

- $-9
DIRTY WASHING DRYING FOLDING

A Figure 19 Thelaundry process

In this scenario, each task must be fully completed before starting the next. If each

task takes 30 minutes, completing a single load of laundry would take 1.5 hours.

Pipelined laundry

1. Wash (Load A): Put the first load of clothes in the washing machine.

2. Dry(Load A): When Load A finishes washing, transfer it to the dryer.

3. Wash (Load B): While Load A is drying, start a second load of laundry in the

washing machine.

4. Fold (Load A): When Load A finishes drying, fold the clothes.

Dry (Load B): When Load B finishes washing, transfer it to the dryer.

6. Wash (Load C): While Load B is drying, start a third load of laundry in the

washing machine.

7. Fold (Load B): When Load B finishes drying, fold the clothes.

Notice that, in the pipelined example, tasks 2 and 3 can happen at the same time

(apart from moving the clothes from one task to the next). You do not need to

wait for the clothes to finish drying before you start the wash cycle. Similarly, tasks

4,5 and 6 can all happen at the same time.

By overlapping tasks, you increase efficiency. After the initial setup time, you can

complete a load of laundry every 30 minutes instead of every 1.5 hours.

Multi-core processors

Each core in a multi-core processor includes all the fundamental components

you would find in a single-core processor, such as an ALU, control unit, registers,

and often their own Level 1(L1) and sometimes Level 2 (L2) cache. While each core

operates independently, they typically share some higher-level caches (like L3

cache) and primary memory (RAM). This is different from single-core processors,

which do not need mechanisms for inter-core communication.

Single-core processor Multi-core processor

Core 1 Core 2 ’
Core

Shared memory

@
Y Y

‘ Off-chip components ‘ ‘ Off-chip components ‘

A Figure 20 Comparison of single-core and multi-core processor architecture

Al.l Computer hardware and operation

This integration facilitates faster communication between the cores compared

with separate processors or chips, leading to improved performance for

applications designed to take advantage of parallel processing.

How pipelining improves the overall system performance
in multi-core architectures

Pipelining enables multi-core computing. Each core typically has its own

pipeline, allowing it to fetch, decode, execute, and write back instructions

concurrently. This means that while one instruction is being executed, another

can be decoded, and yet another can be fetched, thus improving overall

processing efficiency and speed.

In the fetch phase, each core independently fetches instructions from memory.

When cores share L3 cache or RAM, the fetch mechanism must manage

cache coherency. Cache coherency ensures CPUs have data consistency and

data correctness when multiple caches store copies of the same data from

main memory.

In the decode phase, after fetching, each core decodes the instruction into its

opcode and operands. This decoding happens in parallel in each core, allowing

diverse instructions to be processed simultaneously across the cores.

In the execute phase, each core executes its decoded instructions. This

could involve ALU operations (such as arithmetic and logic), accessing

registers, or interacting with memory. Execution units in each core

work independently, though they might need to synchronize access to

shared resources.

Finally, in the writeback phase the results from the execution phase are written

back to the memory or registers. This phase is also managed independently by

each core, though write operations to shared memory may require coordination

to maintain data integrity and coherence.

Overview of how cores in multi-core processors work
independently and in parallel

Each core in a multi-core processor can operate independently of the others.

This means that each core has its own set of resources, including registers, the

ALU, and sometimes its own L1 cache, allowing it to execute a separate thread

or process. The operating system (OS) allocates different tasks or threads

to individual cores based on scheduling algorithms and the current load on

the system.

In parallel operation, the cores work together on a single task to improve

performance. This is often achieved through parallel processing, where a

task is divided into smaller subtasks which can be executed simultaneously

by different cores. For example, in a quad-core processor a task can be

divided into four parts, with each core working on one part. This division

and simultaneous execution of tasks can significantly reduce the time

required to complete complex computations or process large amounts

of data.

TOK

What happens when several

different people try to talk to you

atthe same time? Imagine you are

watching a movie, chatting with

a friend and reading a message.

How easy is it to pay attention to

everything that is happening?

What is the cost of doing many

things at the same time? Is faster

always better?

What are the implications of

simultaneous instruction execution

in computing systems?

Al Computer fundamentals

For cores to work in parallel effectively, they must coordinate and communicate

with each other. This is often facilitated by shared resources, suchas L2 or L3

cache, which allow cores to exchange data and synchronize their operations.

The effectiveness of this communication and the ability to minimize contention

for shared resources are important factors in the overall performance of multi-core

processors in parallel tasks.

Worked example 6

Imagine a task which involves processing a list of numbers to calculate their squares and then storing the results.

Work through the steps of a problem to clarify how pipelining functions.

Solution

1. Divide the task into the four stages: fetch, decode, iii. Execute: Perform the calculation (square

execute and writeback. the number).

2. Breakthe problem into smaller tasks, and put these iv. Writeback: Store the result back ina

into the four stages from part 1. result array.

i. Fetch: Retrieve numbers from an array. Here is how the pipelining could be visualized

S e e T R e overtime (T1, T2, T3, and so on represent time units).

performed (in this case, squaring the number).

Explanation

Look at T1to T4. In the first time unit (T1), Core 1 fetches the first number. In the next time unit (T2), while Core 1 decodes

the squaring of the first number, Core 2 fetches the second number. In the next time unit (T3), Core 1 executes the

squaring of the first number, Core 2 decodes the second number and Core 3 fetches the third number, and so on. At T4,

each core is working on a different stage of the process for different data elements.

The tasks are overlapping. Notice how each core picks up a new task as soon as it completes its part of the previous task. For

instance, as soon as Core 1 finishes executing the squaring of the first number at T3, it immediately moves on to the writeback

stage at T4 and then fetches the next number at T5.

Each core processes different data elements in parallel, significantly speeding up the overall process comparedto a

single-core processor performing each task sequentially.

A1.1.7 Describe internal and external types

of secondary memory storage
Unlike primary memory (RAM), which is volatile and temporary, secondary

memory storage is non-volatile and retains data even when the computer is

powered off, enabling data persistence. Examples of secondary memory storage

include hard disk drives (HDDs), solid-state drives (SSDs), optical discs, and flash

drives. Secondary memory can be broadly classified into two categories: internal

and external storage. You might also encounter secondary memory storage

referred to as external memory, auxiliary storage, or mass storage.

Al.l Computer hardware and operatlo‘

A Figure 21 A 5.25inch floppy disk

Internal hard drives (SSD, HDD) and embedded
multimedia cards (eMMCs)

Internal hard disk drives (HDDs)
Secondary memory storage A

HDDs are the most common type of internal storage, and they are typically used type of data storage which is not

in desktop computers, laptops and servers. HDDs offer high storage capacities directly accessible by the CPU and

and are very reliable, but they can be comparatively slow to access data (average is used for storing data on a long-

sustained data transfer rate for a hard disk is between 100 MB/s to 200 MB/s). term basis.

Hard disk drives were named “hard” to distinguish their rigid, non-removable

platters coated with magnetic material, where data is stored, from the flexible

and removable media used in earlier floppy disks. The term “hard” reflects the

physical durability and fixed nature of these storage devices, in contrast to the

easily bendable early floppy disks. Hard disk drive (HDD) A type of

storage device that stores data on
An HDD consists of a spindle that rotates at high speed and a read/write head magnetic disk platters.

that moves across the surface of the platters. The read/write head can read and

write data to the platters by magnetizing tiny areas on the surface.

Advantages of HDDs include large storage capacities, high reliability, and relative

affordability. Disadvantages of HDDs include slow data access speeds, and they

can also be noisy. HDDs are used in desktop computers, laptops, servers and

external hard drives.

Internal solid state drives (SSDs)

SSDs serve the same purpose as traditional hard disk drives (HDDs) but are faster

and consume less power. Unlike HDDs, which use mechanical parts and magnetic

platters to read and write data, SSDs have no moving parts, leading to quicker access

times and lower latency. The average data transfer rate for an SSD can significantly

exceed that of HDDs, in some cases reaching 2,500 MB/s to 7,000 MB/s.

A Figure 22 A hard disk drive
Solid state technology's non-volatile nature allows it to retain data without power,

similar to traditional hard drives but without the physical constraints of rotating disks.

The core storage mechanism in an SSD is NAND flash memory, characterized _

by its_ ability to retain data without power. Datg is _stored in floating-gate Solid state drive (SSD) A type of

transistors (memory cells) arranged within a grid-like structure on the flash . .
. . . .) storage device that uses integrated

chip. To store data, the floating gate in each cell is electrically charged or o .
disch d. This t dch t< a bi lue (0 or 1). NAND circuit assemblies to store data
ischarged. This trapped charge represents a binary value (O or 1). persistently, typically using flash

flash is organized into blocks, which are further subdivided into pages. Data is memo

written to flash memory in pages and erased in blocks. .

Computer fundamentals

A Figure24 A16MB eMMC card

Embedded multimedia card

(eMMC) A type of solid-state
storage device that is typically

used in portable devices such as

smartphones, tablets and digital

cameras.

,
I

A Figure 25 An external hard drive

External hard disk drives (HDDs)

and solid-state drives (SSDs)

External storage devices that can

be connected to a computer via

a cable (for example, a USB or

Thunderbolt cable).

Optical drives Devices that can read

and write data to optical discs, such

as CDs, DVDs and Blu-ray discs.

To read data, the charge level within the floating gate is sensed, determining

the stored binary value. A specialized SSD controller manages operations

within the SSD, including data transfer and error correction. Due to the physical

limitations of flash cells (they can only endure a finite number of write and erase

cycles), SSDs employ wear-levelling algorithms. These techniques ensure

that write and erase operations are distributed evenly across all blocks in the

memory, prolonging its lifespan. NAND flash comes in several varieties (SLC,

MLC, TLC, QLC), with each storing a different number of bits per cell. These

types offer variations in cost, speed and endurance.

Advantages of SSDs include rapid access times, higher data transfer rates,

reduced power consumption, and increased durability due to the lack of

mechanical parts. However, SSDs can be more expensive per gigabyte than

HDDs and may have limited write cycles, although technology improvements are

continually mitigating these downsides.

Embedded multimedia cards (eMMCs)

An eMMC is a type of flash storage found in many low to mid-range devices.

It integrates the multimedia card interface, flash memory, and flash memory

controller on a small package on the device's motherboard. While eMMC is

solid-state and offers decent performance, it is generally slower than most SSDs,

especially in terms of sequential read/write speeds and input/output operations

per second (IOPS). eMMC storage usually offers lower capacities than SSDs

(typically ranging from 16 GB to 256 GB) and is less expensive. Its lower cost

makes it an attractive option for manufacturers of budget-friendly devices.

eMMCs utilize NAND flash memory, described above. Advantages of

eMMCs include fast data access speeds, highly reliable, relatively shockproof.

Disadvantages of eMMCs include greater expense than HDDs, and

comparatively lower storage capacities than HDDs and SSDs.

External hard drives, optical drives, flash drives, memory

cards, and network attached storage

External hard drives (SSD, HDD)

External hard drives come in a variety of sizes and capacities, and they can be

used to back up important data, transfer files between computers, or simply store

data. The basic functionality of external HDDs and SSDs is the same as for internal

HDDs and SSDs.

Optical drives

Optical drives were once a common type of external storage, but they

have been largely supplanted by HDDs and SSDs. However, optical drives

are still useful for archiving large amounts of data and for compatibility with

older devices.

An optical disc stores data as tiny indentations known as pits, encoded in a spiral

track on the disc’s surface. The areas between pits are known as lands.

The process of reading and writing data on an optical disc involves a

combination of physical structure, optical technology, and digital encoding. An

optical disc is made of a polycarbonate plastic disc, with a reflective metal layer

(usually aluminium) on which data is encoded. The top of the disc may have a

label, and the entire disc is coated with a protective lacquer.

Al.l Computer hardware and operation

The data on an optical disc is stored in a single spiral track that starts near the

centre and moves outward, containing a sequence of pits and lands. To read

data, an optical drive uses a laser diode to emit a beam of light that passes

through the polycarbonate layer of the disc and reflects off the metal layer. The

presence of pits and lands causes variations in the way light is reflected back to

a photodiode sensor in the player.

A Figure 26 An external DVD drive

pits land

A Figure 27 Pitsand lands on an optical disk

Specifically, when the laser hits a land, it is reflected directly back, but when it hits

a pit, the light is scattered or reflected at a different angle, causing a change in

the intensity of the light received by the sensor. The photodiode sensor detects

these changes in light intensity and converts them back into an electrical signal,

which is then processed and interpreted as the original digital data.

The advantages of optical drives include high storage capacities and

compatibility with older devices. However, they have slower data access speeds,

and discs can be fragile and susceptible to scratches and dust.
A Figure 28 Alaserinan optical drive

Flash drives

Flash drives, also known as USB flash drives, are small, portable storage devices

that can plug directly into a computer’s USB port. They are convenient for

transferring small to medium-sized files between computers. Flash drives are also

relatively affordable.

Flash drives utilize NAND flash memory, described above.

The advantages of flash drives include portability, fast data transfer speeds and

relative affordability, while disadvantages include lower storage capacities

than HDDs and SSDs, and they can be susceptible to data loss if not properly

handled. Losing a flash drive can present a security risk if confidential data is
' A Figure 29 Atypical flash drive

stored on the flash drive.

Memory cards

Memory cards are small, removable storage devices that are typically used

in portable devices, such as smartphones, tablets and digital cameras. They

come in a variety of sizes and capacities. Memaory cards are very convenient for

transferring files between devices and for backing up data.

Memory cards utilize NAND flash memory, described above. Advantages of

memory cards include portability, compact design, and varied storage capacities.

However, memory cards can be lost or damaged easily, and may not be

compatible with all devices. A Figure 30 A collection of memory cards

Al Computer fundamentals

A Figure 31 Network attached storage

(NAS)

TOK

Do you remember what you

learned in all your subjects at

school last week? What about last

term? And last year? If you need to

revise this information, how do you

find it? Compare the persistence

and relative accessibility of

this data. Things you learned

more recently may be easier to

remember without prompting. For

topics you studied some time ago,

you may need to reread your class

notes. Making revision notes while

you are learning a topic can help

you remember it later.

How does the distinction between

secondary memory storage and

primary memory challenge our

understanding of data persistence

and accessibility?

Network attached storage

Network attached storage (NAS) devices provide centralized storage for multiple

devices on a network. NAS devices are typically connected to a router, and they

can be accessed by any device on the network. NAS devices are ideal for sharing

files, backing up data and storing media files. NAS typically uses hard disk drives

(HDDs), solid state drives (SSDs), or a combination of both in hybrid setups.

NAS can be configured with RAID (redundant array of independent disks) to

protect data against drive failures and ensure data availability. NAS can be easily

expanded by adding additional hard drives to accommodate growing data needs.

Advantages of NAS include centralized storage, shared access for multiple

devices, scalable storage, and a high degree of control for system administrators.

The disadvantages of NAS devices are they are more expensive than individual

external drives, they require configuration, and they require a network connection.

A1.1.8 Describe the concept of compression
You compress data to reduce its size, enable more efficient storage, and enable

faster transmission over networks. Compression can significantly decrease the

amount of disk space needed for files and the bandwidth required for transferring

them, facilitating more efficient use of resources.

In general, the more storage you need, the more expensive it is. Network speed

can be metered, meaning you pay for what you use. The basic point here is that

compression can save money.

Additionally, compression is vital in managing large data sets, optimizing web

content delivery, and enhancing the performance of applications by minimizing

load times and storage requirements.

Lossless and lossy compression methods

Lossless and lossy compression are two methods of reducing the size of digital

data. While both aim to decrease file size, they differ in their approach and the

impact they have on the original data.

Lossless compression

Lossless compression identifies redundant patterns and eliminates them without

losing any essential information. This ensures that the decompressed file is an

exact replica of the original file, preserving its integrity and quality. However,

the compression ratio achieved through lossless methods is generally lower

compared with lossy compression.

Worked example 7

A text file contains the following sequence of characters:

AAAAAAABBBBBCCCCCCCCCCDDDDDDDDDD

Use run length encoding (RLE) to compress this sequence.

Solution

There are 7 As, 5Bs, 9 Cs, and 10

Ds. So the code becomes:

7A5B9C10D

To use RLE to compress this sequence,

count the number of consecutive

occurrences of each character.

Al.l Computer hardware and operation

In the worked example, the compressed version ZA5B9CT0D requires significantly

fewer characters to represent the original sequence. When decompressing, the

process is reversed, and the original sequence is perfectly reconstructed. This

illustrates how lossless compression removes redundancy without losing any

original data, ensuring an exact replica of the original file upon decompression.

Lossy compression

Lossy compression employs a more aggressive strategy to achieve higher

compression ratios. It deliberately discards some data, typically minor details that

are less noticeable to the human eye or ear. This allows for significantly smaller file

sizes, making it suitable for applications such as audio, video and images. However,

the discarded information can compromise the quality of the reconstructed file.

For example, consider an image that is a simple 4x4 pixel grid, where each

pixel is either black or white. This image could be part of a larger picture, with a

segment looking like this:

Black White Black White

White Black White Black

Black White Black White

White Black White Black

For a lossy compression, you might reduce the resolution by averaging the

colours of every 2x2 block, a process known as downsampling. In this simplistic

case, the result of averaging black and white is grey, so the 4x4 grid might be

compressed to a 2x2 grid like this:

Grey Grey

Grey Grey

Here, the specific details of which pixels were black and which pixels were

white are lost—only the average colour is retained. This demonstrates how

lossy compression achieves higher compression by sacrificing some details—in

this case, the exact colour of each pixel—while trying to preserve the overall

impression of the image.

Differences between lossless and lossy compression

Lossless compression prioritizes data integrity and ensures that the original file

is preserved, while lossy compression prioritizes smaller file sizes and sacrifices

some data quality for the sake of efficiency. The choice between lossless and lossy

compression depends on the specific application and the trade-off between file

size and data integrity.

There is a difference between

freshly made food and frozen food;

between a home cooked meal and

fast food. Compression changes

an original data into something

smaller, and in some cases (with

lossy compression) we lose

something from the original.

How does the practice of data

compression influence our

understanding of resource

efficiency and cost management in

digital storage and transmission?

What broader implications does

this have for the accessibility and

performance of technology?

Al Computer fundamentals

Table 5 Key differences between lossless and lossy compression

Lossless Lossy

Data integrity

Preserves the original data, ensuring that

the decompressed file is identical to the

original file.

Introduces variations in the reconstructed file due to the

deliberate discarding of certain data deemed less critical

for the intended use case.

Compression

ratio

Achieves lower compression ratios

compared to lossy compression. This is

because it aims to preserve all original data,

reducing the redundancy potential.

Achieves higher compression ratios by discarding parts of

the data that are considered less important, significantly

reducing file size at the cost of some loss in quality.

Preferred for applications where data
Used in audio, video and images, where minor loss of

Applications | integrity is critical, such as backups, archival] .
storage, and editing original documents. quality may be acceptable for smaller file sizes.

Lossy compression algorithms often exploit perceptual

redundancy—the fact that the human senses may not
Perceptual .) . .)
redundancy Does not use perceptual redundancy. distinguish between certain subtle differences in data. This

allows them to discard information that is less noticeable

without significantly impacting the overall quality.

Reversible vs

irreversible

Reversible, allowing for the perfect

reconstruction of the original data from the

compressed file.

Irreversible, meaning once data has been discarded

during the compression process it cannot be restored,

leading to a permanent loss of certain information.

Run-length encoding (RLE) A basic

form of lossless compression. The

number of consecutive occurrences

of each character are counted

and the code changed to a mix of

numbers and letters. For example,

KXXXXYYY becomes 5X3Y.

Run-length encoding, transform coding

Run-length encoding (RLE) and transform coding are two techniques

employed in data compression, each with its own approach and applications.

Run-length encoding is a simple and efficient lossless compression technique that

is well suited for data with repetitive patterns. It works by identifying and replacing

consecutive occurrences of the same value with a single code that represents the

length of the run. Forinstance, the sequence AAAAA would be encoded as 5A.

RLE is particularly effective for compressing data such as text files, which often

contain long runs of blank spaces or punctuation marks. It is also used in image

compression algorithms such as fax compression, where it efficiently represents

large areas of uniform colour. (If you want to make your computer science teacher

feel old, ask them what a fax machine is!)

Transform coding is a more complex and powerful compression technique based

on mathematical transformations. It works by applying a transformation to the

data, such as the discrete cosine transform (DCT), which rearranges the data into

a representation that highlights its statistical structure.

By transforming the data into a more manageable form, transform coding can identify

and exploit redundancy in the data more effectively. This allows it to achieve higher

compression ratios compared with RLE, particularly for data with complex patterns.

Transform coding is widely used in image compression algorithms such as |PEG,

where it transforms the image into a frequency domain representation before

applying quantization to reduce the number of bits required to represent each

component. Itis also used in audio compression algorithms such as MP3, where

it transforms the audio signal into a frequency domain representation before

applying various coding techniques to achieve efficient compression.

Al.l Computer hardware and operation

Applications of RLE and transform coding

RLE is commonly used for compressing text files, images with repetitive patterns

(for example, fax images), and binary data with long runs of consecutive zeros.

Transform coding is primarily used for compressing images and audio signals,

where its ability to exploit statistical redundancy and achieve high compression

ratios is highly beneficial.

Table 6 Types of compression and their applications

Type Example Application

* GIF (graphics interchange format)

* TIFF (tagged image file format)

Lossless it supports lossless compression and various colour depths.

* PDF (portable document format)

even while the overall structure supports lossless).

e ZIP

* PNG (portable network graphics)

While GIF can support lossless compression, it is not always the case. GIF has a

limited colour palette (256 colours) so is better for simple graphics.

Images or objects within a PDF might be compressed using lossy techniques,

TIFF is commonly used in professional photography and desktop publishing, as Backups,

documents,

archives

* |PEG (Joint Photographic Experts Group) Images, audio,

* MPEG (Moving Picture Experts Group)

Lossy) .
* MP3(MPEG-1 Audio Layer Ill) images

Run-length * Faxcompression Fax images,

encoding (RLE) |« Text compression text files

» |PEG
Tran_s.form . MP3 Ir_nages, audio,

coding videos

The choice between RLE and transform coding depends on the specific type of

data and the desired compression ratio. For data with simple repetitive patterns,

RLE offers a straightforward and efficient approach. For data with complex

patterns and higher compression requirements, transform coding provides a

more powerful and versatile solution.

A1.1.9 Describe different types of services in

cloud computing
The term “cloud” refers to cloud computing, a paradigm which allows organizations

to access and utilize computing resources (such as servers, storage, databases)

over the internet to offer flexible resources. The cloud is not a physical entity but a

network of remote servers in data centres around the globe. Organizations can save

money by only paying for the computational resources they use, rather than paying

for an expensive server which they might not use at full capacity all the time.

The three main cloud service models are software as a service (Saa$S), platform

as a service (PaaS), and infrastructure as a service (laaS). Each model provides

a different level of control and flexibility over IT infrastructure and software,

influencing resource availability and management. The choice between these

models depends on the specific needs and capabilities of the organization.

Al Computer fundamentals

A Figure 32 How people imagine the cloud A Figure 33 What the cloud really looks like

Software as a service (SaaS)

SaaS is a cloud computing model where software applications are hosted

and managed by a third-party provider and accessed by organizations through

a web browser or mobile app. Saa$S eliminates the need for organizations to

install and maintain software on their own devices, making it convenient and

cost-effective.

Key characteristics of SaaS

All-inclusive: Organizations have access to the entire application suite, including

updates and maintenance, without any upfront costs or ongoing maintenance.

Scalability: Saa$S applications can be easily scaled up or down to meet changing

organizational needs, ensuring optimal performance and resource utilization.

Accessibility: SaaS applications are accessible from anywhere with an internet

connection, providing organizations with flexibility and mobility.

Security: SaaS providers implement robust security measures to protect sensitive

organizational data and ensure the integrity of the applications.

Examples of SaaS applications

Salesforce: This is a classic example of a Saa$S application. It provides a core

CRM (customer relationship management) platform delivered entirely over the

web, with subscriptions managed by Salesforce.

SurveyMonkey: SurveyMonkey is an online survey development cloud-based

company. It provides a tool that allows users to create and distribute surveys,

collect responses, and analyse data, all through a web interface. There is no need

to install any software—it is a perfect example of a pure Saa$ application.

Canva: Canva is a graphic design platform that allows users to create social

media graphics, presentations, posters, documents, and other visual content. It

is accessible entirely through a web browser, offering design tools and templates

without the need for any desktop software. It epitomizes the pure SaaS model.

Hybrid SaaS examples

Gmail/Google Apps: While core components of Google Apps (Gmail, Docs

and Sheets) are Saa$S, Google also offers downloadable components.

Al.l Computer hardware and operation

Zoom, Microsoft Teams and Skype: These all have web-based platforms,

which could be considered SaaS. However, they also offer installable desktop

applications. It is more accurate to say they offer a SaaS component alongside

traditional software installation.

Microsoft Office 365: This blends Saa$ and traditional software models. Core

components such as Word Online or Excel Online are pure SaaS. However, Office

365 subscriptions include downloadable desktop versions of the full software suite.

Moodle: An open-source learning management system. Most organizations

self-host their solution, installing and managing it on their own web servers or

through a hosting provider. This traditional model does not fit the strict definition

of SaaS, where the software is hosted by the service provider and accessed

over the internet without the need for local installation. However, there is a SaaS

option called MoodleCloud. This offers Moodle's capabilities as a hosted online

service, allowing users to use Moodle's features without needing to install, host

or maintain the software themselves.

Platform as a service (Paa$S)

PaaS provides a cloud-based environment for developers to build, deploy, and

manage their applications. It offers a pre-built infrastructure including operating

systems, databases, middleware, networking, and developer tools. This frees

developers from managing the underlying infrastructure and allows them to focus

on coding.

Key characteristics of PaaS

DevOps-friendly: PaaS supports rapid development and deployment cycles.

DevOps is a set of practices which combines software engineering (Dev) and

information technology (Ops).

Infrastructure abstraction: PaaS simplifies application management by

handling OS updates, database administration, and networking configuration.

Reduced operational costs: PaaS eliminates the need to purchase and maintain

hardware and software.

Examples of Paa$S platforms

* Google App Engine * Amazon Elastic Beanstalk

e Heroku * Red Hat OpenShift

¢ Microsoft Azure App Service

Imagine a student named Alex, who is passionate about creating a personalized

fitness application called FitTrack. Alex has great ideas for features such as

workout tracking, nutritional advice, and social challenges, but has limited

experience and resources for setting up and managing servers, databases, or

dealing with complex infrastructure issues.

Alex decides to use a PaaS solution. With PaaS, Alex does not need to worry

about installing operating systems, configuring databases, or managing network

settings. Instead, Alex can focus entirely on writing the code for FitTrack using

preferred programming languages and tools.

Al Computer fundamentals

A Figure 34 An athlete using a fitness app

The Paa$S environment provides all the backend services Alex needs. It

automatically handles scaling the application to accommodate more users

as FitTrack grows in popularity. It also takes care of security updates and

maintenance tasks without Alex having to dive into the details.

By using Paa$, Alex can bring FitTrack from idea to live application much faster

and with fewer hurdles, enabling a focus on innovation and user experience

rather than infrastructure management. This example demonstrates how PaaS

empowers developers with limited infrastructure knowledge or resources to build

and scale applications effectively.

Infrastructure as a service (laaS)

laa$S provides virtualized computing resources, such as servers, storage and

networking, over the internet. It gives businesses the flexibility to provision and

manage their own IT infrastructure without the need to invest in physical hardware

and software.

Virtualization refers to the process of creating a virtual version of something,

such as operating systems, servers, storage devices or network resources,

rather than a physical version. This technology involves using software to

simulate the functionality of hardware to create a virtual computing system,

enabling multiple virtual machines (VMs) to run on a single physical machine’s

hardware resources. Each VM operates independently and can run its own

operating systems and applications as if it were a separate physical device.

Virtualization allows for more efficient utilization of hardware, greater flexibility,

scalability, and isolation between virtual machines for improved security and

ease of management.

Key characteristics of laaS

Customization: |aaS allows businesses to tailor their [T infrastructure to their

specific needs and requirements.

Scalability: Resources can be easily provisioned and scaled up or down as

needed, ensuring optimal performance and cost efficiency.

Control: Businesses have full control over the configuration and management of

their laa$ infrastructure.

Examples of laaS providers

* Amazon Web Services * |BMCloud

* Microsoft Azure * QOracle Cloud Infrastructure

* linode

* Google Cloud Platform

Al.l Computer hardware and operation

SaaS provides a fully managed solution where the service provider

manages all aspects of the software, including the underlying

infrastructure, application code, and updates. Organizations simply

access the software through a web browser or mobile app. It is

ideal for services such as customer relationship management (CRM)

systems, email platforms, project management tools, and collaborative

workspaces.

With Saa$, organizations have no need to install, configure or maintain

the software, reducing need for technical support. It eliminates the

need for upfront software purchases or ongoing maintenance costs,

making it a cost-effective option for organizations of all sizes. SaaS

providers can quickly scale up or down the number of users and

resources to meet changing demand, ensuring optimal performance

and cost efficiency.

Paa$ provides a pre-built development environment where developers

can build, deploy and manage their applications without worrying

about the underlying infrastructure. It is suited for developing web

applications, mobile apps, APls, and microservices.

PaaS provides a pre-integrated set of tools, frameworks and

middleware that are managed by the service provider, simplifying the

development process. Developers do not need to invest in their own

infrastructure, saving them time and money.

laaS provides virtualized computing resources, such as servers,

storage and networking, that businesses can provision and manage

on-demand. It is suited for high-performance computing, big data

analytics, seasonal or bursting workloads, and web hosting (allowing

organizations to host websites and applications entirely on laaS

infrastructure).

With laaS, organizations control the configuration and management

of their laa$ infrastructure, optimizing performance and tailoring the

environment to their specific needs.

They can scale resources up or down as needed, ensuring optimal

performance and cost efficiency, and tailor their IT infrastructure to their

unique requirements, including specific hardware specifications and

software configurations.

TOK

When you think of your own

computer, you may think your data,

your applications and your memoary

are all stored on the machine on

your desk. However, as the cloud

has grown and evolved, thisis

not always true. Organizations

asked a simple question: why do

they need to pay for computing

resources that they are not using?

With subscription options, as with

utilities such as water or electricity,

they can pay only for the computing

resources they use.

How does the paradigm of cloud

computing challenge traditional

notions of resource allocation and

cost efficiency in organizations?

What implications does this have for

our understanding of technology

infrastructure and its scalability?

Al Computer fundamentals

Choosing the right cloud service model

The choice between SaaS, Paa$ and laaS depends on the specific needs and

capabilities of the organization. Here is a summary of the key considerations.

Table 7 SaaS, PaaS and laaS comparison

Feature SaaS Paa$S laaS

Control Lowest Medium Highest

Flexibility Lowest Medium Highest

Service provider | Service provider | Customer
Resource

manages manages most manages most
management .

everything resources resources

Most cost-))
Cost . Medium cost Most expensive

effective

. Custom
Basic Custom -

applications applications applications,
Suitability bp ‘ - ! specialized

general user rapid
hardware

access development)
requirements

In general, Saa$S is a good choice for organizations that need simple, easy-to-

use applications and are willing to pay for the convenience. PaaS is suitable

for organizations that want more control over their applications but still value

rapid development and reduced maintenance costs. laaS is the best choice for

organizations that have complex IT requirements, need full control over their

infrastructure, and are willing to manage their own resources.

Cloud computing allows organizations to provide the optimal balance of control,

flexibility and cost-effectiveness.

Al.l Computer hardware and operation

Practice questions

1. Describe two applications of GPUs other than graphics rendering. [3 marks]

2. Describe how GPUs contribute to enhancing video game experiences. [3 marks]

3. Discuss how the design philosophy of CPUs and GPUs reflect their roles in computing systems. [5 marks]

4. Describe the significance of energy efficiency in the design of CPUs and GPUs. [3 marks]

5. Evaluate the effectiveness of the collaborative work between CPUs and GPUs in a

computing system. [6 marks]

6. Describe the roles and characteristics of registers and cache memory within a

computer system. [4 marks]

7. a. Outline the role of ROM in a computer system. [2 marks]

b. Compare ROM with volatile memory types, referring to data preservation and access during

power cycles. [3 marks]

Describe the primary functions of the data bus during the execute phase. [3 marks]

9. Describe how the control bus facilitates the interaction between the CPU and memory

during a read operation from memory. [3 marks]

10. Evaluate the impact of bus architecture (address, data and control) on the performance

of CPU operations. [4 marks]

11. Describe the basic principle of pipelining as used in multi-core architectures. [4 marks]

12. Describe how pipelining can improve the throughput of a multi-core processor. [3 marks]

13. Describe the potential challenges of implementing pipelining in multi-core architectures. [3 marks]

14. Evaluate the effectiveness of pipelining in a scenario where a multi-core processor is used

for a highly parallel task. [6 marks]

15. Explain how data is stored and accessed on an optical disc. [6 marks]

16. Describe the advantages of using NAS in a multi-device environment. [3 marks]

17. Describe the differences between internal HDDs and eMMCs in terms

of performance and use. [3 marks]

18. Evaluate the use of external SSDs for data backup compared to using flash drives. [5 marks]

19. Evaluate the impact of the physical limitations of NAND flash memory on the

performance and longevity of storage devices like SSDs and eMMCs. [5 marks]

'\ WA Data representation and
computer logic

A Figure 35 How are images, sound and

video represented in binary?

Syllabus understandings

A1.2.1 Describe the principal methods of representing data

A1.2.2 Explain how binary is used to store data

A1.2.3 Describe the purpose and use of logic gates

Al1.2.4 Construct and analyse truth tables

A1.2.5 Construct logic diagrams

In this subtopic, you will learn about principal methods of representing data.

Representing data in a computing system involves encoding information in a

structured format, such as binary, that can be processed and stored by digital

devices.

This subtopic will also cover binary, hexadecimal, and character encodings such

as ASClland UTF-8, each tailored to specific applications, from data storage in

binary to text and numerical representations. You will explore how binary serves

as the cornerstone for data storage in computers. At its core, binary operates

on a base-2 numeral system, representing the simplest form of data encoding.

This system represents every data type, from basic numerals to rich multimedia,

as sequences of Os and 1s. These binary states often correlate with physical

conditions such as on or off (electrical charge presence), north or south (magnetic

orientation for storage), or low or high (voltage levels).

Next, you will learn about constructing and analysing truth tables. Truth tables

are used to describe the functionality of logic gates and circuits, showing every

possible input combination and the resulting output. They are important for

understanding and predicting the behaviour of digital systems.

Finally, you will learn about constructing logic diagrams. Logic diagrams visually

represent the relationships of logic gates within a circuit. They are essential for

designing, analysing and understanding how digital systems operate, facilitating

the conceptualization and implementation of digital logic solutions.

A1.2.1 Describe the principal methods of

representing data

The representation of integers in binary

Binary is a base-2 number system, using only two digits, O and 1, to represent all

integers. Binary numbers may be shown by a subscript 2, for example, 1011101.,.

The subscript helps to clarify which number system is being used. 11, 11,,

and 11 . are all different numbers. The first number is base-10, the second is

base-2 and the third is base-16.

Al.2 Datarepresentation and computer logic

In binary, each digit in a binary number is called a bit (short for binary digit). Each

bit position has a corresponding power of 2, starting from 2° at the rightmost

bit and increasing to the left. The first bit represents 2°, the next bit represents

2!, then 22, 23, 24,25 26,27, 28 and so on. Bits are almost always organized into

groups of 8 known as a byte. A group of 4 bits is known as a nibble.

Table 8 Key terms for data representation

Term Definition

A base-10 numbering system that uses ten digits, O through 9. Itis the standard system for denoting
Decimal/Dena .)

/ M integer and non-integer numbers.

Binary A base-2 numbering system that uses two digits, Oand 1. Each digit is called a bit.

A base-16 numbering system that uses sixteen digits, numbers O to 9 and letters A to F representing
Hexadecimal
exadecma numbers 10 to 16. Each digit (number or letter) is called a nibble because it represents four bits.

Bit The smallest unit of data in computing, representing a single binary digit (0 or 1).

Byte A unit of digital information that consists of 8 bits. It is the standard chunk size for most computer

architectures and represents a single character of data.

Nibble A unit of digital information that consists of 4 bits, or half of a byte. It can be represented as a single

hexadecimal digit.

Place value The value of a digitin a number, determined by its position within the number. For example, in the

decimal number 345, the place value of 4 is 40 because itis in the tens place.

+ The addition operator

- The subtraction operator

/ The division operator

* The multiplication operator

% The modulo operator (modulo refers to an operation that finds the remainder after division of one

7 number by another)

i The exponent operator

It can be helpful to read binary numbers from right to left, and to set out the

number in a place value table.

Binary is the most compact representation for computers, as it directly aligns

with their hardware, which uses transistors operating in two states. Sublopic Al 1 disausses Hiow data
is represented in binary.

Convert from binary to decimal

1. ldentify the place values. Each bit in a binary number represents a power of

2, starting from 2° at the rightmost bit and increasing to the left. This table is

useful when working with binary.

Bit

Place value 27 26 25 24 23 22 2! 20

Decimal value | 128 64 32 16 8 4 2 1

Al Computer fundamentals

TOK

Everything in a computing system

is eventually reduced to binary.

Binary was initially used for early

computing systems because it was

easy to implement, is reliable and

expresses logic well.

How does the use of the binary

system in computing shape our

understanding of numerical

representation and data processing?

What implications does this have

for the broader field of digital

technology and its applications?

2. Multiply each bit by its place value. For each 1 in the binary number, multiply

it by the corresponding power of 2.

3. Add the products: Add up the results of all the multiplications to get the

decimal value. For example, converting 1011 in binary to decimal looks like

the following.

Bit 1 0 1 1

Place value 27 26 25 24 23 2?2 2! 2°

Decimal value 8 0 2 1

1%2340%22+1%2141%20=8 + 0 + 2 + 1=1I

Note that, in computing, the asterisk (*) is used instead of the multiplication

symbol ().

Worked example 8

1. State the decimal number represented by each of these binary numbers.

a. 101 b. 1001

2. Write 11001, as a decimal number.

Solution

1. a. Tochangeanumberfrom binaryto decimal, work out b. Draw a place value table. Write in the bits and fill

the decimal value of each digit of the binary number. in the rest of the table.

Draw a place value table. Write the bits first, then Bit 1 0 0 1

the equivalent binary place values. Place 23 22 2 20

Bits 1 0 1 1 value
Place value 2° 22 2! 2° Working | 1*23 [0*22 [O*2" | T*2°
_ _ _ =8 =0 =0 =1

Flna_l ly, add the working to convert each bitto a Decimal 3 0 0 1

decimal number.
value

: * 73 * 72 * 71 * 0

Working]: g O: 3]: 22]:]2 Find the sum of the decimal values: 8+0+0+1=09.

Decimal 3 0 5] So, binary 1001 is decimal 9.

value 2. Draw a place value table. Fill in the working and

Find the sum of these individual decimal values: 8

+0+2+1=11.

So, 1011 in binary is the same as 11 in decimal.

equivalent decimal values.

Bit 1 1 0 0 1

Place value 24 23 2?2 2 20

Working 1*24 | 1*%22|10*22|0*21 | 1*20

=16 | =8 =0 =0 =1

Decimal 16 8 0 0 1

value

Find the sum of the decimal values: 16 + 8 + 0+ 0+ 1

=25.

So, 11001, is decimal 25.

Al.2 Datarepresentation and computer logic

State the decimal number represented by the binary number 10011010.

1. Write these decimal numbers

Solution as binary numbers.

Write the number in a place value table. Complete the table. a. 12

Bit 1 0 0 1 1 0 1 0 b. 28
Place value | 2’ 26 25 24 23 22 2! 20 c 71

Working 1*#27[0*26|0*2° | 1*24|1%2310*%22| 1*21 |0*2° 2. Find all the unique 4-bit

Decimal 128 0 0 16 8 0 2 0 (4-digit) binary numbers.

value
How many are there? What are

Find the sum of the decimal values: 0+ 2+ 0+ 8+ 16 + 0+ 0 + 128 = 154. their decimal equivalents?

So binary 10011010 is decimal 154.

Convert from decimal to binary

1. Divide the decimal number by 2. Repeat as many times as necessary to get

to the end of the number. Keep track of the remainders (0 or 1). Note that, in

computing, the solidus symbol (/) is used instead of the division symbol (+).

2. Write the remainders in reverse order: these form the digits of the binary number.

Binary is usually represented in 8 bits, known as a byte. When a base-10

(decimal) number is stored in an 8-bit register, it must first be converted to base-

2 (binary). When converting decimal to binary for this purpose, ensure you use

all 8 places in the register. Remember to work from right to left, from smallest

value to largest. Fill any places that do not have a digit with a zero. For example,

4]0(decimal 4)is 100 in binary. However, 4,,inan 8-bit register would look like

this: 00000100.

Worked example 10

1. Convert each decimal number to binary.

a. 13 b. 45

2. State the binary number that represents decimal 97.

How do these decimal numbers appear in an 8-bit register?

a. 207 b. 34

Solution

1. a. Divide the decimal number by 2, keeping track of Divide your answer to the

the remainders. second division (3) by 2.

13/2=6R Write the remainder. The 3/2=1R1 Write the third remainderin
(remainder) T binary number starts with 1 front of the second.

Divide your answer to the first The binary number is now 101

division (6) by 2. Divide your answer to the
6/2=3R0O Write the second remainder third division (1) by 2.

i e T 1/2=0R1 Write the fourth remainder in
The binary numberis now 01 front of the third.

The binary number is now: 1101 e

Al Computer fundamentals

Ay
1.

2. State the 8-bit binary of:

When the answer to the division is O, the remainder is

the final digit in your binary number.

So, decimal 13is 1101 in binary.

b. Divide 45 by two until you get an answer of zero.

Write down the remainder at each step.

45 /2 =22R1 The first (smallest) binary

digitis 1. 1

22/2=11R0O The second binary digit is

0.

Write this in front of 1 from

the previous step. 0l

M /2=5R1 The third binary digitis 1. 101

5/2=2R1 The fourth binary digitis 1. 1101

2/2=1R0 Thefifth digitisO. 01101

1/2=0R1 The sixth (highest) digitis1. 101101

The answer to the division is zero, so thisis the final digit.

So, decimal 45 is 101101 in binary.

Divide 97 by two until you get an answer of zero. Write

down the remainder at each step.

97/2=48R1 The first (smallest) binary

digitis 1. 1

48 /2=24R0 The second binary digit

is 0. 01

24 /2=12R0 The third binary digit is

0. 001

12/2=6R0 The fourth binary digit
isO. 0001

6/2=3R0O Thefifth binarydigitis0. 00001
3/2=1R1 The sixth binary digitis1. 100001

1/2=0R1 The seventh (and last)

binary digitis 1. 1100001

Binary number 1100001 is decimal 97.

State the decimal of:

a. 11000111

b. 11111111

c. 10101111

a. /9

b. 203

c. 241

3. a. Convert the number to binary in the same way,

by repeatedly dividing by 2.

207 / 2=103 R1 Write the binary
number, working right

to left. 1

103/2=51R1 Write each remainder

in front of the previous

one. 11

51/2=25R]1 111

25/2=12R1 1111

12/2=6R0O 01111

6/2=3R0O 001111

3/2=1R1 1001111

1/2=0R1 The 8-bit number is
complete. 11001111

So, 207, appears as 11001111 in an 8-bit register.

b. Convert the number to binary in the same way,

by repeatedly dividing by 2.

34/2=17R0 Write the remainders,

from right to left. 0

17/2=8R1 10

8/2=4R0 010

4/2=2R0 0010

2/0=1RO 00010

1/2=0R1 100010

The binary conversion is complete, but there are

fewer than 8 bits. Fill in the empty spaces at the front

(the large end) of the number with zeros.

So, 34,,appears as 00100010 in an 8-bit register.

The representation of integers in hexadecimal

Hexadecimal is a base-16 number system. Hexadecimal uses 16 digits—0, 1, 2,

3,4,5,6,7,8,9 A, B, C,D, E, F—torepresentintegers. A subscript 16 may be

used to show numbers are written in hexadecimal, for example, C47B9, ..

Hexadecimal is more human-readable than binary, especially for longer numbers,

as it uses fewer digits to represent the same value. Both binary and hexadecimal

are efficient for computer processing and storage. Each hexadecimal digit, called

a nibble, directly corresponds to 4 bits in binary, making conversion between

them straightforward.

Al.2 Datarepresentation and computer logic

As with binary, using a table can be a helpful for remembering which place holds

which value.

| Placevalue | 167 | 16° | 16° | 16* | 16 | 16 | 16 | 16° |

It can be helpful to read hexadecimal numbers from right to left.

Convert from hexadecimal to decimal

1.

2A

Solution

b. 1B4

2. Change FFF,; to a decimal number.

c. 1M

Write each hexadecimal number as a decimal number.

Identify the place values. Each digit (bit) in a hexadecimal number represents

a power of 16, starting from 16° at the rightmost digit and increasing to the

left. This table is useful when working with hexadecimal.

Nibble

Place value 168 | 167 | 165 | 16° | 16* | 16% | 162 | 16" | 16°

Convert letters to decimal equivalents. If the hexadecimal number contains

letters (A-F), convert them to their corresponding decimal values (A =10, B =

11,C=12,D=13,E=14,F=15).

Multiply each digit by its place value. For each digit in the hexadecimal

number, multiply it by the corresponding power of 16.

Add the products. Add up the products of all the multiplications to get the

decimal value.

Worked example 11

Table 9 Hexadecimal numbers and

their equivalents in binary and decimal

Hexadecimal | Binary | Decimal

0 0000 0

1 0001

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 1

C 1100 12

D 1101 13

E 1110 14

F 1111 15

As you did when converting binary numbers, draw a place value table with four columns. Put the hexadecimal

bits (digits) in the first row, working right to left. If there are fewer than 4 bits, fill in the spaces with zeros. Add the

equivalent hexadecimal place values underneath.

Nibble 0 0 2 A

Place value 16* 162 16' 16°

Add the working to convert each hexadecimal bit to a decimal number.

Working 0*16°= 0*162= 2*16'= A*16°=

0*4096=0 |0*256=0 | 2*16=16 | 10*1=10

Decimal value Q0 0 32 10

Now, find the sum of the individual decimal values: 0 +0 + 32 +10=42.

So, hexadecimal 2A is decimal 42.

Al Computer fundamentals

e b. Draw and complete a place value table.

Nibble 0 1 B 4

Place value 163 162 16! 16°

Working 0*16%= 1*16%= A*le'= 4*16°=

0*409 =0 |[1*256=1 |11*16=160 | 4*1=4

Decimal value 0 256 176 4

Find the sum of the decimal values: 0 + 256 + 176 + 4 = 436.

So, hexadecimal 1A4 is decimal 436.

c. Draw and complete a place value table.

Nibble 0 1 1 1

Place value 163 162 16 16°

Working 0*16%= 1*162= 1*16'= 1*16°=

0*4096=0(1*256=256| 1*16=16| 1*1=1

Decimal value 0 256 16 1

Add the decimal values: 0 + 256 + 16 + 1= 2/3.

So, hexadecimal 111 is decimal 273.

2. The subscript 16 shows that this is a hexadecimal number. Draw and complete a place value table.

Nibble 0 F F F

Place value 163 162 16 16°

Working 0*16*= F*16%2= F*16'= F*16°=
0*4096=0|15*256=3840|15*16=240| 15*1=15

Decimal value 0 3840 240 15

Add the decimal values: O + 3840 + 240 + 15 = 4095.

So, FFF,is4095, .

_ Convert from decimal (integers) to hexadecimal

1. Divide the decimal number by 16. Repeat as many times as necessary to get

1. State the base-10 of: to the end of the number. Keep track of the remainders (0 to 15).

a. C7 2. Convert remainders to hexadecimal digits. Remainders from O to 9 stay the

b. FF same. Convert remainders greater than 9 to their hexadecimal equivalents

' (A,B,C,D,EF).

3. Write the remainders, in their hexadecimal form, in reverse order. This forms

2. State the hexadecimal of: the hexadecimal number.

a. 420

b. 900

c. 256

Al.2 Datarepresentation and computer logic

Worked example 12

1. Change each decimal to a hexadecimal number.

a. 26 b. 398

2. Write 204010 as a hexadecimal number.

Solution

1. a. Divide 26 by 16 until you get an answer of O. 24/16=1R8 8 is the same in decimal and

Write down the remainders. hoedEamEL

26 /16=1R10 Convert the remainderto Write the second remainder

hexadecimal: 10 becomes A. in front of the first.

The hexadecimal number The hexadecimal number is
starts with A now 8E

1/16=0R1 Look at the remainder: 1/16=0R]1 1is the same in decimal and
decimal Tisalso 1in hexadecimal.

hexadecimal. Write the third remainder in

Write the second remainder front of the second.

in front of the first. The hexadecimal number is

The hexadecimal number is NOW. 18E
now 1A

Decimal 398 is written as 18E in hexadecimal.
So, decimal 26 is written as 1A in hexadecimal.

2. Divide 2040 by 16 until you get an answer of 0. Write

b. Divide 398 by 16 until you get an answer of O. down the remainders.

Write down the remainders. 2040/16=127R8 Write 8 and divide 127
398 /16 = 24 R14 Convert the remainder to by 16. 8

hexadecimal: 14 becomes E. 127/16=7R15 Write 15 in hexadecimal,
The hexadecimal number in front of 8. F8

starts with E 7/16=0R7 Write 7 in front of F. 7F8

So, 2040, is the same as /F8, ..

Convert integers from binary to hexadecimal

1. Group binary digits into nibbles. Divide the binary number into groups of 4

bits, starting from the rightmost bit. Each group of 4 bits represents a single

hexadecimal digit.

Convert each nibble to its hexadecimal equivalent. Use Table 9 to match

each 4-bit binary group to its corresponding hexadecimal digit (0-9, A-F).

Combine hexadecimal digits: Read the hexadecimal digits in order from left

to right to get the final hexadecimal representation.

Worked example 13

1. Convert each binary number to hexadecimal.

a. 11010110 b. 11101011

2. What is the hexadecimal equivalent of 1001110,7?

Al Computer fundamentals

© Solution

1. a. Breakthe binary numberinto nibbles (groups of 4 117 1 oli1lololn

digits), working from right to left.

Convert each nibble into its hexadecimal E)

equivalent. Use a conversion table to help you. So, binary 11101001 is E9 in hexadecimal.

1 | 1 ‘ 0 ‘ 110 l 1 | 1 | 0 2. Breakthe numberinto nibbles, working from right

D 6 to left. There are only seven digits in this number, so

add an extra O in front to complete the second nibble.

Write the hexadecimal equivalent for each nibble. So, binary 11010110 is D6 in hexadecimal.

b. Break the number into nibbles, working from

right to left. O[T 10O ([T |O|T]1

4 B Write the hexadecimal equivalent for each nibble.

So, 1001110, is the same as 4B, .

Convert integers from hexadecimal to binary

1. Convert each hexadecimal nibble to its 4-bit binary equivalent. Use a

conversion table to find the 4-bit binary representation for each hexadecimal

digitin the number.

2. Combine binary representations. Join the binary representations of all digits

in order to get the final binary string.

Worked example 14

1. Convert each hexadecimal number to binary.

a. D56, b. 1A4,

2. State the binary equivalent of CFO, .

Solution

1. a. Converteach hexadecimal nibble into its binary 4-bit binary: 0001 1010 0100

equivalent.
. . . Write the binary representation without spaces.

Use a conversion table if you wish. yrep P

- So, the binary representation of 1A4_is

gnarybit [1]1]0]1]o]1]o[1]o[1]1]0
2. Convert each hexadecimal nibble into 4-bit binary.

Hexadecimal: C i 0

4-bit binary: 1100 1111 0000

Binary representation: 110011110000

So, the binary representation of D56 is

110101010110.

b. Convert each hexadecimal nibble into 4-bit binary.

Ifyou don't use a table, keep each nibble separate.

Headecmal: 1 A 4 So, the binary representation of CFO, is

110011110000.

1. State the hexadecimal of:

a. 11110010 b. 00010001 c. 11011110.

2. State the 8-bit binary of:

a. ES16 b. 4(:15 C. 9915

Al.2 Datarepresentation and computer logic

A1.2.2 Explain how binary is used

to store data

How data—integers, strings, characters, images, audio

and video—are stored in binary form

Integers

An integer is a type of numerical data that represents a whole number without

any fractional or decimal component.

Integers are represented in computers as fixed-width binary numbers, allowing for

the representation of both positive and negative whole numbers. A fixed-width

binary representation refers to the practice of allocating a constant number of bits

to represent each data item within a computer system. This approach ensures

every piece of data, regardless of its actual value, occupies the same amount of

space in memory.

The primary encoding mechanism for integers include the following.

* The unsigned integer representation, which utilizes the entirety of the

bit space to denote the magnitude ofa number, with the maximum value

determined by 2"-1 where n is the number of bits. Unsigned integers only

represent non-negative values.

* Two’'s complement representation for signed integers: This method

allows for the representation of negative numbers by designating the most

significant bit as the sign bit (O for positive, 1 for negative) and inversely

flipping the bits of the absolute value before adding one, to represent

negative values efficiently.

A 4-bit unsigned integer uses all four bits to represent positive numbers and

zero. Here, the maximum value is 1111 in binary, which is 15 in decimal. For

example, the binary number 1010 as an unsigned 4-bit integer represents the

decimal value 10.

A 4-bit two's complement integer uses the most significant bit (leftmost bit)

as the sign bit. If the sign bitis O, the number is positive or zero. Ifthe sign bitis 1,

the number is negative. They can represent values from -8 to 7.

For example, the binary number 1000 as a two's complement 4-bit integer

represents the decimal value 8. The first 1 indicates that this is a negative

number, and 000 is the binary form of 8 in a two's complement system, which

is calculated by inverting all bits of the absolute minimum value (0111 for 7) and

adding one.

Strings and characters

Characters and strings are encoded using character encoding standards that map

characters to binary values.

ASCIl (American Standard Code for Information Interchange) employs a 7-bit

binary code to represent 128 unique characters, enabling the encoding of

English letters, digits, and punctuation.

Unicode provides a comprehensive system to represent characters from all

writing systems through variable-width encodings (such as UTF-8, UTF-16).

TOK

The decomposition of music,

images and video almost always

involves a reduction of the original

waork. Viewing original video or an

image can be so computationally

expensive that it is impractical.

To what extent does the reduction

of diverse data types—such as

integers, strings, characters,

images, audio and video—into

binary form inhibit our broader

understanding of data and its

inherent complexities in digital

technology?

Al Computer fundamentals

Pixels The tiny dots that make up

images. Each pixel carries colour

information. The resolution of an

image—the detail an image holds—

is directly related to the number of

pixels it contains.

A Figure 36 A2 x 2 pixel image

Hertz (Hz) The unit of frequency,
equivalent to one event per second.

A sampling rate of 48 kHz means

48,000 samples per second. :

A Figure 37 Ananalogue sound wave.

To sample this, you measure the amplitude

44 thousand times a second (if you are using

44.1 kHz sampling)

UTF-8 uses one to four bytes for each character, ensuring global text

representation and compatibility.

For example, the character ‘A’ is represented as 01000001 in ASCIl and the same

in UTF-8, whereas a character like ‘&’ (a Japanese hiragana character) cannot

be represented in ASCII and requires more than a single byte in UTF-8, so is

represented as 11100011 710000001 T0000010.

Images

One of the most common methods of representing colour in digital images is

through the RGB colour model, where colours are represented as a combination

of red, green, and blue light. Each colour channel is typically represented by

one byte (8 bits), allowing for 256 intensity levels (0-255). Thus, a single pixel’s

colour in a true-colour image can be represented by a 24-bit number, made up of

8 bits for each colour channel.

In binary form, each pixel’s colour is encoded as a sequence of bits. For a 24-bit

image, each pixel would be represented by a binary sequence divided into three

parts, each corresponding to one of the RGB components. For example, a bright

red pixel might be represented as 11111111 00000000 00000000, where the red

channelis at its maximum intensity, and the green and blue channels are off.

For a simple example, consider storing a very small image of 2 X 2 pixels where

each pixel is encoded in 24-bit RGB, as shown in Figure 36:

Top-left pixel is red: 11111111 00000000 00000000

Top-right pixel is green: 00000000 11111111 00000000

Bottom-left pixel is blue: 00000000 00000000 11111111

Bottom-right pixel is white (all colours at full intensity): 11111117 11111111 11111111

These binary sequences directly represent the colour of each pixel. Ina BMP

(bitmap) file format, they are stored directly as such, possibly preceded by a file

header specifying the image’s dimensions and colour depth. In contrast, formats

like |PEG first process and compress this information before storing it in binary form.

Audio

To store audio in binary form, analogue sound waves must be converted

into a digital representation that can be processed, stored, and played back

by electronic devices. This digital representation involves several key steps

and concepts, including sampling, quantization, and possibly compression,

depending on the chosen audio format and quality.

Sampling is the process of measuring the amplitude (volume) of a sound wave at

regular intervals to create a series of discrete data points. The rate at which these

measurements are taken is known as the sampling rate, measured in hertz (Hz),

which indicates the number of samples taken per second. Common sampling

rates include 44.1 kHz (used in CDs), 48 kHz (common in professional audio), and

96 kHz (high-resolution audio). A higher sampling rate captures more detail of

the sound wave but requires more data.

Quantization is the process of mapping the amplitude of each sampled point to

a nearest value within a finite set of possible values. This step effectively converts

the continuous amplitude of the sound wave into a digital format. The bit depth

Al.2 Datarepresentation and computer logic

determines the number of possible values for the amplitude of each sample,

directly influencing the precision of the sound’s digital representation. Common

bit depths include 16-bit (65,536 possible values) and 24-bit (16,777,216

values), with professional audio using higher values. Higher bit depth allows for

a more precise representation of the sound wave’s amplitude, resulting in higher

fidelity audio.

Each quantized sample is then encoded as a binary number, with the bit depth

determining the length of this number. For example, in a 16-bit audio file, each

sample is represented by a 16-bit binary number. In stereo audio, two separate

channels (left and right) are recorded and stored, effectively doubling the amount

of data compared to mono (single-channel) audio. Multi-channel audio, such as

5.1 surround sound, involves more channels and more data.

For example, consider a simple sine wave captured at a sampling rate of 44.1 kHz

and a bit depth of 16 bits. At each sample point, the amplitude of the wave is

measured and mapped to the nearest value within the range provided by the

16-bit depth. If the wave's amplitude at the first sample point corresponds to half

of the maximum possible amplitude for positive values, it would be quantized

and represented as the binary number OTTTTTTTTT111111 (in a signed binary

format, where the first bit indicates the sign).

Video

Video is a sequence of stillimages (frames) presented at a rate that gives the

impression of continuous motion. Each frame operates as a bitmap image, where

the pixels are encoded in binary. For instance, within a 24-bit colour depth

framework, every pixel is encoded using three bytes (24 bits), which delineate

the intensity levels of the red, green and blue components.

MM%@"*"*\?

1 2 3

1 L] L] w n n

A Figure 39 12 frames of a cat jumping

In addition to visual data, video files comprise an audio track, which undergoes a

process of sampling, quantization and binary encoding, as with standalone audio

files. The binary representations of audio and video are combined (multiplexed)

to ensure that the auditory and visual elements of the video are synchronized

during playback. This multiplexing process interleaves the audio and video data

in a manner that maintains their temporal alignment, enabling simultaneous and

coherent audio-visual playback.

The encoding of video into a binary format involves representing each frame’s

visual information as a sequence of bits. This binary representation facilitates the

storage, processing and transmission of video data by digital systems. For the

actual display of the video, various video coding formats, such as H.264 (AVC) or

H.265 (HEVC), are utilized. These formats provide the necessary instructions for

decoding the binary data back into a sequence of images that, when played at

the appropriate speed, recreate the original video content.

High Resolution

22 bits

16 hits

& bits

A Figure 38 A sampled sound wave at

different bits

Al Computer fundamentals

A Figure 40 Binary

Consider a 10-second video clip recorded at 30 frames per second (fps) and a

resolution of 1920 by 1080 pixels (Full HD), with 24-bit colour depth. Each frame

consists of 1920 x 1080 pixels = 2,073,600 pixels.

Each pixel is represented by 24 bits (or 3 bytes), so one frame is:

2,073,600 pixels X 3 bytes = 6,220,800 bytes (about 6.2 MB).

For a 10-second clip at 30 fps, the total size is:

6.2 MB/frame x 30 frames/second X 10 seconds = 1,860 MB (about 1.86 GB).

The fundamentals of binary encoding and the impact on
data storage and retrieval

Binary encoding

The primary purpose of a binary encoding scheme is to convert data from its

original form (which could be text, numbers, audio, video, and so on) into a

binary form that a computer can process, store, or transmit.

At its core, binary encoding involves representing data using bits. A single bit

can represent two states, often conceptualized as off/on, false/true, low/high,

or 0/1. Eight bits form a byte, which is the basic unit of data storage. Larger data

units—such as kilobytes (KB), megabytes (MB), gigabytes (GB), and so on—are

multiples of bytes and are used to quantify digital data storage.

Table 10 Data units and their equivalents in bytes and bits

Unit Equivalent in bytes Equivalent in bits

1 bit 1 1 i 5(0.125)

1 nibble 1(0.5) 4
1byte 1 8

1KB (kilobyte) | 1,024 8,192

1MB 1,0242 10242* 8
(megabyte) or1,048,576 or 8,388,608

1GB 1,024° 1,0243* 8
(gigabyte) or1,073,741,824 or 8,589,934, 592

1,0244 1,0244* 8
1TB (terabyte) | ") 199 511627776 or 8,796,093,022,208

1,0245 1,0245* 8
1PB(petabyte) | 1155 899.906,842.624 | or9,007199,254,740,992

(After petabytes, there are exabytes, zettabytes, yottabytes, brontobytes and

geopbytes).

Different types of data require different binary encoding schemes. For instance,

text is commonly encoded using ASCIl or Unicode, where each characteris

assigned a unique binary value. For images, encoding schemes like |JPEG or PNG

translate pixel colour and intensity into binary. Audio and video data are encoded

into binary using formats that consider temporal changes and compression needs.

Al.2 Datarepresentation and computer logic

Data storage

Binary encoding allows for the efficient storage of data, with specific encoding

schemes optimized for types of data to minimize space without sacrificing

quality (for example, compression algorithms). The binary system scales well

with technological advancements in storage media, from magnetic tapes

to solid-state drives. Despite exponential growth in storage capacity, the

basic binary nature of these storage technologies has remained constant.

Finally, standardized binary encoding formats ensure that data can be stored,

retrieved, and understood across different systems and platforms, facilitating

interoperability and data exchange.

Data retrieval

Binary encoding, coupled with the binary architecture of computer processors,

enables rapid data retrieval and processing. Computers are inherently designed

to work with binary data, which allows them to quickly perform operations on

encoded data.

The efficiency of searching and analysing stored data is significantly influenced by

how it is encoded. Indexing techniques and algorithms are optimized for binary

data, enabling quick searches through large data sets and complex analyses,

such as pattern recognition in machine learning models.

Finally, binary encoding schemes often incorporate mechanisms for error

detection and correction, which are important for reliable data retrieval. For

example, parity bits help identify errors that might occur during data storage or

transmission.

A1.2.3 Describe the purpose and use of
logic gates
Logic gates are electronic circuits that operate on one or more binary inputs to

produce a binary output, based on a specific logical function. Each type of logic

gate implements a Boolean operation such as AND, OR, NOT, NAND, NOR, XOR

and XNOR, corresponding to the fundamental operations in Boolean algebra.

The output of each gate reflects the result of its logical operation. Logic gates can

be constructed using transistors—semiconductor devices that act as electronic

switches. The arrangement of these transistors determines the type of logic gate

and its corresponding logical operation.

The word “gate” in “logic gate” metaphorically signifies its function as a control

mechanism for the flow of information in digital circuits, similar to how a physical

gate controls the passage of entities through an opening. In the context of digital

electronics, a logic gate performs logical operations on one or more binary inputs

to produce a single binary output.

When working with logic gates, the number one (1) represents True, or on, while

the number zero (0) represents False, or off.

The purpose and use of logic gates

Logic gates perform simple logical operations, such as AND, OR and NOT. The

outputs of these gates depend on the input values and the type of gate, enabling

basic data processing functions.

A Figure 41 Hard drive disk

A Figure 42 An AND logic gate

A Figure 43 A gate controlling access

Al Computer fundamentals

K (keycode) ——
AND A (access)

B (badge) —

(D) Dark outside D

(O) Occupied AND } L I‘_lght

activates

(N) Do not w.

disturb

A Figure 44 |ogic gates for asimple

security system as shown in the photograph

(top), and for a custom control system

(bottom)

For example, a fire alarm system may have multiple sensors for smoke, heat and

carbon monoxide monitoring connected to an OR gate. If any sensor triggers

(inputis 1), the output of the OR gate activates the alarm system. If there is smoke

OR heat OR carbon monoxide, then an alarm is sounded.

By combining different types of logic gates, more complex circuits can be

created. Logic gates are physical manifestations of Boolean algebra. Boolean

algebra is a branch of mathematics that deals with variables and operators, using

truth values (true or false) to perform logical operations.

Logic gates are used:

* indigital displays to control the representation of numbers, characters and

symbols

* incontrol systems, such as elevators or automated doors, helping to process

input signals (like buttons being pressed) to produce appropriate responses

(like opening a door)

* intiming circuits, such as clocks and timers, determining the timing of various

operations

* incommunication systems, helping with the processing and transmission of

digital signals

* insafety systems, such as alarm systems, where they process inputs from

various sensors, to trigger alarms or other safety responses.

The function and applications of logic gates
in computer systems

Logic gates enable conditional logic in computer operations, allowing for

decision-making processes based on binary conditions. This is foundational for

implementing if-else and switch-case statements in programming languages.

Consider a simple security system that requires two conditions to be met before

access is granted: a correct keycode and a security badge scanned.

This can be modelled using AND logic, where both conditions must be true (1)

foraccess to be granted.

Consider a custom light control system where a light should be turned on either

if itis dark outside or if the room is currently occupied. There is an additional

condition that ifa “do not disturb” mode is active, the light should remain off

regardless of the other conditions.

This scenario can be modelled using OR logic for the first set of conditions and

AND logic along with NOT to consider the “do not disturb” condition.

The role of logic gates in binary computing

Data processing and decision making

Logic gates are used to implement conditional statements in hardware, allowing

a computer to execute specific instructions based on whether certain conditions

are true or false. For example, an AND gate outputs a true signal only when all of

its inputs are true, which is like executing an "if all conditions are true” statement

in programming. By combining different logic gates, complex decision-making

processes can be built, enabling the execution of complex algorithms and

control flows within digital circuits.

Al.2 Datarepresentation and computer logic

Arithmetic operations

In the ALU of a computer’s CPU, logic gates are arranged into circuits capable

of performing arithmetic operations on binary numbers. For instance, adder

circuits, constructed from a combination of AND, OR and XOR gates, enable the

execution of addition, which can be extended to subtraction, multiplication and

division through algorithmic approaches.

Memory storage

Logic gates are integral to the design and function of memory devices. Flip-flops,

which are circuits made from logic gates, can store a bit of data by maintaining a

stable state until explicitly changed. This principle is scaled up to create registers,

RAM, and other storage devices, allowing binary data to be stored and retrieved

as needed.

Boolean operators: AND, OR, NOT, NAND, NOR, XOR,
XNOR

Truth tables provide a clear and systematic way to visualize the behaviour ofa

logical expression for all possible inputs. The table will have a column for each

input and each output, wherever they occur in the system. The ultimate output is

labelled Q.

Table 11 Boolean operators

Gate Symbol Function What the gate asks | Truth table

Outputs 1 (true) only if all its

inputsare 1.

A
AND B Q Are both inputs on?

Input

A B

Outputs 1if at least one of its

inputsis 1.

A
Is either input on?

Outputs the inverse of its

NOT A Q input: outputs 1ifthe input is

0, and vice versa. This gate is

also known as an inverter.

Is A off?

Output

Al Computer fundamentals

e Gate Symbol Function What the gate asks | Truth table

Input Output

A Outputs 1 unless all its inputs

NAND } Q are 1 (the inverse ofthe AND | Is either input off?

gate).

Input Qutput

o

A Outputs 1ifthe inputs are

B
Are the inputs 0 0

XOR different? 0

A Outputs 1 only if all its inputs 0 0

NOR B D are O (the inverse of the OR Are both inputs off?

gate). 0

otheris 0.

Q

Q different: if one is 1 and the

Q

Input Output

A B Q
Outputs Tif the inputs are the)

A
0 (0] XNOR | same: both Oorboth 1 the | A7 NenPuts the

inverse of the XOR gate). Same: 0 0

0

_ A1.2.4 Construct and analyse truth tables

Truth tables are powerful tools for Truth tables to determine outputs from inputs for a
summarizing logical expressions. problem description

Some systems are so complex

they cannot be summarized in a

truth table.

A truth table is a diagram of the outputs from all possible combinations of input.

Truth tables are used to predict the output of simple logic circuits.

In the previous section, each gate had a logic diagram. Sometimes, you might

encounter problems that only have a description of a problem. You must read

the description carefully and decide which logic gates would be appropriate,

then construct a suitable truth table. The underlying process is the same for

constructing the truth table, but you must first understand the problem correctly.

How does the use of truth tables to

determine outputs from inputs based

on a problem description affect our

understanding of logical reasoning

and problem-solving? What

limitations might this impose on our

comprehension of complex systems?

Al.2 Datarepresentation and computer logic

Worked example 15

A security system activates an alarm if both a motion sensor and a door sensor are activated simultaneously. Draw a

suitable truth table for this system.

Solution

First, consider the input(s).

There are two inputs: a motion sensor and a doar sensor.

Label them A (motion sensor) and B (door sensor).

Second, consider the output(s).

In this case, there is one output: an alarm is activated.

Label this Q (activate the alarm).

The alarm only sounds if the door AND motion sensor are

activated at the same time. So, the required logic gate is

an AND gate.

Now construct the truth table.

There are two inputs, A and B, and one output, Q. The

total number of possible outputsis 2. In this case n = 2, so

22 = 4. The system uses an AND logic gate. This outputs

Worked example 16

1 (True) only if all its inputs are 1. Draw and complete the

logic table.

A Q

0 0 0

0 1 0

1 0 0

1 1 1

Rewrite the output in the context of the question. Q is only

1 (the alarm is activated) if both A (the motion sensor) and

B (the door alarm) are True. This makes sense and fits the

problem description perfectly.

In an automatic lighting system, a light turns on if at least one of two sensors detects darkness. The lighting system also

has a manual override switch that, when activated, ensures the light stays off regardless of the input from the sensors.

Draw and complete a truth table for this system.

Solution

First, think about the input(s). There are two light sensors:

label them A and B. There is also a manual override switch:

label this C.

Next, think about the output(s). In this case, the light is the

output. Label it Q.

To decide which logic gate(s) you need, read the question

carefully: “A light turns on if at least one of two sensors

detects darkness”. So, the light tumns on if sensor A OR

sensor B OR both sensors detect darkness, so the first gate

isan OR gate.

The override switch is an additional logic gate: when

activated, this means the light always stays off, irrespective

of the inputs. So, the second gate is a NOT gate.

The logical statement is (A OR B) AND (NOT C).

Construct the truth table. You have three inputs, and

you know the total number of possible outputs is 2" = 23

(since n= 3) = 8. There are eight outputs, so give your

table eight rows.

A B AORB NOTC Q

0 0] 0 0 0]

0 0] 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 1 0 1

1 0 1 1 0

1 1 1 0 1

1 1 1 1 0]

Check if your answer makes sense. In row 7 of the table,

notice that both sensors (A and B) have detected darkness.

Notice also that C (the override switch) is not on. And Q,

the light, is True, which means it is on.

In row 8 of the table, notice that both A and B have

detected darkness, but because C (the override switch)

is True, the lightis not on (Q is False).

Al Computer fundamentals

Worked example 17

An automatic watering system for plants only activates when it is daytime and either the soil moisture is low or the

temperature is high.

Draw and complete a truth table for the system.

Solution

First, think about the inputs. There are three: daytime (A), (BORC)

soil moisture (B) and temperature (C).
0

Second, think about the output: the watering system

activates (Q).

Next, think about the logic gates you need: A AND

(BORC).

Now construct the truth table. There are three inputs. The

total number of possible outputs is 2" = 23(sincen=3) =8

outputs. Your truth table needs eight rows.

—
|
—
j
o
|
l
o
|
—
=
|
—
|
l
c
l
O
|

W

—
|
o
|
—
|
o
c
|
=
|
o
|
=
|
o
c
|
n

—
|
=
|
—
|
l
O
|
l
O
|
l
O
|
O
|
C
|

D

Finally, check your work. In row 1, even thoughitis

daytime, neither the soil moisture nor the temperature

are true. Therefore, the water system is not activated.

However, in row 6, it is daytime and the temperature is

high (1), so the water system activates.

_ Truth tables and their relationship to a Boolean expression
with inputs and outputs

Boolean expression An algebraic So far, you have built truth tables from logic diagrams and problem descriptions.

expression forme_d using Boolean You can use Boolean expressions to build truth tables without the need for
variables and logical operators such diagrams or problem descriptions. Boolean expressions are clearly stated, with

as AND, OR, NOT, NOR, and so on. little to no need to interpret them. Here are three Boolean expressions:

1. ANOT(BORC) 2. AAND(BXORC) 3. (ANORB)ANDC

You will generally encounter truth table problems with only three inputs.

Worked example 18 - B - == o Q

Construct a truth table for this logic statement:

(AAND B) ORNOTC. ©c 1 0] 60 0 1 1
0 0 1 0 0 0

Solution 0] 0 0 1 1

Identify the inputs. In this case there are three: A, B and C. 0 1] 0 0 0

Construct the truth table. You have three inputs, and you 1 0 0 0] 1

know the total number of possible outputs is 2". Since 1 0 1 0 0 0

n =3, the number of outputs is 2% = 8. Add eight rows to

your truth table. 1 1 0 1 1 1
1 1 1 1 0 1

Al.2 Datarepresentation and computer logic

Worked example 19 A B ¢ | AXORB NOTC a

Construct a truth table based on the following logic

statement: (A XOR B) AND NOT C. 0 | 0] 60 0 1 0
0 0 1 0 0 0

Solution 0 1 0 1 1 1

Identify the inputs; in this case there are three: 0 1 1 1 0 0

A BandC. 1 0| o] 1 1
Construct the truth table. There are three inputs, and 1 0 1 1 0 0

you know the total number of possible outputs is 2.

Since n = 3, there are 23 = 8 outputs. 1 1 0 0 L 0
1 1 1 0 0 0

(S
Construct a truth table for each of these logic statements:

1. (ANORB)ORC

2. (AANDB)NORC

3. AXCR(BORC)

Truth tables derived from logic diagrams to aid the
simplification of logical expressions ’;‘ WO

Truth tables derived from logic diagrams help simplify logical expressions by AND NOT

providing a clear and complete overview of the output for all input combinations. 4 Figure 45 A more complex logic

Given a slightly more complex logic circuit, how should you approach solving it? diagram

Remember, with a truth table you are concerned with predicting all possible input -

combinations and their corresponding outputs. A B Decimal

. . 0 0 0
Creating a truth table from a logic diagram 5 : :

1. Listall input combinations. With two inputs (A and B) there are four] 0 >

combinations (00, 01, 10, 11), so add four rows to your truth table. This will

help you to not forget a possible input. 1 1 3

For n given inputs, there are a total of 2" possible input combinations. So,

with two inputs there are 22 = 4 input combinations. For three inputs, there A B AND output

are 22 = 8 input combinations. 0 0 0

Make sure that you arrange your inputs logically. Notice that the inputs count 0 1 0

up in binary, starting at O in the first row. (The decimal equivalent is shown 1 0 0

here for reference only—do not include this in your table.)]]]

2. Apply the first operation (AND). Calculate the AND operation result for each

input combination.
_) A | B | AND output | NOT output

3. Apply the second operation (NOT) to the result of the AND operation.

This gives the final output of the circuit. Do you recognize this simple logic 0]0 0 1

circuit? Hint: it has an AND and a NOT gate. 01 0 1

. 110 0 1
This is the same output as a NAND gate. 11 : o

Al Computer fundamentals

e
Construct truth tables for each of

these diagrams

1

Worked example 20

Construct a truth table for this diagram.

XOR
A XOR

B Q
C

Solution A B C

Determine the total possible

number of input permutations. With 0 0 0

three inputs (A, B and C), there are 0 0 1

eight possible combinations 0] 0

(27 = 2% = 8). Listall the input

combinations in a logical order by 0 1 1

counting up in binary: columns A, 1 0 0

B and C will show numbers O to 7

in binary. (Not 1 to 8: you must start 1 0 1

counting atQ.) 1 1 0

1 1 1
Calculate the first XOR operation

result for each input combination of
AandB. A B < AXORB

0 0 0 0

0 0 1 0

0 1 0]

0] 1 1

1 0 0 1

1 0 1 1

1] 0 0

Calculate the second XOR operation 1 1 1 0

by comparing A XOR B and C.

A B Cc AXORB Q

0 0 0 0 0

0 0 1 0 1

0 1 0] 1

0 1 1 1 0

1 0 (0] 1 1

1 0 1] 0

1 1 (0] 0 0

1 1 1 0 1

Simplifying output expressions with algebra and
Karnaugh maps

Karnaugh maps (K-maps) are a method for simplifying Boolean algebra

expressions by minimising the number of terms needed to express a logic

function. A K-map can also be thought of as a special type of truth table that

makes finding patterns easier.

Al.2 Datarepresentation and computer logic

Constructing a K-map AND

1. First, construct a truth table. K-maps are generally used with no more than

four inputs, and the IB typically uses three inputs for truth tables. This

example uses the truth table shown here.

2. Consider the number of inputs. In this case, there are two inputs.

—
|
—
|
O
|
O
|
r

—
l
o
|
=
|
o
|
l
m

—
l
o
|
l
o
|
l
o
|
D

3. Now construct a K-map.

Draw a grid: the number of columns = the number of possible inputs for A.

The number of rows is the number of possible inputs for B. In this case, both A

AandBcanbeOorl,sodrawa 2 X 2 grid. From the top left corner of the B 0 1

grid, draw a diagonal line away from the grid to separate the two inputs.

Above the line, add a label, A, and column headings showing all the possible 0

inputs for A. Under the line, add a label, B, and row headings showing all the

possible inputs for B. Put the smallest values nearest the diagonal line. 1

4. Populate the table. Looking at the truth table from step 1, ask yourself: “if Ais

Oand B is 0, what is the output?” The answer is 0. This value goes in the top A

left cell of the K-map, where the A = 0 column and the B = O rows intersect. B 0 1

Repeat the question, using the correct A and B input values for each cell.

The K-map is complete.

Worked example 21

Create a K-map for this truth table.

A B Q

0 0 0

0 1 1

1 0 1

1 0 —
_

Solution

First, construct the truth table. In this case, the truth table A

has already been provided in the question.

Next, consider the number of inputs. In this case, there are 0

two inputs.

Now construct a K-map. Note that you have column

headings with all the possible input combinations for

A at the top, and row labels with all the possible input

combinations for B on the left.

Populate the table. Looking at the truth table, you can ask

yourself: “if Ais Oand B is 0, what is the output?”

The answeris 0. If Ais 1and B is O, the outputis 1. 1 1 0

Your K-map is complete.

Al Computer fundamentals

Worked example 22

Create a K-map for this truth table.

A B C Q

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Solution

First, consider the number of inputs. In this case, there are three inputs: A, Band C.

Construct a K-map. At the A

top, write column headings BC 0 | Populate the table. Lociklng & 0 1
P In heading at the truth table, ask: “if A is BC

with all the possible input 00 0and BC is 00, what s the 0 | o
f:gg:i:g;i?\;fi bi[fi. 0] output?” The answer is zero.

5 If Ais 1and BCis 00, the 01 1 0

with E_” the po?mbée 'ngLé[1 output is 1. Repeat until the i 5
combinations for B and C. e ek,

10 10 © 1

Simplifying K-maps

To simplify a K-map, such as the one in the solution to Worked example 22, you

first group the 1s together. There are some important rules to remember as you

create groups of 1s.

1. Agroup can only contain one, two, four or eight 1s.

2. Youshould make as large a group as possible—do not make a group of two if

you can make a group of four.

Each group should be shaped as a horizontal or vertical rectangle or square.

4. The groups may overlap if necessary, and you can wrap around the edges of

the K-map to form a group.

5. Every 1 onthe map must be included in one group.

A Gray code, or reflected binary code, is a binary numbering system where two

successive values differ by one bit. This is useful in K-maps to minimize errors in

switching circuits by reducing the possibility of error during the change of state

from one code to another. In the context of K-maps, the Gray code ensures that

adjacent cells differ by only one variable, simplifying the process of grouping

and identifying commonalities among terms, which helps in minimizing Boolean

expressions.

Note that row labels in K-maps are not in sequential binary order; they differ by

only one bit (e.g., 00 and 01, 01 and 11).

Al.2 Datarepresentation and computer logic

Worked example 23

Simplify the K-map from Worked example 22.

Solution

First, group the 1s together.

A
BC 0 1

00 | {0l

ofi 73] o
] !

nfii| o

10 0 [¢71}
=== |CnotA+A+BnotC

Next, determine the variables for each group.

Each group corresponds to a term in the simplified

Boolean expression.

Look at the rows and columns that your group spans. For

each variable do the following.

If a variable does not change within agroup (i.e., all 1s

in the group are in rows or columns marked by the same

variable state), that variable is part of the term. In the

A1.2.5 Construct logic diagrams

example, notice how C does not change in the column

on the left. You can also notice that A does not change.

Looking at the two groups in the right column, notice that

A does not change and C does change.

If a variable changes state within a group (i.e., includes

both its true and complemented forms) it is not included

in the term for that group. In the example, you can

observe that B does change in the group on the left.

Now, write each term.

Include a variable in the term if it is the same across the

entire group (e.g., all rows or columns the group spans are

labelled with the variable in the true or complement form).

Omit the variable if the group spans areas where the

variable changes from true to complement or vice versa.

Combine the terms. Once you have a term for each

group, combine them with OR operations. This results in

the simplified Boolean expression for the original function

defined by the K-map.

Using logic diagrams to demonstrate how logic gates are
connected and interact in a circuit

Logic diagrams are composed of connected logic gates, inputs, and outputs.

Logic diagrams are normally read left to right. When reading and interpreting

a logic diagram, remember that its main purpose is to demonstrate the flow of

logic. These diagrams can be directly transposed to electronic circuits, serving as

a blueprint to build a physical circuit.

C N > D
A Figure 46 A half adder. The halfadder

adds two single binary digits, A and B. It has

two outputs, sum (S) and carry (C)

out

A Figure 47 A half subtractor. The inputs

X and Y are the numbers to be subtracted

(specifically, X—Y) while D is the difference

and B is the borrow signal (if the circuit

needs to borrow)

Al Computer fundamentals

Use standard gate symbols for AND, OR, NOT, NAND,

NOR, XOR and XNOR gates

Table 12 Logic gate symbols

AND OR NOT NAND NOR XOR XNOR

A A A A A A

You should use standard gate symbols when constructing logic diagrams. Itis

helpful to label your logic gate to avoid any confusion. Make sure your inputs and

outputs are clearly labelled.

Worked example 24

A simple security system only activates an alarm when both a motion sensor and a door sensor detect a breach

simultaneously. Create a logic diagram to represent this situation.

Solution

First, think about and label the inputs: M for motion Your diagram might look like this:

sensor, D for door sensor.

Next, think about and label the outputs: A for alarm. M AND A

Consider what logic gate is needed: in this case, itis a D—

simple AND gate.

Worked example 25

An automatic watering system for plants that should only activate under two conditions: it is daytime and either the

soil moisture is low or the temperature is high.

Create a logic diagram based on this problem.

Solution

First, think about and label the inputs. There are three Thinking about the logic gates, create A AND (B OR C).

in this problem: daytime (D), soil moisture (S) and

temperature (T). D—
S AND Q

Next, think about and label the output, the watering

system activates (Q). T

Process inputs diagrammatically to produce outputs

When systems or circuits are represented in a diagram, inputs are represented by

lines or arrows coming into the diagram from the left side. These may be labelled

with letters (such as A, B or C) or descriptive names (such as motion sensor or

proximity sensor).

In Worked example 25, the inputs are S for soil moisture, T for temperature, and

D for daylight. The output, Q, tells us whether the watering system activates.

Note that the output goes towards the right side of the diagram.

Al.2 Datarepresentation and computer logic

Remember to read logic diagrams from left to right unless clearly stated

otherwise. You can assume variables on the left side are inputs.

Look back at the logic diagrams you have drawn or been

given in previous sections of this unit.

Identify all the inputs and the outputs. If you spot any

mistakes, correct them!

Combine gates to perform more complex
logical operations

Combinations of gates can lead to more sophisticated logical

operations.

Ao—

Bo ~

L

[
T
[

A Figure 48 A full adder is used to add two binary digits along with a

carry from a previous addition

Use Boolean algebra rules to simplify complex
logic diagrams and expressions

C @—‘j:j):: 0 @50

Po

By S}

G

Qs

A @%J
B, [G}+

CZ

Q5
P, 2

Az @%_‘ ©2 1
B, [oH

C3 B

© S
Py 3

Az[OH G3 B
B3 [0 ' |

QC, Boolean algebra simplifies complex logic diagrams and

expressions, which allows expressions to be standardized using

logical operators like AND, OR and NOT. This standardization

helps in analysing and simplifying the expressions systematically.

A Figure 49 Afastadder is a type of electronics adder. Note

that you will not be asked to decode a diagram as complex as

this one

Table 13 Mathematical notation

Digital circuit
Operation | Description Mathematical notation | Programming notation s;g':bolamm

AND Logical conjunction AAB A&&B AND gate

OR Logical disjunction AVB AllB OR gate

NOT Logical negation B 1B NOT gate

NAND NOT AND AAB (A && B) NAND gate

NOR NOT OR AvVB (Al B) NOR gate

XOR Exclusive OR ADB ANB XOR gate

XNOR Exclusive NOR (Equivalence) | (A® B) I(A "~ B) XNOR gate

Al Computer fundamentals

TOK

Logic diagrams serve as powerful

tools in the visualization and

design of electronic circuits and

microprocessor layouts, bridging

the gap between abstract logical

processes and tangible physical

systems. Their use shapes the way

we approach the construction,

interpretation and troubleshooting

of complex hardware architectures.

To what extent does this influence

our understanding of logical

processes and the construction

of physical systems? What are the

advantages and disadvantages

of using logic diagrams in

this context?

Worked example 26

Boolean algebrarules

A Boolean algebra law is a principle or rule that defines the behaviour and

relationships of Boolean variables and operations. These laws are used to

manipulate and simplify Boolean expressions, ensuring consistency and

predictability in logical reasoning and digital circuit design. There are several

mathematical laws within Boolean algebra. These are three common laws.

1. The commutative law applies to AND and OR operations. It means that the

order of variables does not affect the outcome. For example, for variables A

and B, (A AND B) gives the same result as (B AND A). (AORB) = (B ORA).

2. The idempotent law simplifies expressions with repeated variables. It states

that when a variable is combined with itself, the result is the variable itself.

Forexample, (BAND B)=B.(1AND 1) =1.

3. Theinvolution law simplifies double negation. It states that the negation

of the negation of a variable returns the original variable. In other words, if

you negate a variable twice, you get the original variable back. For example,

NOT (NOT A)=A.NOT(NOT1)=1.

Use truth tables to demonstrate the equivalence or difference of these logical expressions.

AANDB B AND A

How does this demonstrate the commutative law?

Solution

Construct a truth table for the logical expression AAND B. The truth tables show that the results of (A AND B)

and (B AND A) are identical for all possible values of
A B AANDB AandB.

0 0 0 The commutative law states that the order of the

0 1 0 variables does not affect the outcome for AND and

1 0 0 OR operations. The truth tables demonstrate the

commutative law, showing that A AND B is equivalent to

1 1 1 BANDA.

Now construct a truth table for the logical expression B

AND A.

A B BANDA

0 0 0]

0 1 0

1 0 0

1 1 1

Al.2 Datarepresentation and computer logic

Worked example 27 B

This expression is used in a digital circuit: (A A A) v B

Rewrite the logic expression as simply as possible.

Solutiop

(AAA) VB

So, the expression can be written as:

(A AND A) OR NOT NOT B.

The idempotent law simplifies expressions with repeated

values. Using the idempotent law, A A A simplifies to A.

Worked example 28

B means NOT NOT B. The involution law simplifies double negation. Using the

involution law, B simplifies to B.

So, the simplified expression is A v B, which can be

written as A OR B. This uses fewer logic gates and is easier

to implement.

Use the variables A =1 and B = 0 to show that the commutative law applies to logical AND and OR operations.

Solution

The cormmutative law in Boolean algebra states that the

order in which the operations are performed does not

affect the outcome for the logical AND and logical OR

operations.

Consider the commutative law for AND.

AANB=BAA

So, if A=1and B= 0, your equations would be:

TANDO=0

OAND1=0

Both expressions evaluate to False (0), showing that the

order does not affect the result.

Practice questions

20. Define the term “binary number system”.

21. Describe how integers are represented in the hexadecimal number system.

22. State the hexadecimal equivalent of decimal 93. Show your working.

23. Describe the process of converting a binary number to a hexadecimal number.

24. Explain the process of converting analogue audio signals into binary.

25. Describe how logic gates are used in timing circuits such as clocks and timers.

26. Describe the role of NAND and NOR gates in the implementation of safety systems.

Now consider the commutative law for OR.

AvB=BVvA

So, if A=1and B =0, your equation would be:

10R0O=1

OOR1=1

Both expressions evaluate to True (1), demonstrating that

the outcome remains consistent regardless of the order.

So, the commutative law applies to both AND and OR

operations.

[2 marks]

[3 marks]

[2 marks]

[3 marks]

[3 marks]

[4 marks]

[3 marks]

A\ CIl Operating systems and control
systems

Syllabus understandings

A1.3.1 Describe the role of operating systems

A1.3.2 Describe the functions of an operating system

A1.3.3 Compare different approaches to scheduling

Al.3.4 Evaluate the use of polling and interrupt handling

A1.3.5 Explain the role of the operating system in managing multitasking and

resource allocation

T
H
Y

A1.3.6 Describe the use of the control system components

A1.3.7 Explain the use of control systems in a range of real-world applications

A1.3.1 Describe the role of operating

systems

An operating system (OS) serves as an interface connecting the user and

application to the hardware of a computer system. The role of an operating

system is to manage system resources—such as the CPU, memory, disk, network

and peripherals—and to provide services to the user and other applications, such

as file management, process management, security, and user interface.

Devices or direct commands
User interface (keyboard or click)

System call responses/
callbacks System calls interface

TOK

To what extent does the

operating system's role in hiding System calls/
the complexity of hardware yst

System instructions/
interrupts device drivers

management influence our

understanding of computing

systems? What are the

implications of this for users and
application developers? A Figure 50 A simplified diagram showing how an operating system serves as an intermediary

between applications and hardware

Al.3 Operating systems and control systems

Some examples of operating systems include Linux, Windows, Orbis (based on

BSD, for the PlayStation), macOS, Android, BSD, Unix, and iOS. Each operating

system has its own features, advantages, and disadvantages, depending on the

design philosophy, intended use, and user preference. Some operating systems

are highly specialized and only work on very specific types of hardware.

Remember: there is nota “best” operating system. There is only to what extent an

operating system is the best fit for a given purpose.

Operating systems abstract hardware complexities to
manage system resources

Operating systems manage system resources to ensure fairness, security and

efficiency with competing processes, multiple users, and many different types

of hardware.

Table 14 System resources that an operating system manages

System resource How an OS manages the resource

CPU Schedules and allocates CPU time among various processes and threads, implementing scheduling

algorithms to manage process execution, prioritize tasks and handle interrupt requests.

Manages physical and virtual memory, including allocation and deallocation of memory to

Memory processes, swapping between RAM and disk (paging), and protection of memory spaces to

prevent processes from interfering with each other.

Storage Manages storage through file systems. It handles file creation, deletion, reading, writing,

g permissions and organization, as well as disk space allocation and file system integrity.

1/O (input/output) Manages data flow to and from /O devices such as keyboards, mice and network interfaces.

P P Manages interrupts from 1/0 devices; for example, when mouse movement is detected.

Manages the network stack to facilitate data transmission over network interfaces, handling
Network stack

protocols, network connections, and bandwidth allocation

User interface (UI)

Provides the frameworks and tools needed to build graphical and command-line interfaces,

translating user actions into system calls. While not technically a resource, the Ul is critical for

interacting with a computer.

Security and access

controls

Enforces security policies, managing user authentication, authorization, encryption, and audit

logs. Among other areas of security, it controls access to files, applications, and system settings.

Process and task

management

Manages the lifecycle of processes and threads, including creation, execution, suspension and

termination, along with inter-process communication (IPC) and synchronization mechanisms.

Power management
Manages power resources to optimize battery life, including controlling power usage by hardware

components and implementing power-saving modes.

External devices and

peripherals

Manages external devices connected via USB, Bluetooth, or other interfaces, ensuring

compatibility and proper operation through device drivers. This is different from 1/O.

It is worth considering the chaos that would occur if individual applications or

users were allowed to allocate memory, schedule the CPU, and write to storage

without considering all the other running processes in a system. It would be

chaotic, insecure and inefficient.

Consider an orchestra. What would happen if all the musicians decided to play

any note they wanted, whenever they wanted, for as long as they wanted? In a

computer, an operating system performs a similar role to that of a conductorin

an orchestra. It manages all the resources while providing a secure and coherent

method or interface to utilize those resources. A Figure 51 An orchestra needs a conductor

Al Computer fundamentals

Abstraction is one of the

fundamental concepts of

computational thinking, which

you will study in topic B1.

A Figure 52 You do not want to worry

about allocating threads when playing

video games

Sandboxing Isolating a process

or application, restricting its access

to system resources beyond

what it strictly needs. This can

involve memory protection and

also includes limiting file system

access, controlling network

communication, and so on.

Abstraction can be defined as hiding intricate details beneath a simpler, more

manageable layer (or interface). An application does not need to directly manage

memory—the operating system handles that, ensuring the application has the

resources it needs (or fails gracefully if it does not).

When you are playing a video game, are you worried about allocating threads,

managing memory, and ensuring that your peripherals are generating interrupts?

Of course not! You just want to have fun playing a game.

Another example of abstraction is driving a car. You do not need a deep

understanding of internal combustion engines to drive. The pedals, steering

wheel and transmission control provide an interface between the driver and the

underlying mechanical processes.

When you simplify any complex system into an easy-to-use interface, you are

abstracting the complex system.

A1.3.2 Describe the functions of an

operating system
The previous section outlined the resources managed by an operating system.

This section looks specifically at what and how an operating system manages

those resources.

What is a process?

A process is an instance of a program being executed.

A process is the execution of a program: When you double-click an

application icon or run a command, the instructions within that program are

loaded into memory, and the operating system creates a process to manage

its execution. A program is a passive set of instructions. A process is the active,

dynamic execution of those instructions. You may have multiple processes

running from the same program.

A process is a unit of resource ownership: Each process is given its own

sandboxed area of resources by the operating system. This includes the

following.

* Memory: A private section of memory to store the program’s code, data, and

the stack (which keeps track of function calls and local variables).

* (CPUtime: The process receives slices of time from the CPU to run its

instructions, with the operating system scheduling when each process gets

to run.

« Open files/network connections: A process can open files, interact with the

network, and use other system resources.

The OS keeps track of which resources belong to which process.

A process is an entity managed by the OS: The operating system maintains

information about each process, including the following.

* Process state: Whether it is running, waiting for resources, blocked on input

or output, or terminated.

Al.3 Operating systems and control systems

* Process ID (PID): A unigue identifier assigned to the process.

* Registers: The temporary storage locations within the CPU that hold the data

the process is currently working on.

* Priority: How important the process is relative to others, influencing

scheduling decisions.

* Resource usage: Statistics on memory, CPU time, files, and other resources

used by the process.

A process can have different process states: The process states are

as follows.

* New: The process is being created and loaded into memory.

* Ready: The process is ready to run and is waiting for its turn on the

Created

CPU.

e Running: The process is currently executing instructions on the CPU.

* Blocked (or Waiting): The process cannot continue until an external

event occurs (for example, waiting for a file to be read from disk,

waiting for network data, or waiting for user input).

e Terminated: The process has finished its execution and is being

Main memory

cleaned up by the operating system.

By tracking the state of a process, the OS can do the following.

* Schedule processes: Prioritize ready processes for CPU time.

Swapped out ™\

and waiting

Swapped out

and blocked

Page file / swap space

* Manage resources: Release resources held by blocked processes,

potentially allocating them to other processes.

* Error handling: Identify and handle processes stuck in unusual states.

A process has threads: A thread (or thread of execution) is the smallest

sequence of programmed instructions that can be independently managed by a

scheduler.

Within a process, you can have multiple threads of execution that share the same

memory space but can potentially execute in parallel on multi-core systems.

For example, a word processor could:

* have one thread to handle rendering the document on the screen

* have another thread to handle spell checking in the background

* have a separate thread to manage user input.

Operating systems maintain system integrity by
implementing the following policies and practices

System integrity refers to the state of a computer system when the system

performs its intended functions correctly and reliably, without unauthorized or

unintended alterations. It implies that the system’s hardware, software and data

maintain their expected and trustworthy state. System integrity includes concepts

such as correctness, completeness, data accuracy, protection from manipulation,

and resilience. You could never rely or trust a system if it did not have integrity.

A Figure 53 Processor states

Al Computer fundamentals

Scheduling The process of

arranging, controlling, and

optimizing work and workloads to

achieve specific goals.

Packet A formatted unit of data

carried by a network. Itis a small

segment of a larger message

that is divided and transmitted

over a network, typically in

Internet Protocol (IP)-based

communications.

Background operations, or background processes, are computer processes

that execute without direct user interaction or a visible user interface. Background

operations perform tasks which support the applications you might be using or

the overall functioning of the system.

Process isolation enforces boundaries between running processes. This means

each process operates in its own dedicated virtual memory space, preventing

accidental or malicious interference with other processes or the operating

system itself.

Memory protection means that processes have separate memory spaces,

preventing one process from interfering with another or with the OS.

User mode (or user space) and kemel mode separates operations which

require direct hardware access (kernel mode) from those that do not (user mode).

You do not want individual applications deciding where they should read or write

into memary.

Resource management is primarily concerned with allocating resources fairly

and efficiently among running processes, ensuring system responsiveness and

preventing conflicts.

CPU scheduling assigns processes to ensure that critical system operations

receive the CPU time they need without unnecessarily hindering user

applications. You will learn more about scheduling in the next section. The basic

idea is that, in a system with 400 or 500 different processes, each gets a fair share

of resources including priority processes and interrupts.

Access control and permissions assign individual and group permissions to

every single file and directory in the computer.

User and group permissions implement user and group accounts with

specific permissions, controlling access to system resources and limiting what

background operations can do based on their required access level. For

example, a guest would not have read and write permissions in your private

document directory.

File system security manages access rights to files and directories, ensuring that

only authorized processes and users can read, modify, or execute specific files.

In the Linux operating system every file and directory has permissions for read,

write and execute permissions for owner, group, and other.

Most operating systems also support access control lists (ACLs), which can

provide more flexible control to system resources.

Security features generally can be contextualized within the CIA triad, keeping

resources confidential, with integrity, and available.

Encryption protects data integrity and confidentiality by encrypting sensitive

information stored on the system. For example, certain versions of Windows

offer BitLocker, which encrypts a disk, macOS offers FileVault, and Linux offers

dm-crypt/LUKS as options for encryption.

Firewalls monitor network traffic at the packet level to detect, block or allow

packets into the system.

Al.3 Operating systems and control systems

Antivirus software monitors files for malicious behaviour (changing an important

system file, for example) and signatures (does anything in this file match a known

virus pattern?).

Firewalls and antivirus software can benefit from integration with the operating

system. This integration allows them to efficiently access system resources,

monitor system activities at a low level, and provide better protection against

threats. However, the ultimate effectiveness of these security measures depends

on factors like the breadth of threat definitions, the frequency of updates, the

sophistication of detection algorithms, and the overall security architecture,

rather than solely on whether they are provided by the OS.

Update management keeps an operating system secure and performant in an

evolving threat landscape.

Patch management is the process of deploying patches to software systems

to ensure they are up-to-date and secure. Patches are a set of code changes

designed to address problems or update an existing computer program or

its supporting data. Patches fall into different categories, including bug fixes,

security fixes, feature enhancements, and compatibility updates. Patches

often include mechanisms to verify the integrity and authenticity of updates

before installation.

Rollback features allow a return to the last known-good state of the system.

These features enable the system to revert to a previous state if an update

or change causes issues, preserving system integrity. In Windows OS, this is

known as “System Restore”. On macOS, the “Time Machine” feature serves a

similar purpose.

Data integrity checks can use mechanisms such as checksums, hashes, or error-

correcting codes to detect and potentially correct data corruption caused by

transmission errors or storage issues.

Checksums are digits representing the sum of the correct digits in a piece of

stored or transmitted digital data, against which later comparisons can be made

to detect errors in the data.

A hash is a fixed-size string or number generated from a data set using a hashing

function that converts varied length inputs into a compressed numerical value,

primarily used for data integrity checks and quick data retrieval.

Checksums and hashes verify the integrity of system files and data by comparing

them against known good checksums or hashes, detecting corruption or

unauthorized changes.

File system consistency checks help ensure the integrity and consistency of file

systems, which can become corrupted due to improper shutdowns, hardware

failures, or uncaught exceptions. Tools like fsck (file system check) are employed,

typically during system boot or designated maintenance windows to verify the

coherence and validity of the file system.

Monitoring and logging are both tools to understand current system

performance and issues (monitoring) and past system performance and

issues (logging).

You will find more about the

function of firewalls in topic

A2 Networks.

Hashing and hash functions are

covered in topic B4 Abstract data

types (HL only).

Al Computer fundamentals

Understanding the underlying

details of an operating system helps

you to gain a clearer picture of why

the operating system is so vital to

the overall health and usability of

computing systems. But this is not

essential unless you are writing

instructions for that system.

To what extent does understanding

the specific functions and resource

management roles of an operating

system shape our perception

of its importance in maintaining

system integrity and facilitating

user interaction with computing

systems?

Logging collects detailed activity of system operations, security events, and errors,

providing a way to audit system behaviour, detect anomalies, and troubleshoot

issues. Almost every action instantiated by a user or process is logged.

Apr 1 17:29:32 production-web sshd[2917441]: Failed password for

invalid user teste from Apr 1 17:29:33 production-web sshd[2917441]:
Received disconnect from 167.99.159.235 port

Apr 1 17:29:33 production-web sshd[2917441]: Disconnected from invalid

user teste 167.99.

Apr 1 17:29:38 production-web sshd[2924950]: pam unix(sshd:auth):

authentication failure; user=root ruser= rhost=43.156.203.90

Apr 1 17:29:38 production-web sudo: pam unix(sudo:session): session
closed for user root Apr 1 17:29:39 production-web sshd[2924950]:
Failed password for root from 43.156.203.90

Apr 1 17:29:40 production-web sshd[2923570]: pam unix(sshd:auth):

authentication failure;ruser= rhost=180.101.88.237 user=root

Apr 1 17:29:40 production-web sshd[2924950]: Received disconnect from
43.156.203.90 port

Apr 1 17:29:40 production-web sshd[2924950]: Disconnected from
avthenticating user root 4 th] Apr 1 17:29:42 production-web

sshd[2923570]: Failed password for root from 180.101.88.237

Apr 1 17:29:47 production-web sshd[2923570]: Failed password for root
from 180.101.88.237

Apr 1 17:29:50 production-web sshd[2923570]: Failed password for root
from 180.101.88.237

Apr 1 17:29:52 production-web sshd[2923570]: Received disconnect from

180.101.88.237 port Apr 1 17:29:52 production-web sshd[2923570]:
Disconnected from authenticating user root 1 uth]

Apr 1 17:29:52 production-web sshd[2923570]: PAM 2 more authentication
failures; logname= host=180.101.88.237 user=root

A Figure 54 Anexample of a system log from the Linux OS. This specific log shows failed

logins to a web server in a brute-force attack. Note the time stamp, server, process (SSHD),

process |ID and message: these are common in most logging systems. Learning to read,

interpret, and act on log entries is an important skill in information technology and can be

useful in computer science

Performance monitoring enables real-time tracking of various metrics such as CPU

usage, memory consumption, network bandwidth, and application response times.

Utilization ~ Speed Base speed: 2.60GH=z

3% 1.61 GHz Sockets: 1

Cores: 14

Processes Threads Handles Logical processors: 20

278 4732 191490 Virtualization: Enabled

_ LT cache: 1.2MB

Up time L2 cache: 11.5MB
3:00:10:16 3 cache: 24.0MB

A Figure 55 A snapshot of a task manager, where CPU usage is being tracked in real time.

At 3% utilization, this CPU is not working very hard

Memory management

Memory management involves allocating and deallocating memory to processes

which need it, and ensuring that each process has separate and protected

memory address space. Memory management also implements virtual memory,

which allows the processes to use more memory than the physical memory

available, by swapping some pages of memory to the disk when needed.

Memory pages are fixed-size, contiguous blocks of virtual memory that form the

basic unit of allocation and transfer between primary storage (RAM) and secondary

storage (disk) in a virtual memory system. The operating system, in conjunction

Al.3 Operating systems and control systems

with the memory management unit (MMU), maintains page tables to track the

mapping of these pages between virtual and physical address spaces. Ifyou

discuss memory without using virtual memory, you use the term “page frames”.

Virtual memory separates the linear memory addresses used by processes from

the underlying physical memory layout. The OS, with hardware support from the

MMU, maps virtual addresses to physical addresses dynamically. This allows for

processes to have large, contiguous address spaces independent of physical

RAM limitations, with the OS transparently paging data between RAM and disk

as needed.

File systems

A file system is a method used by an operating system to control how data is

stored and retrieved. It provides a block-level organization for files on physical

storage devices such as hard disks, SSDs, or USB flash drives. The file system

defines the rules for naming files, the structure of directories (or folders), and how

files and directories are displayed to the user. It also manages the allocation of

disk space to files and directories and keeps track of which areas of the disk are

available for use. Examples of file systems include NTFS (used by Windows), ext4

(used by Linux), and APFS (used by macQOS).

Device management

Device management enables interaction between the operating system and hardware

via device drivers. These drivers convert commands from the operating system into

specific signals (instructions) tailored for each hardware component, enabling data

transfer (communication) across a variety of devices. Conversely, hardware devices

can initiate communication with the operating system by sending signals or interrupts,

which the operating system processes and responds to accordingly.

Device management is responsible for handling interrupts and errors emanating

from hardware devices, offering a uniform interface for applications to access

hardware resources. For example, user actions such as keyboard strokes or

mouse movements generate interrupts, alerting the operating system to new

user input. Similarly, a network interface card receiving a data packet triggers an

interrupt, prompting the operating system to handle the incoming data.

Scheduling

Scheduling is primarily concerned with determining the order and timing of

process execufion.

Imagine a constantly changing pool of 500 different processes, all needing

processor time. How should these processes be executed? First-come, first-served?

Should the execution time depend on the importance of the process? The size

of the process? Deciding how to allocate CPU time (instruction cycles) falls to

scheduling. Scheduling considers priority, fairness, efficiency, and system load.

There is more about scheduling in the next section.

Security

Operating systems provide firewalls, encryption, access control, user

authentication, security patches, sandboxing, logging, and data integrity.

Al Computer fundamentals

A Figure 56 A confusing GUI—it is difficult

to understand because it has been poorly

designed

Accounting

Accounting is the tracking and recording of resource usage, such as CPU

time, memory usage, disk space, and network bandwidth. In the early days of

computing, accounting was used to charge users or departments using multi-

user mainframes based on how much of a resource they used. Interestingly,

accounting of resources has returned with cloud-based computing, where

organizations pay for what they use.

The operating system gathers data on how long each process runs, the amount

of memory it utilizes, its disk input/output operations, and other resource

consumption metrics. Based on historical usage patterns, the OS can make more

informed scheduling decisions to optimize resource distribution and ensure fair

allocation.

Accounting is implemented in system logs. The operating system maintains

detailed logs of activity. Each entry in a log includes timestamps, process IDs,

user |Ds, specific resources requested (CPU time, memory allocation, network

bandwidth), and the duration for which these resources were granted. In some

systems, the logs might also record details on denied resource requests, failed

process executions, or errors encountered during resource allocation.

Windows users can view logs by looking for the “Event Viewer” application,

macOS users can open the “Console” application, and Linux users can look

through the /var/log directory.

Reading log files on your computer is an effective, non-destructive method to

help you understand the different aspects of the system your operating system

manages.

Graphical user interface

When most users think of an operating system, they think of the graphical user

interface or GUI (pronounced “gooey”). Windows OS looks different from

macOS, which looks different from some Linux OS GUIs. As a computer scientist,

you know an OS serves as an intermediary between the user, application and the

hardware of a computer system. The GUI is just one part (albeit an important part)

for the users of the OS.

A GUI facilitates interacting with a computer system using visual elements, such

as icons, menus, windows and buttons. The graphical user interface makes

the computer system easier to use, and allows the user to perform tasks with a

mouse, keyboard, touchscreen, or other input devices.

GUIs are constantly being updated and improved to make them easier and more

intuitive to use. A well-established field within computing is human—computer

interaction, which guides thinking about computing interfaces.

Virtualization

Virtualization involves creating virtual instances of physical hardware.

Virtualization enables a single physical machine to host multiple virtual machines

(VMs), with each VM operating as though it has its own dedicated hardware.

Think of virtualization like dividing up a big house into separate apartments. Each

apartment gets its own rooms and resources, even though they all share the same

physical building.

Al.3 Operating systems and control systems

The technical key to virtualization is the hypervisor, a

specialized software layer which enables the interaction

between virtual machines and the physical hardware. The

hypervisor divides the underlying computer into smaller,

virtualized chunks. Each VM is given a portion of these

virtualized resources. The hypervisor ensures that VMs stay

Virtual machine Virtual machine Virtual machine

within their boundaries and don't interfere with each other.

The hypervisor tricks each virtual machine into thinking it

actually has direct access to the physical hardware, even

though it is a virtualized environment.

There are two main benefits of virtualization. The first benefit

is efficient use of computing resources—multiple VMs can

share a single system’s CPU, memory and storage, increasing

hardware utilization and reducing infrastructure costs. The second is isolation,

where VMs are isolated from each other. A failure or security compromise in one

VM does not affect others.

Networking

Operating systems facilitate networking via a software stack designed to manage

network communications. Networks operate by segmenting data into packets

and transmitting those packets across networks. When an operating system

receives packets, it puts them back together so applications can use them.

The network stack, or network protocol stack, comprises networking protocols

and layers that collectively enable network communication. This stack is commonly

associated with the TCP/IP model, detailed in A2. Key points to remember include:

* operating systems implement the network stack

* the process of ensuring reliable, robust, and secure digital communication is

complex, requiring the cooperation of multiple software layers.

Operating systems support and manage network hardware such as network

interface cards (NICs) via device drivers. These drivers abstract the hardware

details, providing a standardized interface to the network stack for data

transmission and reception, regardless of the hardware used.

Network configurations on operating systems include setting IP addresses for

network interfaces, either statically by the user or dynamically through dynamic

host configuration protocol (DHCP). This step is vital for device identification on a

network and their subsequent communication.

To safeguard network communications, operating systems deploy security

measures such as firewalls to manage packet flow, encryption (for example,

SSL/TLS for web traffic) for secure data transmission, and authentication

protocols for identity verification.

Operating systems also come equipped with a variety of network utilities and

command-line tools for troubleshooting, configuration and monitoring purposes.

These tools include:

* ping: to test host reachability

* ifconfig/ipconfig: for network interface configuration

* netstat: toview network connections

* traceroute/tracert: totrace packet routes to a destination.

A Figure 57 Ahypervisor model

You will learn about networking in

more detail in topic A2 Networks.

A Figure 58 The TCP/IP model

A Figure 59 Network configuration

Al Computer fundamentals

TOK

Optimization and efficient use of

resources in computer systems are

central to decision-making when

creating computing systems—they

drive the development of systems.

To what extent do different

scheduling approaches influence

our understanding of optimizing

system performance and managing

process execution? Why might

a computer scientist or software

engineer need to know about

scheduling, and at what depth

would they need to know it?

A1.3.3 Compare different approaches to

scheduling

Manage the execution of processes by allocating CPU
time to optimize system performance

Computer operating systems manage the execution of processes and threads by

scheduling CPU time, memory, and other computing resources.

The reason operating systems consider different scheduling algorithms is

because they want to optimize the performance of the computer system. Process

importance and requirements can change dynamically, and operating systems

often adjust scheduling priorities in real-time.

Imagine hundreds of processes every second (some high priority, some low

priority, some very complex, some very simple), all entering and leaving the

processing queue at incredible speed. Ineffective scheduling can cause

latency and poor performance. Operating systems measure the efficiency of

process scheduling through throughput, turnaround time, waiting time, and

CPU utilization.

First-come, first-served, round robin, multilevel queue

scheduling and priority scheduling

Table 15 Approaches to scheduling

Scheduling approach Definition

Processes are assigned CPU time in the order they arrive in the ready queue, with no

pre-emption. The primary metric is arrival time. The CPU serves one process completely

before moving on to the next in the queue. It is non-pre-emptive, meaning once a

process starts execution, it runs to completion.

First-come, first-served (FCFS)

A pre-emptive scheduling algorithm designed to ensure all processes receive an

equal share of the CPU time in a cyclic order. It is characterized by a fixed time slice or

quantum, after which the currently running process is swapped out of the CPU ifit has

not finished execution, allowing the next process in the queue to execute. If a process

does not finish during its quantum, it is placed at the back of the ready queue. This

continues in a circular queue fashion, hence the name.

Round robin

Divides the ready queue into several separate queues, each with its own scheduling

algorithm and priority level. Processes are permanently assigned to a queue based

on their priority or other characteristics, such as process type (system versus user,

foreground versus background). Scheduling between the queues can be done based

on fixed priority (where each queue has a fixed priority over others) or using round robin

(cycling through queues in order).

Multilevel queue scheduling

Assigns a priority to each process, and the CPU is allocated to the process with the

highest priority. In pre-emptive priority scheduling, if a new process arrives with a higher

priority than the currently running process, the current process is suspended, and the

CPU is allocated to the new process. In non-pre-emptive priority scheduling, the current

process continues until completion before the system checks the queue for the next

highest-priority process.

Priority scheduling

Al.3 Operating systems and control systems

Table 16 Key terms for scheduling

Term Definition

Slice The amount of CPU time allocated to a process before it is interrupted or replaced by another process.

The fixed amount of time that a process is allowed to run in a pre-emptive multitasking environment, such
Quantum . ;))

as in the round robin scheduling algorithm.

Pre-emption The ability of the scheduling system to interrupt the currently running process to assign CPU time to

P another process of higher priority.

Fairmess Fairess in scheduling algorithms refers to the equitable allocation of CPU time to processes, ensuring

that all processes have a fair chance of executing.

Starvation Starvation occurs in a scheduling context when a process is perpetually denied necessary resources (for

example, CPU time) to make progress due to the continuous interference of other processes.

Efficien Efficiency refers to the optimal utilization of system resources, particularly the CPU, to maximize

Y throughput and minimize turnaround time, waiting time and response time.

Table 17 Comparing the approaches to scheduling

Fairness and

starvation

that processes are

served in the order

they arrive. However,

it can lead to the

convoy effect, where

short processes get

stuck behind long

ones, leading to

poor utilization and

potential starvation

for processes arriving

during along

process's execution.

giving each process

an equal time slice.

However, the choice

of time quantum is

critical: too short

leads to excessive

context switching,

and too long makes it

resemble FCFS.

certain types of

processes over

others, which can

lead to starvation of

processes in lower-

priority queues.

Scheduling type

Comparator FCFS Round robin Multilevel Priority

Fairin the sense Designed to be fairby | Inherently prioritizes Risks starvation

for low-priority

processes unless

mechanisms like

ageing (incrementally

increasing the priority

of waiting processes)

are implemented.

Efficiency and context

switching

The least efficient

in terms of CPU

utilization and

response time,

especially with a mix

oflong and short

processes.

Improves CPU

utilization and

average response

time but incurs

overhead from

frequent context

switching.

Can be efficient by

allowing different

types of processes

to be handled

appropriately

according to their

needs but adds

complexity in

managing multiple

gueues.

Can be very efficient if

priorities are assigned

correctly, ensuring

that critical processes

receive CPU time

when needed.

However, without

pre-emption, high-

priority tasks could

still wait unnecessarily.

Al Computer fundamentals

A Figure 60 Aninterrupt

@ Communication skills

Discuss with a partner or group

the implications of interrupts and

polling for managing real-world

scenarios such as user inputs and

network communications.

Table 18 Use cases for different scheduling algorithms

Algorithm | Use case

Environments with predictable and uniform process lengths,
FCFS

where simplicity and predictability are valued over throughput.

Time-sharing and multitasking systems, where it is essential to
Round) .) .
robin give each user or task a fair share of the CPU while ensuring

responsive system performance.

. Complex systems with processes of varying types and priorities,
Multilevel h
queue such as operating systems that need to balance system and

user tasks.

Real-time systems, where completing high-priority tasks ina

Priority timely manner is critical, and the system designer can effectively

assign priorities based on the tasks’ real-time requirements.

A1.3.4 Evaluate the use of polling and
interrupt handling
Interrupt handling and polling are two methods of managing and handling

communication between the CPU and devices or programs.

Aninterrupt is a signal to the processor from a device attached to the computer

or from a program within the computer that causes the processor to stop and

figure out what to do next. In essence, it interrupts the current processor activity

to indicate that it needs immediate attention. When an interrupt is received, the

processor saves its state (or context) and starts executing the interrupt service

routine (ISR) to deal with the interrupt. After the ISR is finished, the processor

resumes its previous state and continues its prior task. This mechanism allows the

CPU to respond promptly to important events, improving the system’s efficiency

and responsiveness.

Polling is a technique in which the processor repeatedly checks the status of a

device at regular intervals to see if it needs attention. This is done by executing a

sequence of instructions that inquire if the device has data to transfer or ifit can

accept new data. Polling is essentially a loop that continuously checks the status

of all devices one by one. This method is straightforward but can be inefficient

because the processor is busy checking devices instead of performing other

tasks. Polling is used when device activity is infrequent or when immediate action

on events is not required.

Event frequency, CPU processing overheads, power
source (battery or mains), event predictability, controlled

latency, security concerns

When evaluating polling and interrupts there are different factors to consider,

detailed in Table 19.

Al.3 Operating systems and control systems

Table 19 Factors to consider for evaluating polling and interrupts

Definition Interrupt Polling

Refers to how often an In a high-frequency environment, For low-frequency events, polling

event (such as a device interrupts are often preferred might be adequate and simpler to

Event needing service or data because they allow the CPU to be | implement, as the CPU can afford to

frequency ready for processing) notified immediately when an event | check periodically without significant

occurs. occurs, minimising the waiting time | performance degradation.

and improving responsiveness.

Involves the extra work Interrupts can cause overhead due | Polling introduces overhead by

CPU the CPU must do beyond | to the need for saving and restoring | consuming CPU cycles just to check if

processing its primary tasks, suchas | the CPU state and executing the a device needs attention, potentially

overhead managing interrupts or interrupt service routines. reducing the efficiency of the CPU for

polling devices. other tasks.

Refers to the source of Devices running on batteries, such | Polling, due to its continuous checking

power, battery or mains. as mobile devices, benefit from nature, can drain the battery faster.
Power source . . .
(battery or interrupts because they can allow Pow_rer efficiency |§ less of_a concerr? for

] the CPU to enter a low-power st_ate devices p_\u_ggetd into mains, allowing

(sleep mode) when not processing | more flexibility in choosing between

interrupts. interrupts and polling.

Refers to how predictable | In systems where events occur at In systems with unpredictable events,

Event the timing of events is. known, regular intervals, polling interrupts are superior because they

Ty can be an effective method ensure that the CPU can resporwd to

because the CPU can check for events whenever they occur without

events at the optimal times. wasting cycles on checking.

Refers to the ability to Interrupts can provide lower and Polling might introduce variable

have predictable and more controlled latency because latency, depending on when an

Controlled manageable delays the CPU can respond as soon as event happens in relation to the

latency between an event’s an event occurs. polling cycle.

occurrence and the

system'’s response to it.

Refers to potential Interrupts can be exploited to Polling, while generally less susceptible

S vulnerabilities these cause denial-of-service attacks ifa | to such attacks, might overlook

concerns mechanisms can device or program o?rer}Nhelms the | security checks if the implementa_tion

introduce. CPU by flooding it with interrupts. | assumes regular checks are sufficient

for detecting anomalies.

Real-world scenarios including keyboard and mouse
inputs, network communications, disk input/output
operations, embedded systems, real-time systems

Keyboard and mouse inputs

Interrupts are typically used for keyboard and mouse inputs to ensure immediate

responsiveness. When a key is pressed or the mouse is moved, an interrupt

signals the CPU to process the input right away, providing a seamless experience

to the user. Polling these devices would introduce noticeable lag and decrease

user satisfaction.

Al Computer fundamentals

A Figure 61 When you move your mouse,

a series of steps occur

Network communications

Network communications use interrupts where incoming packets can arrive

unpredictably. An interrupt-driven approach allows the network interface card

(NIC) to alert the CPU of incoming data, ensuring timely processing and reducing

latency. Polling could lead to delays in data processing and increased latency,

which is undesirable, especially in high-speed networking environments.

Disk input/output operations

Interrupts are preferred for disk |/O operations to notify the CPU when a read

or write operation is complete. This allows the system to efficiently manage data

transfers without constantly checking the status of disk operations, freeing the

CPU to perform other tasks. Polling for disk I/O completion could negatively

impact system performance due to the relatively slow nature of disk operations

compared to CPU speeds.

Embedded systems

Embedded systems, such as sensors in loT devices, often rely on interrupts for

efficient power management. These devices usually operate on battery power

and need to conserve energy by staying in a low-power state untilan event (e.g., a

sensor detecting a change) triggers an interrupt. Polling would require the device

to be awake more frequently, consuming more power and reducing battery life.

Real-time systems

Real-time systems, such as those used in medical devices, automotive controllers,

or industrial machinery, require interrupts to meet strict timing constraints. In these

systems, controlled latency is critical. The system must respond to inputs or changes

in conditions within a guaranteed time frame to ensure safety and effectiveness.

Polling could not provide the timely response needed for these critical applications.

Moving your mouse

When you move your mouse, a series of steps occur from the physical movement

to the cursor moving on the screen.

Physical movement: You move the mouse. The motion is detected by the

mouse’s Sensors.

Signal generation: The mouse’s sensor converts the physical movement into

electronic signals, encoding the direction and distance of the movement.

Data packet formation: The electronic signals are formatted into data packets

by the mouse’s internal processor. These packets include information about the

movement and any button clicks.

Transmission to the computer: The data packets are sent to the computer.

This happens over a wired connection (USB, PS/2) or wirelessly (Bluetooth, RF).

Interrupt signal: Upon receiving the data, the computer’s USB or Bluetooth

interface generates an interrupt signal to the CPU, indicating that there isinput

data to be processed.

Interrupt service routine (ISR) activation: The CPU pauses its current tasks,

saving its state, and executes the ISR designated for handling mouse inputs.

This routine is part of the operating system’s device drivers.

Al.3 Operating systems and control systems

Data interpretation: Within the ISR, the data packets from the mouse are read

and interpreted to understand the movement and button states.

Cursor movement calculation: The operating system calculates the new position

of the cursor based on the interpreted mouse movement data and the current cursor

position. Factors like pointer speed settings are taken into account.

Screen update: The operating system sends instructions to the graphics

processing unit (GPU) to update the cursor’s position on the screen.

Cursor redraw: The GPU redraws the cursor at its new location on the display,

making the movement visible to you.

Resume previous CPU tasks: Once the ISR has completed its execution, the

CPU restores its previous state and resumes its interrupted tasks.

This process happens so rapidly that the cursor movement on the screen

appears seamless and instantaneous to the user. The frequency with which the

mouse reports its position to the computer is measured in Hz (times per second).

A common reporting rate for modern mice can range from 125 Hz (125 times a

second, an 8 ms delay) to over 1000 Hz (1000 times a second, a 1 ms delay).

Gaming mice significantly reduce latency. As they are engineered with higher polling

rates, these mice communicate their position to the computer more frequently,

reducing the delay between a click and its corresponding action on-screen.

A1.3.5 Explain the role of the operating

system in managing multitasking and

resource allocation

The challenges of multitasking and resource allocation,
including task scheduling, resource contention, and

deadlock

Multitasking

Multitasking in computing refers to the ability of an operating system (OS) to

manage and execute multiple processes.

Multitasking focuses on the process level. Modern operating systems also handle

multithreading, where multiple threads within a process can share resources and

execute concurrently. These are two related, but different concepts.

Resource allocation

Resource allocation is the process of efficiently distributing computer resources

among various tasks, processes, or users. |t is the operating system which manages

multitasking and efficient resource allocation. It is a complex job, highly dynamic,

and critical to producing efficient performance in a computer system.

Multitasking mechanisms

The OS tracks each running program as a process with its own set of resources

(memory, CPU time, open files). It maintains process tables with information

such as process state (running, waiting, blocked), priority, and resource usage.

This is called process management.

A Figure 62 A gaming mouse

A Figure 63 Multitasking

Al Computer fundamentals

Refer to section Al.3.2 for more

information on virtual memory.

Fairness The equitable distribution

of CPU time and resources among

all processes or threads in a system.

Starvation (also known as indefinite

blocking) When a process is

perpetually denied the resources

it needs to progress, due to the

continual allocation of resources to

other processes.

Based on different ever-changing factors, the OS decides what type of

scheduling to use to execute a process queue.

When the OS switches between processes, it saves the state of the current

process (register values, memory pointers) in its process table and loads the state

of the next process to be scheduled. This process happens extremely fast, often

in microseconds, creating the illusion of simultaneous execution. This mechanism

of switching is called context switching.

Resource allocation mechanisms

The OS allocates and manages various system resources to ensure efficient

functioning of multiple processes.

Memory management: Paging is when the OS divides physical memory into

fixed-size blocks called pages. It maps these pages to the virtual address space of

each process. This gives the illusion of a larger, continuous memory space and makes

memory usage more efficient.

Segmentation is when the OS may organize memory into variable-sized

segments for each process (for example, code segment, data segment).

Segmentation provides logical structure and enhanced memory protection.

Virtual memory is a combination of paging and segmentation that allows the

OS to extend available memory using secondary storage (HDD or SSD), giving

processes access to seemingly more RAM than is physically installed.

Device management: The OS uses device drivers to communicate with specific

hardware components. This ensures proper access, prevents conflicts among

processes, and provides an organized way to use peripherals like printers and

network cards.

File systems: The OS provides an abstraction layer on top of the raw storage

hardware (like hard disk drives or solid-state drives). This layer is the file system

and is responsible for defining how data is stored, named, and organized into

files and directories (folders). Common file systems include NTFS (Windows),

APFS (macOS), and ext4 (Linux). File systems work with the underlying storage

devices at the block level. A block is a fixed-size chunk of storage, typically

several kilobytes in size. When you read or write a file, the file system translates

those operations into interactions with specific blocks on the disk.

Resource monitoring and limits: The OS tracks how processes use resources

such as the CPU, memory, and disk input/output (I/O). It can set quotas or limits

to prevent a single process from using disproportionate resources, ensuring

overall system stability.

Task scheduling

Task scheduling ensures that all running tasks are allocated time on the CPU

efficiently, balancing system responsiveness, resource utilization, and fairness

amongst tasks.

Fairness is deciding which process gets the CPU at any given time and

involves balancing fairness and efficiency. High-priority tasks should not

starve, while low-priority ones should not monopolize resources.

Al.3 Operating systems and control systems

Different scheduling algorithms, such as priority scheduling or round robin

scheduling, each have strengths and weaknesses, making choosing the optimal

strategy a complex decision based on current system load.

Pre-emption is suspending a running process for a higher-priority one, which

can lead to context switching overhead, impacting performance.

In extreme cases, low-priority tasks might never get CPU time if higher-priority

ones constantly demand it. Starvation prevention strategies are essential to

guarantee basic responsiveness even for less critical tasks.

Resource contention

Resource contention occurs when multiple programs or processes attempt to

access the same resource simultaneously, but the resource cannot accommodate

multiple concurrent accesses.

Processes can enter a deadlock state where each process needs a resource held by

another, leading to a system standstill. Deadlock detection and avoidance algorithms

are necessary to prevent these scenarios and keep the system operational.

Similarly, livelock occurs when processes can get stuck in a cycle of constantly

requesting and releasing resources, never making progress.

Thrashing occurs when pages are continuously swapping in and out of physical

memory due to insufficient memory. Memory management techniques like demand

paging and virtual memory allocation need to be optimized to prevent thrashing.

Deadlock

Deadlock is a specific condition in concurrent computing where two or more

processes are each waiting for another to release a resource, or more than

two processes are waiting for resources in a circular chain, so that none of the

processes can proceed.

Operating systems must be effective in identifying deadlock situations. The OS

can employ algorithms to monitor resource dependencies and detect potential

deadlocks before they occur.

Once a deadlock is detected, the OS must take action to break the cycle (release

the deadlock) and free up resources. This might involve terminating processes,

pre-empting tasks, or reallocating resources.

Proactive measures such as deadlock avoidance algorithms can prevent

deadlocks from happening in the first place. This is known as prevention. These

algorithms analyse resource requests and deny certain requests to avoid creating

cyclic dependencies.

A1.3.6 Describe the use of the control

system components

A control system is a device or set of devices which manage, command, direct

or regulate the behaviour of other devices or systems using control loops. Some

examples of controls include automatic elevator control, automatic washing

machine, and traffic signal control system.

@Thinking skills

Consider the challenges in

balancing processes for optimal

computer system performance

discussed in this section. Suggest

how these challenges can best be

addressed.

Whenever a control system has

the potential to cause harm,

exceptional care must be taken to

ensure the design and construction

of the system is safe.

How can understanding the

components and mechanisms of

control systems—such as input,

process, output and feedback—

contribute to avoiding harm in

real-world scenarios such as traffic

signal control?

Al Computer fundamentals

In this section you are going to explore the input—-process—output (IPO) model,

feedback, and the components of a control system. The section ends with

real-world examples of control systems.

The input, process, output and feedback mechanism
(open-loop, closed-loop)

The IPO model describes how control systems function to achieve a desired

result. Feedback sends data about the output back into the system to adjust or

control the ongoing processing.

Table 20 Key terms for the IPO model and feedback

Definition In practice

Input

©
 The data or signals that are fed into a system. In a control system, this could be userinput,

sensor data, or information received from

another system.

Inputs can have dynamic ranges and types of

inputs (analogue, digital) which control systems

accept. The quality and accuracy of input

data is important in determining the system'’s

effectiveness.

Setting a desired value or goal: For example,

inputting a target temperature, speed or position.

Receiving sensor data: For example, a sensor

detecting the current temperature, speed or position.

Process

The manipulation or transformation of input data.

In control systems, this usually happens in the

CPU or a microcontroller, where the input data

is processed according to a set of predefined

instructions or algorithms.

In modern control systems can include complex

algorithms for real-time processing.

Comparing desired value to sensor readings: The

controller determines the difference (error) between

the input and the output.

Running a control algorithm: The controller

calculates the necessary adjustments to minimize

the error.

Generating a control signal: The controller

determines the signal needed to drive actuators.

O
@

The actual response or behaviour of the system

being controlled.

This is the measurable result of the process

component’s control action.

Examples include the actual temperature of a

room, the speed of a motor, or the position of a

robotic arm.

Actuator actions: For example, motors turning

on and off, valves opening and closing, heaters

activating. Any physical changes made to the system

by actuators.

Change in the system’s state: The actual

temperature, speed, position, and so on, being

influenced by the actuators.

Feedback

<

The mechanism by which the system's output is

monitored, evaluated, and then fed back into the

system to influence future behaviour.

This enables the system to adapt and correct itself

in real time.

An open-loop control system executes a

predefined set of operations without using

feedback to modify its actions based on the

output.

A closed-loop control system continuously

monitors its output and adjusts its inputs based

on that feedback to maintain the desired state

of the system.

Monitoring output: Sensors capture the system’s

current state (such as temperature, speed, position)

as output data. This data is critical for evaluating the

system’s performance against desired outcomes.

Evaluation of system performance: The feedback

mechanism assesses how closely the output matches

the target or desired state. This involves comparing

the output data to the setpoints or goals established

during the input stage.

Adjustment signals: Based on this evaluation,

feedback is used to generate adjustment signals.

These signals are instructions sent back to the

controller to correct any deviation from the target state.

Al.3 Operating systems and control systems

Worked example 29

Consider a cruise control system in a car. Identify what parts of the system represent the input, process, output

and feedback.

Solution

Input: Driver sets the desired speed with the accelerator Output: The throttle actuator adjusts the fuel flow. The

and cruise control switch. Sensors measure the car's car's speed changes.

amentspeed Feedback: As the car is constantly adjusting the throttle

Process: The cruise control system compares the desired based on the speed, this is a closed-loop feedback

speed to the actual speed. It calculates how much control system.

to adjust the throttle and sends control signals to the

engine’s throttle actuator.

(O
In this group activity, you will examine the control system 2. Research and diagram creation

of a dishwasher to understand the components and
. * Inyour group, conduct research on how

mechanisms of control systems.
dishwasher control systems work.

Materfals needed * I|dentify and describe the input, process, output

* Internet access for research and feedback mechanisms.

* Notebook or digital document for recording e Detail the roles of controllers, sensors, actuators,

observations transducers and control algorithms in a dishwasher.

* Poster board or presentation software for group work * (Create a detailed diagram of the dishwasher’s

control system, labelling all components and
Instructions . . ; .

showing the flow of information from input to

1. Introduction to dishwasher control systems output, including feedback loops.

In small groups, review the basic components and 3. Group presentation

functions of control systems.)
* Inyour group, prepare a presentation to share

* |nput: Data or signals received by the system. findings with the class.

* Process: Operations performed on the input to * Ensure the presentation covers the key

produce the output. components and mechanisms of the dishwasher’s

* QOutput: The final result or action taken by the control system.

system. * Include your diagram in the presentation.

¢ Feedback: Information about the output used to * Explain how each component works together to

adjust the input/process. manage and regulate the dishwasher’s behaviour.

¢ Controller: Manages the operations of the * Highlight the differences between open-loop

dishwasher. and closed-loop systems within the dishwasher

* Sensors: Detect changes in the environment. context.

e Actuators: Carry out actions. 4. Class discussion

* Engagein a class discussion to compare and

contrast the dishwasher control system with other

control systems.

* Transducer: Converts one form of energy into

another.

* Control algorithm: Rules or calculations

determining how the system reacts to inputs. * Discuss theimportance of feedbackiin the
dishwasher and how it improves system

performance and reliability.

Al Computer fundamentals

A Figure 64 Aprogrammable

logic controller (PLC)

-

A Figure 65 Athermocouple

A Figure 66 A solenoid valve

A Figure 67 A pressure sensor

Controller, sensors, actuators, transducer,

and control algorithm

Table 21 Key components and how they are used

Component | Definition Example and use

A device or software Example: Programmable logic controller (PLC)

which processes input Use: In a manufacturing assembly line, a PLC

from sensors. Based on can coordinate the sequence of machinery

a control algorithm, the operations, ensuring that parts are assembled

Controller controller then sends correctly. It processes input data from various

signals to actuators. sensors to control actuators like motors

and pneumatic arms, running the assembly

process. (See Figure 64.)

Devices which detect Example: Thermocouple

and measure physical Use: In an industrial furnace, a thermocouple

quantities (e.g., measures the temperature inside the furnace.

Sensors temperature, light, This data is sent to the controller, which

pressure) and convert maintains the furnace temperature within a

them into signals the specified range by adjusting the fuel supply.

controller can process. (See Figure 65.)

Mechanical or electronic | Example: Solenoid valve

devices that affect Use: In an automated irrigation system,

changes in a system or solenoid valves control the flow of water to

Actuators environment based on different zones of a field. Based on moisture

signals from the controller, | sensor data, the controller opens or closes

such as motors or valves | these valves to ensure optimal soil moisture

levels for crops. (See Figure 66.)

Converts one form of Example: Piezoelectric pressure sensor

energy or signal into Use: In automotive tyre pressure monitoring

another, allowing for systems, piezoelectric pressure sensors act as

seamless communication | transducers by converting the tyre's pressure

between various control | into electrical signals. These signals are then

elements. processed by the vehicle's onboard computer

Transducer Transducers play a dual to alert the driver if tyre pressure is outside the

role across sensors and recommended range. (See Figure 67.)

actuators, enabling the

conversion of physical

quantities into electrical

signals and vice versa.

A mathematical formula or | Example: PID control

logicimplemented by the | Use: In a home heating system, a PID

controller to determine (proportional-integral-derivative) control

the output based on algorithm could be used to maintain the

the input data, desired room temperature at a comfortable level. The
Control i .)

. outcome, and current algorithm adjusts the heating output based on
algorithm

state of the system. the difference between the actual and desired

temperatures (error), the error over time

(integral), and the rate of change of the error

(derivative), ensuring minimal fluctuation and

efficient energy use.

Al.3 Operating systems and control systems

A1.3.7 Explain the use of control systems in

a range of real-world applications

Complex control systems with sensors, algorithms
and actuators

Autonomous vehicles

Autonomous vehicles are complex control systems that rely on a sophisticated

interplay of sensors, algorithms and actuators. While they follow the overarching

IPO model, their underlying technologies are highly specialized. Sensors like

LIDAR (for 3D mapping and object detection), radar (for object detection in bad

weather), cameras (for visual recognition tasks), ultrasonic sensors (for close-

range proximity), and IMUs (for the vehicle’s own motion tracking) provide

essential data about the environment.

Control algorithms implement path-planning algorithms, calculate routes, and

utilize localization techniques to precisely determine the vehicle’s position. In

addition, control algorithms enable obstacle avoidance algorithms to predict

collisions, and Al-powered decision-making systems to interpret traffic situations.

Finally, actuators such as electromechanical steering systems, electronic throttle

control, and integrated anti-lock braking systems (ABS) physically carry out the

navigational decisions made by the control system.

Home thermostats

Home thermostats and large-scale building management systems (BMS) both

regulate temperature using the same core components: sensors, controllers and

actuators. Home thermostats typically rely on simple sensors such as bimetallic

strips or digital thermistors. These sensors provide temperature readings to the

controller, which may use basic on/off logic or more sophisticated PID algorithms

for smoother control. The controller then activates actuators such as relays or

switches to turn the furnace or air conditioner on or off.

Building management systems take this principle to a larger scale. A network of

temperature sensors provides detailed data to a centralized controller, which

incorporates factors such as occupancy, weather, and energy costs. Advanced BMS

systems might use predictive modelling and machine leaming to optimize both comfort

and energy efficiency. These systems control complex HVAC (heating, ventilation and

air conditioning) equipment, including chillers, boilers and fans. The systems may even

integrate with lighting and blinds for comprehensive energy management.

Automatic elevator control systems

Automatic elevator control systems aim to optimize elevator operations, ensuring

passengers experience minimal wait and travel times. These systems use sensors

to monitor the current position of elevators and where passengers have requested

stops (floor positions). A central controller then processes this information,

employing algorithms to determine the most efficient way to assign elevators to call

requests. This intelligent direction of traffic flow reduces waiting and journey times.

Actuators control the motors that physically move the elevator cars between floors.

Automatic washing machines

Automatic washing machines streamline the laundry process by integrating sensors,

intelligent controllers and actuators.

A Figure 68 Fully autonomous vehicles

will use proximity sensors and share sensor

data on a mesh network

TOK

Sophisticated control systems

are used in autonomous vehicles,

using multiple sensors and highly

complex processing systems

to make driving decisions and

maintain safety standards.

How do control systems enhance

the functionality and safety of

autonomous vehicles? What

assumptions about safety, humans

and computers are embedded into

the design of these systems?

A Figure 69 Home thermostats regulate

temperature using sensors, controllers and

actuators

A Figure 70 Elevator control systems

reduce waiting and journey times

Al Computer fundamentals

A Figure 71 Traffic control systems might

use real-time traffic data to optimize timing

patterns

A Figure 72 Home security systems rely

on a network of sensors

They often utilize weight sensors or water level sensors to assess the size of the

laundry load. A central controller, perhaps using fuzzy logic algorithms, then

determines optimal cycle settings. These settings might include wash duration, water

temperature, agitation levels and spin speeds, matching the washing process to

the needs of the specificload. Actuators control critical elements: water inlet valves

regulate water flow, drain valves allow for water removal, and powerful motors

drive the washing drum during agitation and spin cycles. Some advanced washing

machines might even include sensors to monitor the turbidity (dirtiness) of the water,

adjusting the cycle accordingly for greater efficiency.

Traffic signal control systems

Traffic signal control systems manage traffic flow, aiming to reduce congestion

and improve safety at intersections. These systems employ a range of sensors

to gather real-time traffic data. Inductive loop detectors, embedded in the road

surface, sense the presence of vehicles through electromagnetic fields. Cameras,

coupled with computer vision, identify and count vehicles, sometimes even

differentiating between vehicle types. Pressure-sensitive pads detect pedestrians

at crosswalks, allowing for safe crossing. A controller processes this sensor

data. Older systems use pre-timed schedules, whereas actuated controllers

offer dynamic signal timing based on traffic conditions. Advanced adaptive

traffic control systems (ATCS) may even use Al algorithms to optimize traffic flow

across entire networks of intersections. Ultimately, the system directs actuators—

the traffic lights themselves (red, amber, green) and pedestrian signals—to

implement the optimized timing patterns.

Irrigation control systems

Irrigation control systems bring precision and automation to agricultural watering,

promoting healthy crop growth while minimizing water waste. Soil moisture

sensors include tensiometers, measuring soil water tension, or capacitance-

based sensors that detect moisture levels directly. A central controller, often

incorporating programmed crop-specific watering schedules, processes the

sensor data. Advanced systems might integrate weather data (forecasts, rain

sensors) to further optimize irrigation cycles. The controller then directs actuators,

typically solenoid-operated valves, to open and close irrigation lines, ensuring

water reaches the fields precisely when needed. Some sophisticated systems

may even employ variable-rate irrigation, tailoring water delivery to specific zones

within a field, based on localized sensor readings.

Home security systems

Home security systems protect against intrusion, fire, and other hazards through a

network of sensors, a central controller, and various actuators. Sensors are the eyes

and ears of the system, including motion detectors (often using passive infrared

technology), door and window contacts that sense when they are opened, and glass

break detectors (acoustic sensors with a shock sensor—the shock sensor detects

vibrations directly on the glass). Additionally, smoke and heat detectors and carbon

monoxide sensors monitor for environmental hazards. A control panel processes

the data from these sensors, using its programmed logic to determine if a real threat

exists. If so, it activates actuators such as loud sirens to deter intruders, smart locks for

added security, and sends notifications to homeowners or a monitoring service.

Automatic doors

Automatic doors offer convenience and conserve energy by automating entry and

exit points. They rely on motion or optical sensors to detect people approaching.

Al.3 Operating systems and control systems

Moation sensors often use microwave or infrared (IR) technology. Microwave sensors

send out pulses and analyse the reflected signal for changes, while IR sensors

detect differences in heat patterns. Optical sensors, like those used in sliding doors,

create a grid of infrared beams—breaking these beams indicates the presence

of a person. A controller processes this sensor data and may incorporate logic to

prevent false triggers (for example, only opening when someone approaches from

a certain direction). The controller then signals actuators to open and close the door

smoothly—these are typically electric motors coupled with gear systems or hydraulic

mechanisms. Some systems include safety sensors, such as light curtains, as an

additional precaution to prevent the door from closing on an individual or object.

Practice questions

27. Describe how operating systems handle storage and file systems.

28. Describe how operating systems ensure system integrity and manage background processes.

29. Describe the importance of networking capabilities in operating systems, including the

management of network hardware and protocols.

30. a. Describe the round robin scheduling algorithm.

b. Discuss its potential drawbacks.

31. Explain how multilevel queue scheduling can be used to manage processes of varying types and priorities.

32. Compare and contrast the efficiency and fairness of round robin and priority scheduling algorithms.

33. Explain the polling method and discuss its potential disadvantages in terms of CPU efficiency.

34. Compare and contrast interrupts and polling in terms of power consumption and suitability

for battery-operated devices.

35. Bvaluate how security concerns differ between interrupt handling and polling.

36. Explain the role of controlled latency in choosing between interrupt handling and polling

for real-time systems.

37. Explain the mechanisms used by operating systems for resource allocation, including

memory and device management.

38. Discuss the challenges associated with task scheduling, including fairness, pre-emption, and starvation.

39. Discuss the issue of resource contention in multitasking environments and the strategies used to

mitigate its effects.

40. a. Outline the importance of deadlock management in operating systems.

b. Describe how operating systems can prevent and resolve deadlocks.

41. State the four main components in control systems.

42. Outline the role of feedback in a control system.

43. Explain the functions of sensors and actuators in a control system, including how they interact

with other components.

44. State two real-world applications of control systems.

45. Outline how control systems are used in automatic washing machines.

46. Explain the role of sensors, controllers and actuators in the functioning of autonomous vehicles.

47. Explain how traffic signal control systems use sensors and controllers to manage traffic flow

at intersections.

48. Bvaluate the use of control systems in home security, focusing on the types of sensors employed and

their functions.

[3 marks]

[3 marks]

[4 marks]

[3 marks]

[3 marks]

[4 marks]

[6 marks]

[6 marks]

[6 marks]

[6 marks]

[6 marks]

[6 marks]

[6 marks]

[6 marks]

[2 marks]

[4 marks]

[4 marks]

[2 marks]

[6 marks]

[2 marks]

[2 marks]

[6 marks]

[6 marks]

[6 marks]

Al.4 Translation

Syllabus understandings

A1.4.1 Evaluate the translation processes of interpreters and compilers T
H
Y

A1.4.1 Evaluate the translation processes of

interpreters and compilers
Translation is the process of changing source code into machine-executable

instructions.

Table 22 Key vocabulary for translation

Term Definition

Machine instructions,

machine code or

machine language

(these terms are

synonymous)

The most basic commands that a computer’s processor directly interprets and executes.

Machine instructions are encoded in binary. Each pattern of bits represents a specific operation

for the processor. The set of available machine instructions and their binary representations vary

depending on the processor’s architecture (for example, x86, ARM, MIPS).

Assembly language

A (slightly) more readable representation of machine instructions. Assembly language uses short

text codes (mnemonics) for opcodes, like MOV for move, ADD for add, and so on. Assembly might

allow you to label memory locations and use those labels instead of raw numerical addresses.

Compiler A compiler translates code into machine code prior to the code being executed.

An interpreter reads code line by line and translates each instruction into machine code as the

Interpreter program is running. Interpreters perform the translation on-the-fly, executing the code line by line

without producing an intermediary binary executable.

In programming languages, translation is the process of changing human understandable

Translation computer instructions (a program) into instructions a machine can execute (machine instructions).

There are two common methods for translation: interpreted and compiled.

Programming

language
A formal system (lexicon) of instructions and syntax which computers can execute.

Binary executable
A computer file that contains machine code instructions in a format that a particular operating

system (such as Windows, macOS or Linux) can directly load into memory and execute.

Bytecode Aform of instruction set designed for efficient execution by a software interpreter.

A software component which analyses a sequence of input data (often text) according to specific

Parser grammar rules. Parsers decompaose input into a hierarchical structure (often a parse tree or

abstract syntax tree) that reveals the relationships between different elements.

Semantics The precise meaning associated with specific programming constructs and the expected

behaviour of code. It answers the question "What does this instruction do?”

Standard library

A collection of pre-written modules, classes, and functions that provide building blocks for

software development within a specific programming language. It is conventionally distributed

and maintained as part of the language's implementation.

Al.4 Translation

Translation changes higher-level languages into machine code or instructions.

Table 23 Simplified example of translation

Higher level language Assembly language Machine instructions

LDR R1, =0x80001000;

Load the memory address 0x80001000

into register R1.

1110 0100 1000 0001 0O10
0000 0000 0O0OO

—> | MOV R2, #42;
score = 42 . .

Load the value 42 into register R2.
011 0000 0100 0OO10

STR R2, [R1l];

Store the contents of R2 into the

memaory location pointed to by R1.

0101 0000 0001 0010

The actual machine code and assembly is dependent on the processor’s architecture. The example in Table 23 is in the ARM

v/ RISC Architecture.

The mechanics and use cases of each translation

approach

Interpreted programming languages

An interpreted language is translated into machine language line by line, as the

program is run. It reads, interprets, and executes each line of code in sequence.

Interpreters stop at the first error they encounter and report it, making them

useful for debugging. The program will not continue until the error is resclved.

Since interpretation happens in real-time, interpreted programs generally run

slower compared to compiled programs because each line of code is translated

during execution. They often use less memory as they do not generate an output

file containing machine code. Instead, they read the source code directly.

Interpreted languages are typically more platform-independent—the interpreter

acts as a layer between the source code and the machine code of the underlying

operating system.

Interpreted programming languages include Python, PHP, Ruby and JavaScript.

Python is widely used in the sciences, where researchers can quickly

develop and iterate programs to analyse and visualize data, transform

complex data sets, and implement sophisticated machine learning.

As an interpreted language, Python enables rapid development. The

time to write, execute and test code is very short. In comparison to

interpreted languages, compiled languages take longer to execute

(but tend to run faster).

Katie Bouman led a team that created a new algorithm to produce

the firstimage of a black hole. Python played a significant role in this

scientific achievement. Researchers used various Python lvibraries

to process the massive amounts of data collected by the telescope

network and to perform complex computational tasks necessary to

produce the image.

A Figure 73 Aradio telescope

Al Computer fundamentals

E Table 24 The steps of the translation process

Translation step Description Example in Python

Initiate execution

The user executes the program: they might click

“run” in an IDE, double-click an icon, or run the

program from a command line.

print("Hello World!")

Lexical analysis

The interpreter decomposes the source code

into tokens (keywords, identifiers, operators,

and so on).

Forprint("Hello World!"), tokens might

include print as a keyword, (and) as operators,

and "Hello World!" asa string literal.

Syntax analysis

The token stream is parsed (by a syntax parser)

to verify it adheres to the programming

language’s grammar rules.

The syntax parser verifies that print ("Hello

World!") follows Python's syntax for a function

call: a function name followed by parentheses

which enclose arguments.

Semantic analysis

The interpreter checks for semantic errors such

as type mismatches and undeclared variables

within the parsed structure.

Checks if print is a function that exists and can be

called with a string argument, ensuring there are no

semantic errors.

Code generation

The parsed code is translated into an

intermediate representation (bytecode) specific

to the interpreter. In the example given, the

byte code is designed to be executed by a

virtual machine (Python Virtual Machine).

Converts print ("Hello World!") into

Python bytecode. This bytecode is a lower-level,

platform-independent representation of the source

code, prepared for execution but not in machine

language yet.

Execution

The interpreter executes the bytecode

instructions one at a time. This involves

fetching, decoding, and executing the

specified operation on the data or instruction.

The Python interpreter executes the bytecode for

print ("Hello World!"), leading to the string

"Hello World!" being displayed on the screen.

The use case for interpreted languages

Interpreted languages have a very fast feedback loop during development.

Interpreted languages do not have a compile-run cycle (write code, compile

code, execute code, go back to writing code). You make code changes and

very quickly see results. This leads to faster iteration during development than

compiled languages. The immediacy of code execution facilitates a more

dynamic and exploratory coding process.

Interpreted languages often employ dynamic typing, which allows variables to

be assigned to any type of object at runtime, reducing the amount of boilerplate

code required for type definitions and enabling faster development.

Scripts written in interpreted languages are generally platform-independent,

running on any operating system that has the interpreter installed. This eliminates

the need for platform-specific code, making it easier to deploy automation

solutions across diverse environments.

Interpreted languages such as Python provide comprehensive standard

libraries which have a wide range of functionalities, from file /O to network

communication. Additionally, a large ecosystem of third-party modules further

extend this functionality, allowing for the rapid development of scripts with

complex capabilities without the need for extensive custom coding.

The ease of use, increased development speed, ease of modification, and

platform independence makes interpreted languages an attractive choice for

rapid development.

Al.4 Translation

Compiled programming languages

A compiled language is translated from source code to machine language

in its entirety before the program is executed, through a process known as

compilation. The compiler translates the entire code into a binary executable,

which the computer’s processor can then run directly. Compiled programs

are checked for errors during the compilation process. If errors are found, the

compiler will report them, and the executable is not generated until these errors

are resolved. This upfront error checking can make debugging less interactive

compared to interpreted languages but often results in faster execution times

since the program is directly executed in machine language without the need for

real-time translation. Compiled languages tend to use more memory during the

compilation process but can be more efficient in execution since they generate a

A Figure 74 Video gamesand VR

experiences are largely programmed

in compiled languages to get the best

possible performance out of the machine

directly executable file. This process can make compiled programs less platform-

independent, as the executable file is specific to the operating system and

hardware for which it was compiled, requiring different compilations for different

platforms.

Compiled languages include C, C++, Rust, and Go. Examples of compilers are

GCC, CLANG, LLVM, and Microsoft Visual C++ (MSVC).

Table 25 Overview of compilation process

Translation step Description Example in Rust

Initiate compilation

The user initiates the compilation process, possibly

through a command in a terminal or an action in an

integrated development environment.

println! ("Hello, world!");

Lexical analysis
The compiler breaks down the source code into

tokens (keywords, identifiers, operators, and so on).

Forprintln! ("Hello, world!");,

tokensinclude println! asa macro, (and)

as delimiters, and "Hello, world!" asa

string literal.

Syntax analysis

The token stream is analysed to ensure it canforms

to the language’s grammar rules, constructing a

syntax tree out of the program.

The syntax parser checksthat println!

("Hello, world!"); correctly applies

Rust’s syntax for macro invocation, ensuring

proper structure.

Semantic analysis

The compiler checks for semantic errors such as

type mismatches, undeclared variables, and ensures

the logic of the program is sound.

Verifies that println! is a valid macro call

and that the supplied string literal matches

expected parameter types for printing.

Optimization

The compiler optimizes the code, improving

performance without changing its functionality. This

step may involve reordering instructions, eliminating

redundant code, and optimizing data storage.

No direct example, as this involves

transforming the code under the hood to run

more efficiently.

Code generation

The optimized code is translated into machine

code, generating an executable binary file specific

to the target platform.

Translates the Rust program into machine

code, creating an executable file named main

or main.exe on Windows.

Execution
This is a separate step initiated by the user or the

operating system after compilation.

The executable file is run, directly printing

"Hello, world!" tothe console without

needing to interpret the source code at

runtime.

Al Computer fundamentals

The difference in error detection, translation time,

portability, and applicability for different translation
processes, including just-in-time compilation and
bytecode interpreters

Just-in-time (JIT) compilation

JIT compilation is a hybrid translation process which compiles source code or

bytecode into machine code just before execution, rather than compiling the

source code into machine code in advance or interpreting it directly at runtime.

JIT compilers work by compiling the program’s bytecode (an intermediate

representation of the code) into machine code dynamically at runtime,

as needed. This approach combines the development speed benefits of

interpretation with the execution speed benefits of compilation. Code sections

that are executed frequently can be compiled once and cached for subsequent

executions, greatly improving performance over pure interpretation.

JIT compiled languages include Java, C# (.NET Framework), JavaScript (in certain

environments), and Python (PyPy implementation).

Table 26 Comparison of |IT and compiled translations

JIT compilation Compiled

Error detection

Identifying and

reporting mistakes

or inconsistencies in

a program’s code

that prevent it from

executing correctly.

|IT compilers perform error detection during

runtime before the compilation of bytecode

to machine code. This allows for some runtime

errors to be caught early in the execution

process but primarily focuses on errors related

to bytecode integrity and compatibility with

the execution environment.

Compiled languages offer extensive compile-

time error checking, including syntax errors,

type errors, and some semantic errors. This

process ensures that many potential issues are

caught before the program is executed.

Translation time

Period required to

convert the source code

of a program into an

executable form.

Translation occurs at runtime, which means

there is an initial performance overhead as

bytecode is compiled into machine code.

However, this is mitigated over time as

frequently executed paths are optimized

and cached.

The translation from source code to machine

code happens entirely before execution,

which means there is no translation time

during runtime. However, the development

process can be slower due to the need for

recompilation after changes to the code.

Portability

The ease with which

software can be

transferred from one

|IT compilation itself is highly dependent

on the underlying hardware and operating

system, as the generated machine code is

platform-specific. However, the bytecode

The machine code generated by compilers is

platform-specific, requiring recompilation for

each target platform. This limits the portability

of compiled executables across different

computing environment | being compiled is typically platform- systems without access to the original source

to another. independent, allowing the same bytecode code and a suitable compiler.

to be executed on different systems with a

compatible |IT compiler.

Applicability Best suited for applications where Ideal for applications that demand high

Suitability or relevance

of a programming

language or technology

for addressing specific

types of problems or

requirements.

performance is critical and the overhead of

on-the-fly compilation can be justified by the

execution speed of native code. Commonly

used in environments that run complex, long-

lived applications like server-side applications

or integrated development environments.

performance and efficiency, such as system

software, video games, and applications

requiring intensive computation. The upfront

cost of compilation is offset by the fast

execution speed.

Al.4 Translation

Bytecode interpreters

Bytecode interpreters execute programs written in an intermediate bytecode

language rather than directly executing source code or machine code. Bytecode

is alower-level, platform-independent representation of the source code.

Bytecode is generated by compiling the high-level source code. The bytecode

interpreter then executes this bytecode. This two-step process allows for

portability since the same bytecode can run on any platform with a compatible

interpreter. Bytecode interpreters balance execution speed and development

efficiency, providing faster execution than direct interpretation of source code

while maintaining some level of platform independence.

Bytecode interpreted languages include Python (CPython Implementation), Ruby

(YARV) and Erlang (BEAM VM).

Table 27 Comparison of bytecode and interpreted translations

Bytecode interpreters Interpreted

Error detection

Identifying and

reporting mistakes

or inconsistencies in

a program'’s code

that prevent it from

executing correctly.

Error detection occurs at runtime, as the

bytecode interpreter executes the program.

While some static errors can be caught during

the initial bytecode compilation phase,

most error checking happens as the code

is interpreted.

Interpreted languages perform error detection

at runtime, as the interpreter parses and

executes the source code. This allows for

immediate feedback during development but

can lead to runtime errors that were not caught

during development.

Translation time

Period required to

convert the source code

of a program into an

executable form.

The translation of bytecode to executable

actions happens in real-time as the program

runs, which can slow down execution.

However, since bytecode is a more compact

and optimized form than high-level source

code, it can be executed more quickly than

directly interpreting source code.

There is minimal to no upfront translation time,

as source code is executed on-the-fly. This

enables rapid development cycles but at the

cost of slower execution speed compared to

compiled or [IT-compiled code.

Portability

The ease with which

software can be

transferred from one

Bytecode is platform-independent, allowing

the same bytecode to run on any system with a

compatible interpreter. This greatly enhances

the portability of software, making bytecode

High-level source code interpreted languages

are highly portable, as the same code can be

executed on any platform with a compatible

interpreter. This makes interpreted languages

Suitability or relevance

of a programming

language or technology

for addressing specific

types of problems or

requirements.

between performance, development

efficiency, and portability is desired.

Commonly used in cross-platform

environments, mobile applications, and

for distributing software that runs in virtual

machines (e.g., Java applications).

computing environment | interpreters particularly useful for cross- ideal for scripts and applications that need to

to another. platform applications. run across different operating systems.

Applicability Suitable for applications where a balance Best for scripts, rapid prototyping, and

applications where development speed

and cross-platform compatibility are more

important than execution speed. Widely used

in web development, educational contexts,

and for scripting within larger applications.

Al Computer fundamentals

Examples of scenarios where the translation method
should be considered

Table 28 Translation in different scenarios

software development

process so as to create a

functional product quickly

and efficiently.

step means changes can be tested immediately.

This immediate feedback loop allows for quicker

iteration, which is important in early stages of

development where modifying code and testing

new ideas quickly is more important than raw

execution speed.

Scenario Translation method Example

In scenarios where development speed and A tech startup is prototyping an loT

Rapid development and iiteration are importan_t, interpreted Ianguages_ (Internet ofThings)_app_lication_to

testing like Pyt_hon or_JavaScrlpt are advantageous. Thew_r ma_nage simart devicesin real-time.

Aimed at speeding up the syntax is concise, and the absence of a compilation | Using an interpreted language,

developers can quickly write and

test scripts that interact with various

devices, adjusting functionality on the

fly based on testing feedback without

worrying about lengthy compile

times.

Performance-critical

applications

Speed, efficiency, and

stability are paramount for

their functionality.

For applications where performance is critical,

compiled languages are often the better choice.

Languages like C++, Rust, and Go are compiled

to machine code, which the CPU can execute

directly. This results in faster execution times.

Developing a high-frequency trading

platform where transactions need

to be executed in microseconds. A

compiled language can provide the

necessary execution speed and low-

level system access to optimize for the

fastest possible data processing and

response times

Cross-platform

development

Compatible with multiple

operating systems or

platforms.

The decision between compiled and interpreted

languages for cross-platform development

depends on the specific requirements and

constraints of the project.

Languages such as Python and |avaScript are

inherently cross-platform, as they run on any

system with the appropriate interpreter installed.

This makes them suitable for web applications and

services where the same codebase needs to run

on various server environments and architectures.

For desktop and mobile applications, languages

like C# (with .NET Core) and Java offer a balance

between performance and portability. They

compile into intermediate bytecode, which

runs on virtual machines designed for different

operating systems.

An enterprise software company is

developing a customer relationship

management (CRM) system that needs

to operate on Windows, macQOS, and

Linux. Using Java, the developers can

ensure that the core application logic

runs consistently across all platforms,

leveraging Java Virtual Machine

(JVM) for cross-platform compatibility

while still achieving fairly good

performance.

Al.4 Translation

TOK

By diving into the translation process, you can gain insights into the

fundamental connections between the code you write and the way it drives

system functionality.

To what extent does the process of translating source code into machine-

executable instructions influence our understanding of programming

languages and their impact on the way systems function?

Practice questions

49. Describe how a high-level instruction is translated into machine code.

[4 marks]

50. Outline the role of a parser in the translation process of programming

languages. [2 marks]

51. Evaluate the use of bytecode in programming languages translation.

[3 marks]

@ Linking questions

1. What role does multitasking in an operating system play in machine

learning (A4)?

2. How might a conditional statement be constructed using Boolean logic

gates in a circuit (B2)?

3. What role does task scheduling in an operating system play in managing

network traffic and requests (A2.3.3, A2.4)?

4. How does resource allocation in an operating system impact network

performance and stability (A2)7?

5. What role do GPUs play in non-graphics computational tasks (A4)?

To what extent should computer systems not cause harm (TOK)?

Al Computer fundamentals

End-of-topic questions

Topic review
1. Using your knowledge from this topic, Al, answer the guiding question

as fully as possible: What principles underpin the operation of a computer,

from low-level hardware functionality to operating system interactions?

Exam-style questions
2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

State two components found within the CPU.

Describe how buses support the operation of the CPU within

a computer system.

. Distinguish between the instruction register (IR) and the

program counter (PC) in terms of their roles within the CPU.

. Describe the primary difference between GPU and CPU architectures.

. Explain how the core architecture of CPUs and GPUs are optimized

for their respective tasks.

. Discuss how the different memory access designs of CPUs

and GPUs affect their performance.

. Explain how the CPU interacts with different types of memory

to optimize performance.

. Compare the performance characteristics of RAM and cache

memory in terms of access times and capacity.

Define the terms “cache hit” and “cache miss”.

Describe the fetch phase of the fetch-decode-execute cycle.

Describe how the decode phase of the fetch-decode-execute

cycle works.

Explain the roles of the fetch, decode, execute, and write-back

stages in pipelining within a multi-core processor.

Describe the structure and function of an internal solid state drive (SSD).

State the binary equivalent of the hexadecimal number 2F.

State the decimal equivalent of the binary number 1100101.

Explain how integers are represented in binary using both

unsigned and two's complement encoding methods.

Explain how characters and strings are encoded into binary

using ASCIl and Unicode.

Discuss the advantages and limitations of using binary encoding

for video data storage.

Evaluate the role of AND, OR, and NOT gates in creating

complex decision-making circuits within a computer system.

[6 marks]

[2 marks]

[3 marks]

[6 marks]

[3 marks]

[6 marks]

[4 marks]

[6 marks]

[4 marks]

[2 marks]

[3 marks]

[3 marks]

[6 marks]

[4 marks]

[2 marks]

[2 marks]

[6 marks]

[4 marks]

[4 marks]

[6 marks]

End-of-topic questions

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

2B

34.

35.

36.

37.

38.

39.

Describe how XOR and XNOR gates function differently from

basic AND and OR gates.

Describe how the arrangement of transistors in logic gates

determines their function.

Construct a truth table for the logic expression (A NAND B) NOR C.

Deduce a simplification of the Boolean expression using the

idempotent law:

AAAANB

Deduce the value of the expression C using the Involution law.

Explain how operating systems manage CPU resources,

including process scheduling and interrupt handling.

Describe the role of an operating system in managing memory,

including allocation, protection, and paging.

Describe the role of security management in operating

systems, including user authentication and access controls.

Evaluate the concept of abstraction in operating systems,

particularly how it simplifies interaction with computer hardware

for users and applications.

Explain how operating systems manage processes,

including scheduling and state management.

Describe how operating systems handle device management

and interrupts.

a. Outline the role of virtualization in operating systems.

b. Describe its benefits for resource management.

a. Describe the first-come, first-served (FCFS) scheduling

algorithm.

b. Discuss the effectiveness of the FCFS scheduling algorithm

in terms of fairness and efficiency.

Discuss the priority scheduling algorithm, including how

it manages process priorities and the risks associated with it.

a. Describe the basic principles of interrupt handling.

b. Explain how interrupt handling enhances system responsiveness.

Explain the concept of multitasking in operating systems and

how it relates to process and thread management.

Explain how a controller functions within a control system

using a real-world application.

Discuss the importance of control algorithms in managing

the operations of control systems, with an example of how they

are used in practice.

State two differences between compiled and interpreted

programming languages.

[4 marks]

[3 marks]

[4 marks]

[2 marks]

[2 marks]

[6 marks]

[4 marks]

[3 marks]

[6 marks]

[6 marks]

[3 marks]

[2 marks]

[2 marks]

[3 marks]

[3 marks]

[6 marks]

[2 marks]

[4 marks]

[6 marks]

[6 marks]

[6 marks]

[2 marks]

What are the principles and concepts that underpin

how networks operate?

Most users don't think about how digital networks function; they assume

a network “just works”. Users might be able to join a Wi-Fi network,

but have no idea how the underlying technologies which support

networks function.

As a computer scientist, you are curious about networks. Whatisan IP

address, and why do networked devices need them? How can your

internet traffic be tracked and what limitations are there to that tra .

How does a domain name get translated to an |IP address? What about

the IP address shortage? How can a protocol guarantee a message is

delivered?

It is normal to marvel that a network request and response can circle the

globe and return to you in less than a second. How does that work?

In this topic, you will learn about the fundamentals of networks, hardware,

and the protocols required.

Network fundamentals

Syllabus understandings

A2.1.1 Describe the purpose and characteristics of networks

A2.1.2 Describe the purpose, benefits and limitations of modern digital

infrastructures

A2.1.3 Describe the function of network devices

A2.1.4 Describe the network protocols used for transport and application

A2.1.5 Describe the function of the TCP/IP model

This subtopic deals with the principles and concepts essential for understanding

digital networks. Digital networks are a central part of life and work. Some

organizations could not function without digital networks.

A2.1.1 Describe the purpose and

characteristics of networks

There are many different types of networks, each with a specific use case.

Networks may share characteristics but have very different purposes.

Local area network (LAN)

A local area network (LAN) connects network devices over a short distance.

There is no rigid definition of “short distance”, but LANs are designed to operate

over distances not exceeding approximately one kilometre. Longer distances

introduce latency. LANs are characterized by high data transfer rates and relatively

low latency. LANs can be wired or wireless, but are usually a mix of the two. The

primary goal of a LAN is to facilitate the sharing of resources such as files, printers,

and software applications among multiple users in a local area.

Examples of LANs include a school or college campus, an office building, a

hospital, a hotel or a restaurant.

A Figure 1Local area network (LAN)

101

A2 Networks

Wide area network (WAN)

A wide area network (WAN) connects network devices across large

geographic areas that can span cities, countries, and even continents. WANs

are characterized by their ability to maintain data communication over long

distances. They usually have lower data transfer rates and higher latency

compared to LANSs.

The primary purpose of a WAN is to enable businesses, governments and other

entities to operate on a wide scale. WANSs facilitate the connection of smaller,

geographically dispersed networks such as LANs and MANs (metropolitan area

networks) into a cohesive system, allowing for centralized data processing,

collaborative work, and access to shared resources regardless of location.

Examples of WAN usage include multinational corporations connecting their

office networks around the world to share corporate resources and communicate

efficiently, and public services providing online access to centralized databases

for citizens in different regions.

WANSs can be established over leased lines or satellite links, or through public

internet connections using virtual private networks (VPNs) to ensure security

and privacy. A leased line is a dedicated, fixed-bandwidth communication link

between two locations, provided and maintained by a telecommunications

company. Unlike typical broadband connections, which are shared among

multiple users, a leased line offers exclusive use of the connection for the

customer, ensuring consistent speed, low latency, and reliable performance.

The infrastructure of WANs might involve multiple transmission technologies

and media, ranging from fibre-optic cables to wireless transmissions, to

accommodate the vast distances and varied terrains they cover.

Personal area network (PAN)

A personal area network (PAN) is designed for personal use and usually spans

no more than 10 metres (about 30 feet). This range is optimal for devices

centred around a single person’s workspace or within their immediate physical

environment. PANs are characterized by their convenience for inter-device

communication on a much smaller scale, facilitating direct interaction between

personal gadgets such as smartphones, laptops, tablets, wireless headphones

and wearable devices.

The primary goal of a PAN is to enable the connection and communication of

personal devices for individual use, streamlining the sharing of data and access to

personal resources like contacts, internet access, and multimedia files. This network

A Figure 2 Personal area network (PAN) type enhances personal productivity and entertainment by allowing seamless device

synchronization, data transfer and internet sharing in a highly localized setting.

Examples of PAN usage include:

* connecting a smartphone to a smartwatch for fitness tracking and to wireless

headphones for music streaming

* syncing a laptop with a wireless mouse and keyboard for an uncluttered

workspace

* enabling a tablet to access the internet through a smartphone’s mobile data

connection.

102

A2.1 Network fundamentals

PANSs can be established using wireless technologies such as Bluetooth and

Wi-Fi Direct, which are specifically designed for short-range communication and

require minimal power, making them ideal for personal device connectivity.

Virtual private network (VPN)

Avirtual private network (VPN) extends a private network across a public

network, allowing users to send and receive data as if their devices were directly

connected to the private network. A VPN can function over unlimited distances

since it uses the internet to create a secure and encrypted connection between

devices and the private network. This encryption ensures that data transmitted

over the VPN is protected from unauthorized access.

The primary goal of a VPN is to provide secure remote access to a private

network and its resources, such as files, printers, and software applications, from

any location with internet access. Remote workers, organizations with global

operations, and individuals concerned with privacy and security online all benefit

from VPNs. By creating a “tunnel” through the public internet that encrypts

data as it travels back and forth, VPNs ensure that sensitive information remains

confidential and secure from potential cyber threats.

Examples of VPN usage include:

* employees accessing their company’s internal servers and documents

securely while working from home

* individuals browsing the internet privately without revealing their IP address

or location

* connecting to geo-restricted content by appearing to be in a different

geographical location.

VPNs can be implemented using software on devices such as laptops,

smartphones and tablets, or on routers to secure all traffic from a local network.

Practice questions

1. State two types of networks that are designed to operate over

short distances. [2 marks]

2. Qutline the primary goal of a virtual private network (VPN). [2 marks]

3. a. Describe how a wide area network (WAN) functions. [4 marks]

b. Qutline an example of the use of a WAN. [2 marks]

4. a. Describe the characteristics of personal area

networks (PANSs). [4 marks]

b. Outline one practical application of a PAN. [2 marks]

5. Describe the advantages of using a LAN in a corporate

environment. [4 marks]

IP address A 32-bit number,

typically represented in a dotted

decimal format (e.g., 192.168.1.1).

Each of the four octets (sections

separated by dots) in an IP address

is an 8-bit number.

103

A2 Networks

You will learn more about HTTP in

section A2.1.4.

Section Al.1.9 on computer

hardware in topic Al includes a

detailed discussion about cloud

computing.

104

A2.1.2 Describe the purpose, benefits and

limitations of modern digital infrastructure
The term “infrastructure” refers to the basic physical and virtual components that

enable the operation and flow of digital data within a network. Infrastructure is the

backbone upon which digital services, applications and communications rely.

You can think of a road system including highways and bridges as an example

of infrastructure. All kinds of cars and trucks can drive on the roads and over the

bridges. Network infrastructure is like the roads, highways and bridges, and the

cars and trucks are like the different network packets moving along the roads.

The internet

The internet is a global network of interconnected devices (routers, servers,

computers) which exchange data using standardized protocols. For example, the

worldwide web (WWW) uses the internet as infrastructure to manage a global

network of hypertext transfer protocol (HTTP)-based resources.

Purpose: The primary purpose of the internet is to facilitate reliable, fault-resistant

global communication and data exchange.

Benefits: The internet enables global communication and collaboration and

provides access to a vast amount of textual, video and audio data. Organizations

have used the internet to improve communication with customers and partners,

streamline operations and reduce costs and gather valuable customer insights.

The internet also enables educational materials and resources to be shared for

virtual teaching and learning.

Limitations: Bandwidth can vary greatly depending on geographical distance,

network congestion and the quality of infrastructure. The internet must evolve to

handle increasing amounts of data, connections and users without degradation

in performance or quality of service. Vulnerabilities can pose significant risks

to personal, organizational and national security. As critical infrastructure relies

on internet-connected systems, security and reliability become even more

important.

Cloud computing

Cloud computing is a network of remote servers (as opposed to local servers or

perscnal computers) accessible via the internet and used to store, manage and

process data. Cloud computing also offers software as a service, where users only

need a web browser to connect and use software applications.

For example, schools can use cloud computing to reduce their need for

technical support and improve their resources management. Schools can pay

a subscription for cloud services rather than buying and managing expensive

servers themselves, which they may not need all the time. This saves time and

money on often tight budgets.

Purpose: The primary purpose of cloud computing is to provide scalable, on-

demand access to computing resources and services.

Benefits: Cloud services can be scaled up or down based on demand, providing

businesses with flexibility in resource allocation and costs, as organizations

pay only for what they use. Cloud computing enables data and applications

A2.1 Network fundamentals

to be accessed from anywhere, at any time, enabling collaboration among

geographically dispersed teams. Cloud providers can offer data backup and

disaster recovery solutions, ensuring data integrity and minimizing downtime.

Limitations: Cloud services require reliable internet access. Limited or unreliable

connectivity can hinder access to cloud resources. Storing sensitive data off-site

raises concerns about data security, privacy, and regulatory compliance. While

cloud providers implement robust security measures, the shared responsibility

model requires users to also secure their data.

High data-transfer volumes can incur significant costs. Additionally, bandwidth

limitations may affect data-intensive operations, reducing performance. For

applications that require real-time processing, the physical distance between the

cloud servers and end-users can introduce latency, affecting performance and

user experience.

Distributed systems

A distributed system is a network of independent computers that appear to the users

of the system as a single coherent system. When discussing a distributed system,

computers and devices within the system are referred to as nodes. These nodes

communicate and coordinate their actions by passing messages to one another. The

more nodes in the system, the more powerful the computational resources.

Link

“Station

Centralized Decentralized Distributed

A Figure 3 The different configuration of nodes in centralized, decentralized, and

distributed networks

For example, Apache Hadoop is an open-source framework used for distributed

storage and processing of large data sets across clusters of computers. Itis

designed to scale out from a single server to thousands of machines, each

offering local computation and storage. Adding more nodes directly translates to

increased processing power, storage capacity, and fault tolerance.

Purpose: The purpose of a distributed system is to coordinate and distribute

processes and resources across multiple computers in a network, making them

work together to perform tasks more efficiently and reliably than could be

possible with a single computer.

105

A2 Networks

Benefits: Distributed systems enable the sharing of resources, providing

improved computational speed because tasks are distributed across multiple

nodes. This architecture enhances overall system performance and reliability

because if one component fails, the system as a whole can continue to operate

effectively. Furthermore, distributed systems facilitate flexible and efficient

processing by allowing systems to be expanded to accommodate increased

loads dynamically.

Limitations: One of the challenges of distributed systems is the complexity of

ensuring reliable communication and coordination between components over

unreliable networks. Ensuring data consistency and managing concurrency

control in an environment where data might be replicated across multiple

nodes can be particularly challenging. Security concerns are also amplified in

distributed systems, since data is often transmitted over public networks and

stored on multiple machines, increasing the attack surface (the number of ways

threats can get into the system) for potential threats. The distributed nature

of these systems can introduce latency and potentially lower performance for

certain operations, compared with centralised systems. Additionally, the design

and maintenance of distributed systems require sophisticated algorithms and

mechanisms to manage the distribution of tasks, handle failures, and ensure data

integrity and security.

Edge computing

Edge computing involves processing data at or near the data source, rather

than relying solely on centralized cloud servers. This strategy decreases the

physical distance data must travel, leading to faster processing times and

lower latency, which is particularly beneficial for applications requiring real-

time responses.

For example, think about a smart traffic light system which gathers data about

traffic and then changes the timing of the lights to improve the flow of traffic.

Where should the processing happen—far away in a remote data centre or

next to the traffic lights? Edge computing brings processing near to the data,

speeding up the system.

Licence plate recognition systems are another example. Instead of sending raw

video feeds to a distant server, the camera sends the processed data (digitized

number plates) because the data has been processed near the source.

Purpose: The core aim of edge computing is to bring data processing closer

to where the data is generated (the data source). This reduces reliance on a

central data-processing warehouse. This decentralization is intended to improve

response times and save bandwidth, providing real-time data analysis and

processing.

Benefits: Edge computing allows for faster data processing and response

times by minimizing the distance data travels. It enhances the efficiency of data

transmission for real-time applications such as autonomous vehicles and internet

of things (loT) devices. By processing data locally, edge computing reduces

the amount of data that needs to be sent to the cloud, decreasing bandwidth

usage and associated costs. It also increases the reliability of data services, as

local data processing continues to function even if connectivity to a central

server is lost. Furthermore, edge computing can improve security and privacy by

A2.1 Network fundamentals

keeping sensitive data on-site, reducing exposure to potential breaches during

transmission.

Limitations: The management and maintenance of distributed computing

resources can be complex, requiring advanced coordination and automation

tools. Security is a double-edged sword: while keeping data local can enhance

privacy, it also necessitates robust security measures on numerous devices

that might be vulnerable to attack. The initial setup and operational costs

can be high, given the need for additional computing resources at multiple

locations. Furthermore, there can be inconsistency in computing capabilities

across different edge devices, affecting the uniformity of data processing

and application perfarmance. Ensuring data consistency across distributed

networks also poses a challenge, particularly in environments requiring real-time

synchronization across devices.

Mobile networks

Mabile networks are telecommunications networks designed for the connectivity

of maobile devices, enabling voice, data, and multimedia communication over

significant distances without the need for physical connections. Mobile networks

are cellular, covering broad geographical areas and supporting connections for

a large number of users with the ability to hand off connections from one cell to

another as users move, maintaining seamless connectivity.

Purpose: The purpose of mobile networks is to provide wireless communication

services across wide areas, facilitating connectivity for mobile devices anywhere

within the coverage area. This enables seamless communication, internet access

and data exchange on the go, supporting the increasing mobility of society and

the growing demand for constant connectivity.

Benefits: Mobile networks offer the convenience of wireless communication,

allowing users to stay connected anywhere there is network coverage. They

support a wide range of services, from voice calls and text messaging to high-

speed internet access and streaming of multimedia content. The evolution of

mobile networks, from 2G to 5G technologies, has significantly enhanced data

transmission speeds and reduced latency, improving the user experience for

mobile internet services. These networks also enable a vast ecosystem of mobile

applications and services, driving innovation in fields such as mobile commerce,

telemedicine and remote work.

Limitations: Despite their advantages, mobile networks face several limitations.

Coverage gaps or “dead zones" can occur in areas where network signals are

obstructed or too far from a cell tower, leading to connectivity issues. The quality

of service can vary due to factors such as network congestion, particularly in

crowded areas or during peak usage times, impacting data speeds and call

quality. Upgrading network infrastructure to newer technologies (for example,

from 4G to 5G) requires substantial investment, and the deployment of these

advanced networks is often gradual, leading to disparities in service availability.

Maobile networks also have inherent security vulnerabilities that can expose

users to risks such as eavesdropping, data breaches, and other cyber threats.

Additionally, the reliance on finite radio frequency spectrum resources can limit

the capacity of mobile networks, necessitating efficient spectrum management

and technological innovations to meet growing demand.

107

A2 Networks

Practice questions

6. State the primary purpose of the internet. [1 mark]

7. State one benefit of cloud computing. [1 mark]

8. Describe how distributed systems enhance system performance. [4 marks]

9. a. Describe the use of edge computing in real-time

applications. [3 marks]

b. State one specific benefit and one potential limitation of

edge computing. [2 marks]

10. Describe the challenges associated with mobile networks,

focusing on service quality and security. [4 marks]

A2.1.3 Describe the function of

network devices

There is a wide array of network devices responsible for managing, modulating,

routing, converting, sniffing, blocking, shaping and switching packets on

a network.

Gateways

» —— Gateways are network devices that act as a bridge between two networks that

m’fi&"‘.’ use disparate protocols. Gateways are used in scenarios where data needs to be

translated from one format to another or when different networking technologies

A Figure 4 A gateway need to interact.

Usage scenarios

A gateway can enable communication between an office network and the

internet, converting private network addresses to a public address using

protocols such as NAT (network address translation). Additionally, gateways

might incorporate security functions, filtering, and traffic management to enhance

data flow and security across the networks they bridge.

A gateway can also be used to convert data between different network

protocols. For example, a gateway might translate email traffic from the simple

mail transfer protocol (SMTP) on an enterprise network to another messaging

protocol used by an external network, facilitating seamless communication

between different email systems.

Within the context of voice over internet protocol (VolP) communications, a

gateway can translate between the digital signals used within an IP network and

the analogue signals of traditional phone lines. This enables calls to be made

between internet-based VolP users and traditional telephone users.

In industrial environments, a gateway can bridge the communication gap

between a factory’s control system and the machines on the production floor,

which may use differing communication standards or protocols (for example,

translating between Ethernet/IP and a legacy protocol such as Modbus). This

helps integrate older machinery into modern control architectures without

replacing expensive equipment.

A2.1 Network fundamentals

Hardware firewalls

Firewalls are network security devices that monitor and control incoming and

outgoing network traffic (packets) based on predetermined security rules.

A firewall typically establishes a barrier between a trusted internal network and

untrusted external networks, such as the internet, to block malicious traffic and

prevent unauthorized access.

Usage scenarios

A primary use of a hardware firewall is to protect an organization’s network by filtering

traffic at the packet level. For example, a firewall can block traffic coming from

suspicious sources or containing harmful data, preventing attacks on the network.

In scenarios involving network traffic pricritization, firewalls can implement quality

of service (QoS) rules to ensure critical applications—such as VolP calls or video

conferencing—receive priority over less critical traffic. By analysing and classifying

packets, a firewall can allocate higher bandwidth to these priority packets, reducing

latency and improving overall performance for essential services.

For example, your school might prioritize network traffic to educational sites and

deprioritize traffic to a gaming site. This ensures valid traffic has enough bandwidth.

In a home environment, a firewall can be integrated into the broadband router

to provide basic network protection against external threats. It can prevent

potentially harmful communications from entering the home network and can

also manage parental controls to restrict access to inappropriate content.

Software and hardware firewalls

Software firewalls are installed as an application on an individual device,

controlling incoming and outgoing traffic at the device level based on predefined

security rules. They are suitable for providing customized security settings for

specific applications and are particularly useful in protecting individual devices

from internal threats and unauthorized software actions.

Hardware firewalls are standalone physical units that sit between an entire

network and the external world. They manage all the traffic entering and exiting

the network through a centralized point, providing broader protection against

external threats. These firewalls are designed to handle a higher volume of traffic

without impacting the performance of individual network devices.

Software firewalls offer detailed control over individual device activities, while

hardware firewalls provide comprehensive protection at the network perimeter

for the entire network.

Modems

Modems (modulator-demodulators) are devices that facilitate data transmission

over telephone lines or broadband connections by converting digital data from

a computer into analogue signals suitable for sending over these lines, and vice

versa. They serve as a bridge between the digital data networks and analogue

phone systems.

Usage scenarios

One primary function of modems is to provide internet connectivity in residential

and business environments by interfacing with a service provider's network via

standard telephone lines, cable, or satellite connections.

A Figure 5 A firewall device

A Figure 6 A modem

109

110

A2 Networks

A Figure 7 An older style NIC

Media access control (MAC)

address A unique identifier assigned

to a network interface card (NIC)

for communications on a physical

network. Itis a 48-bit hexadecimal

number typically written as six

pairs of hexadecimal digits (e.g.,
00:1A:2B:3C:4D:5E) and is used to

ensure that data is sent to the correct

device on a local network.

A Figure 8 A router

For example, a cable modem converts the digital signals from a router to

analogue signals that are suitable for transmission over cable television

infrastructure.

In telecommunication setups, modems enable dial-up access to the internet,

where they convert the digital data from a computer to an analogue signal that

can travel over public switched telephone networks (PSTN). The modem then

demodulates the incoming analogue signal back into digital form at the receiving

end, allowing for two-way internet communication.

Modems are also instrumental in scenarios involving remote management

and telemetry, where they send and receive data to control or monitor remote

equipment or systems via telephone lines. This is common in industries such as

utilities or services that require remote system diagnostics and updates.

Network interface cards (NICs)

Network interface cards (NICs) are hardware components within a computer

or network device which facilitate the interface between the physical network

and the device's processing capabilities. NICs perform the critical function of

converting electrical signals received from the network into digital data that the

computer’s processor can understand and vice versa. This conversion is essential

forthe communication process over computer networks.

Atits core, a NIC converts raw data signals from the network into usable digital data.

For Ethernet NICs, this involves translating the electrical signals transmitted over

copper cables into digital data the device's operating system can process. Similarly,

forfibre-optic NICs, the NIC converts light signals into digital data. Wireless NICs, or

Wi-Fi adapters, function by converting radio frequency signals into digital data.

NICs handle both the transmission and reception of data packets. Each NIC has

a transmitter and a receiver, which work simultaneously to send out digital data

converted into signals and to receive incoming signals converting them back into

digital data.

Integral to its operation, each NIC possesses a unique media access control

(MAC) address. This address identifies the device on the local network. During

data transmission, the MAC address is used to ensure that data packets are

delivered to the correct hardware destination on a local network segment.

NICs also incorporate buffers which store data temporarily as it is being sent

or received, which helps manage data flow and prevent loss during high traffic

periods. Additionally, NICs perform error checking to ensure data integrity,

using protocols such as cyclic redundancy check (CRC) to detect errors in the

data packets.

Routers

Routers are network devices which manage the exchange of data between

different networks. They direct data packets between networks by determining the

optimal paths for data transmission, using routing protocols and routing tables.

At its core, a router examines the destination |P address within each data packet

and uses this information, along with a routing table, to determine the best next

hop for the packet. Routers maintain and update their routing tables through

dynamic or static routing protocols, which help them learn network paths and

make intelligent routing decisions.

A2.1 Network fundamentals

Routers are responsible for receiving, processing and forwarding data packets to

their correct destinations. A packet might pass through many routers to reach its

destination. Routers inspect each packet’s header to make routing decisions and

use protocols such as routing information protocol (RIP) to find the fastest path

to the destination.

Worked example 1

Host A Host B

Imagine you could follow (or trace) the journey of a packet from its

origin to its destination. What might the journey look like? Describe all

the processes involved in sending a data packet from one computer

to another.

Solution

Imagine a network with the following setup.

* Host A (Source): IP Address 192.168.1.5 (origin)

* Router 1: Interfaces with IP addresses 192.168.1.1 (local network) and

10.10.20.1 (connecting to Router 2)

* Router 2: Interfaces with IP addresses 10.10.20.2 (connecting to Router 1)

and 172.16.30.1 (connecting to Router 3)

* Router 3: Interfaces with IP addresses 172.16.30.2 (connecting to Router 2)

and 203.0.113.1 (local network)

* HostB (Destination): IP Address 203.0.113.5

A packet's journey may be something like this.

1. StartatHostA

a. Host Awantsto send a packet to Host B.

b. Host A sendsthe packet to its default gateway, Router 1, since Host B

is not on the same local network.

At each step (each hop) the packet header is examined and a decision is

made how and where to send the packet.

2. Hop 1: from Router 1 to Router 2

a. Router 1 receives the packet and checks its routing table.

b. Router 1 determines that the packet destined for 203.0.113.5 should

be forwarded to Router 2, via interface 10.10.20.1.

c. The packetissent to Router 2.

112

A2 Networks

A Figure 9 A switch with Ethernet cables

e 3. Hop 2: from Router 2 to Router 3

a. Router 2 receives the packet from Router 1.

b. Router 2 consults its routing table and finds that the best route to the

destination 203.0.113.5 is through Router 3, via interface 172.16.30.1.

c. The packet is forwarded to Router 3.

4. Hop 3: from Router 3 to Host B

a. Router 3 receives the packet from Router 2.

b. Router 3 checks its routing table and identifies that Host B is directly

connected to its local network on interface 203.0.113.1.

c. Router 3 forwards the packet directly to Host B at 203.0.113.5.

Usage scenarios

In a residential setting, routers connect multiple devices to the internet and each

other, creating a local network. Home routers often come with built-in wireless

access points to support Wi-Fi connectivity.

In business environments, routers connect the enterprise network to the internet

or other branch networks over large geographic distances. These routers are

more robust and have complex configurations to handle the greater security and

traffic management needs of business operations.

High-capacity routers are used by internet service providers (ISPs) and large

enterprises to direct internet traffic across the globe. These routers handle

massive amounts of data and use complex routing algorithms to maintain internet

connectivity and performance.

Switches

Switches are networking devices that connect devices within a LAN. Switches

manage the flow of data within a network by receiving, processing and

forwarding data packets (also called frames) to the correct destination device.

At their core, switches receive incoming data packets from one device and use

the MAC address information contained within the packet to forward it to the

appropriate destination device.

Switches maintain a MAC address table, also known as a forwarding table, which

maps each MAC address to the corresponding switch port. This allows the switch

to effectively direct traffic by looking up the destination MAC address of each

frame and forwarding the frame directly to the port associated with that address.

While switches are efficient at directing traffic, they must handle broadcasts

(sent to all devices) and multicasts (sent to a group of devices) differently.

For these types of traffic, the switch forwards the frames to multiple ports based

on the needs of the network protocol being used.

Usage scenarios

In a small office or home office, a switch can connect multiple devices, such as

computers, printers and storage devices, allowing them to share resources and

communicate efficiently.

A2.1 Network fundamentals

In larger enterprise networks, switches are part of a more complex network

infrastructure that includes multiple switches and routers. Here, switches can

be configured for advanced functions such as VLAN segmentation and link

aggregation to enhance network security, performance and reliability.

In data centre environments, switches play a critical role in managing data traffic

between servers and storage systems. High-performance switches in data centres

often support additional features such as high-speed throughput rates, low

latency, and the handling of large volumes of data traffic.

In schools and universities, switches are used to connect and manage traffic

across campus networks, supporting connectivity for thousands of devices used

by students, faculty and staff.

Wireless access points (WAPs)

Wireless access points (WAPs) serve as the interface between the wired

infrastructure and wireless devices. WAPs convert wired Ethernet data into

wireless signals and vice versa, effectively extending the reach of the network to

areas where wiring is impractical, impossible or undesirable.

WAPs broadcast wireless signals that wireless devices can detect and connect to.

They operate by receiving data packets from the wired network, converting these

packets into radio frequencies, and transmitting them wirelessly. The process is

reversed for incoming signals from wireless devices, which are converted back

into data packets and relayed onto the wired network.

WAPs integrate with the existing network infrastructure using standard network

protocols. They can support various security standards such as WPA, WPA2 or

WPAZ3 to ensure encrypted connections.

In larger installations, multiple WAPs can be configured to create a wireless network

mesh. This setup allows users to move between different areas (for example,

between floors or rooms in a building) without losing connection, as their devices

automatically switch to the strongest available signal from the nearest WAP.

WAPs can be managed centrally, often via controllers that configure settings, manage

network policies and provide tools for monitoring network usage and performance.

This central management helps maintain consistent configurations across multiple

WAPs and simplifies the task of updating network settings or firmware.

Usage scenarios

In office environments, WAPs provide employees with the flexibility to connect to

the network from anywhere in the building without the need for physical cables,

enhancing mobility and collaboration.

Schools and universities use WAPs to cover extensive campus areas, providing

students and staff with access to educational resources and the internet from

classrooms, libraries and outdoor spaces.

WAPs are widely used in retail environments and public areas such as airports and

cafes to offer free Wi-Fi access to customers, improving visitor satisfaction and

enabling additional services such as location-based advertising.

In residential settings, WAPs enhance the convenience of wireless connectivity

within the home, supporting a wide range of devices including smartphones,

tablets and home automation systems.

A Figure 10 AWAP

113

114

A2 Networks

How devices map to the layers of the TCP/IP model

Table 1 How devices are mapped to TCP layers

Device TCP layer Description of mapping

Gateways Application layer

primarily, but can

operate across

multiple layers

depending on the

type of gateway

Facilitate communication between different network protocols, often

involving translation of data formats, which can occur at the highest layer

(application) of the TCP/IP model. However, some gateways might operate

at lower levels if they're translating or interfacing between different types

of networks (for example, between a local network and the internet),

showcasing their multi-layer functionality.

Hardware firewalls Primarily internet

layer, but can operate

on the link layer and

transport layer

Primarily inspect IP packets, which places them at the internet layer.

However, advanced firewalls (like next-generation firewalls) can inspect data

at the transport layer (e.g., TCP/UDP ports) and even up to the application

layer, making decisions based on application-specific data. Some also

operate at the link layer, controlling access to the physical network.

cards (NICs)

Modems Link layer Operate at the link layer, where they convert digital data from a computer

to analogue signals for transmission over various media (such as telephone

lines or coaxial cables), and vice versa. This layer is responsible for

establishing and maintaining the physical connection between devices.

Network interface | Link layer Provide the physical interface between a computer and the network,

handling the framing of data for transmission over physical media. They

operate at the link layer, directly interfacing with the network cabling

and devices.

Routers Internet layer Function at the internet layer, where they determine the best path for data

packets based on their IP addresses. They are responsible for the routing

of packets across multiple networks, making decisions that guide data

toward its destination across the interconnected networks of the internet.

Switches Link layer Operate at the link layer, providing a central point of connection for devices

within a LAN. They manage data frames between devices on the same

network, using MAC addresses to forward data to the correct destination.

Wireless access

points (WAPs)

Link layer Function at the link layer, bridging wireless devices to a wired network.

They manage the airwaves for Wi-Fi communication and connect those

wireless communications to the wired LAN, effectively extending the

network to wireless devices.

Practice questions

11. State the primary function of a gateway in a network. [1 mark]

12. Qutline the role of hardware firewalls in a network. [2 marks]

13. Describe how modems function within digital

communication systems. [4 marks]

14. Outline two advantages of using routers in a network. [4 marks]

15. Describe how switches and wireless access points (WAPS)

contribute to the functionality of local area networks (LANs). [4 marks]

A2.1 Network fundamentals

A2.1.4 Describe the network protocols used
for transport and application
A protocol is a set of rules and standards which defines how data should be

structured, transmitted and received across a network. Protocols determine format,

timing, sequencing and error checking of data as it is transmitted between devices.

Protocols can be stateful or stateless. A stateful protocol maintains state

information about the client-server session across multiple requests and

responses. A stateless protocol does not maintain information about sessions.

Each communication session is essentially treated as a blank slate.

Transmission control protocol (TCP)

Transmission control protocol (TCP) is a core protocol of the internet. It operates

at the transport layer of the TCP model and provides reliable, ordered and error-

checked delivery of a stream of bytes between hosts communicating via an IP

network. Key features include connection establishment (handshake process), data

transfer with acknowledgment, flow control (preventing network congestion) and

connection termination. It is used where data integrity and the delivery order of

packets are important.

User datagram protocol (UDP)

User datagram protocol (UDP) enables a connectionless mode of communication

whereby data packets, or datagrams, are sent between devices without

establishing or maintaining a stateful connection between the communication

endpoints. This approach contrasts with the connection-criented method

employed by TCP, which requires a connection to be established before data

can be exchanged.

UDP’s connectionless nature makes it faster and less resource-intensive than TCP

because it eliminates the overhead associated with setting up and maintaining a

connection. This efficiency is particularly valuable in scenarios where occasional

data loss is tolerable. Therefore, UDP is widely favoured for real-time applications

such as video streaming, online gaming and VolP. In these use cases, the priority

is on reducing latency and maintaining continuous flow of data, even if it means

some packets are lost or arrive out of order.

UDP also supports multicasting—the transmission of a packet to multiple

destinations in a single send operation—making it suitable for applications

such as live broadcasts and group collaborations. Despite its simplicity,

UDP’s utility in specific contexts—where the overhead of guaranteed delivery

is an unnecessary burden—makes it an indispensable part of the network

communications landscape.

Hypertext transfer protocol (HTTP)

Hypertext transfer protocol (HTTP) is the foundational protocol for data

communication over the worldwide web (WWW). It delineates the exact structure

and encoding of data transferred between web servers and browsers, facilitating

the transfer of web pages as HTTP messages. The messages sent by a client (usually

aweb browser) are termed HTTP requests, and the messages sent by the server in

response are called HTTP responses. Responses are often preceded by response

codes, some of which you may have seen as you have used the worldwide web.

This topicis covered in greater

detail in section A2.1.5.

115

A2 Networks

REDIRECTION
SUCCESS

INFORMATIONAL

SERVER ERROR

A Figure 11 HTTP responses

Table 2 Some common HTTP response codes

HTTP response code | Description

200 0K Indicates that the request has succeeded and the

server has returned the expected content.

404 Not Found The server cannot find the requested resource. Often

triggered by broken links or incorrect URL input.

500 Internal Server Error | A generic error message indicating that the

server encountered an unexpected condition that

prevented it from fulfilling the request.

301 Moved Permanently | This response code is used when the requested

resource has been permanently moved to a new

URL, and any future references should use one of the

returned URLs.

403 Forbidden The server understands the request but refuses to

authorize it. This often occurs when access to the

requested resource is restricted or denied.

This protocol operates primarily using a request/response model. A client sends

an HTTP request to the server, which includes a method (for example, GET to

fetch resources, POST to submit data), a header (which conveys metadata such

as content type and authentication information), and sometimes a body (which

contains data being sent to the server). The server processes this request and

returns an HTTP response, which includes a status code (indicating success or

failure), response headers (similar to request headers but for response settings),

and usually a response body containing the requested resource or error details.

This model is fundamental for web interactions, enabling the vast array of web

functionalities available.

HTTP is characterized as a stateless protocol, which means that each request

made by a client is processed by the server independently, without any inherent

knowledge or memory of previous interactions.

This stateless nature requires that any session information needed to be maintained

must be included in the HTTP messages themselves or handled by external

mechanisms such as cookies.

116

A2.1 Network fundamentals

Cookies are files stored on the client’s device which store state information. They

are sent with requests to enable stateful communication. Sessions are useful in

web applications because they allow the server to maintain user-specific data

across multiple HTTP requests (if you are logged in, what you last looked at in an

online store, what time zone you are in, and so on).

HTTP state management refers to the methods and techniques used to maintain

the state of a user’s interaction with a web application across multiple HTTP

requests. A common example of state management is the use of cookies, which

store data on the client’s browser to help maintain continuity between requests.

Hypertext transfer protocol secure (HTTPS)

Hypertext transfer protocol secure (HTTPS) is an extension of the basic HTTP,

specifically designed to enhance security for communications over the worldwide

web. HTTPS incorporates encryption into the data transmission process to protect the
) . . Learn more about encryption in
integrity and privacy of the data exchanged between a web server and a browser. P

section A2.4.4.

A Figure 12 HTTP and HTTPS protocols

The security in HTTPS is achieved through the transport layer security (TLS) protocal,

and formerly through its predecessor, the secure sockets layer (SSL). These protocols

encrypt the data before it is sent over the internet and decrypt it upon arrival at its

destination. This encryption process ensures that even if the data is intercepted

during transmission it remains unreadable and secure from unauthorized access.

Scheme The part of the URL that

specifies the protocol used to

access the resource. It appears at

The use of HTTPS is indicated in the scheme of a URL of a website with the the beginning of the URL and is

prefix “https://" rather than “http://". This protocol employs a combination of followed by “://”. The scheme

asymmetric and symmetric encryption. indicates how the resource should

be retrieved and can influence the
HTTPS significantly enhances the security of web interactions by safeguarding way data is transmitted over the

against eavesdropping, tampering and message forgery, thereby providing a T

trusted foundation for secure communication on the worldwide web.

Dynamic host configuration protocol (DHCP)

Dynamic host configuration protocol (DHCP) automatically assigns IP addresses and

other essential network configuration parameters to devices when they connecttoa

network. This automatic configuration is helpful when a device, such as a computer or

smartphone, first connects to a network, ensuring it receives the appropriate network

configuration settings to communicate effectively with other devices.

The primary function of DHCP is to simplify network administration. Without

DHCP, network administrators would need to manually assign IP addresses

to each new device joining the network—a time-consuming and error-prone

process. DHCP automates this task, ensuring efficient and correct configuration

without manual intervention.

A Figure 13 DHCP stands for Dynamic

Host Configuration Protocol

When a device connects to a network, it sends a broadcast query requesting the

necessary information. In response, the DHCP server assigns an IP address to the

device from a predefined range of addresses, known as a scope. N7

A2 Networks

In addition to the IP address, DHCP also provides other configuration details vital

for network communication, such as the following.

_ * Subnet mask, which determines the network segment the device is on.

* Default gateway, the device that forwards traffic to other networks.

Subnet mask A subnet mask is a .

32-bit number, used to divide an

IP address into network and host

portions. Subnet masks determine DHCP can allocate IP addresses in two primary manners.

which part of an IP address refers to

the network and which part refers

to the host. The 1sin the subnet

mask indicate the network part,

and the Os indicate the host part.

For example, the subnet mask
255.255.255.0 in binary is » Staticallocation is when DHCP assigns a permanent P address to a device

11111111.11111111.11111111.00000000. based on its MAC address. This method is used for devices that require a
consistent IP address, such as network printers or servers.

Domain name system (DNS) server addresses, which are used to resolve

domain names into IP addresses.

* Dynamic allocation is when DHCP assigns an IP address to a device fora

limited period, known as a “lease.” Once the lease expires, the device must

request a new IP address, although often the same IP may be reassigned

if still available. This method is particularly useful in environments with

frequently changing devices, like guest Wi-Fi networks.

By managing IP address distribution and network settings, DHCP helps prevent

address conflicts (where two devices on the same network end up with the

same |P address) and reduces the overhead associated with network resource

management. This capability is integral to maintaining smooth network

operations, particularly in large-scale or rapidly changing network environments.

Practice questions

16. Describe the key features of TCP that ensure reliable data

transmission. [4 marks]

17. Distinguish between TCP and UDP in terms of connection

management and typical use cases. [6 marks]

18. Describe how HTTPS enhances the security of HT TP communication

over the worldwide web. [4 marks]

19. Describe the role of the DHCP in network configuration. [4 marks]

20. Describe the benefits and drawbacks of using a stateless protocol

like HTTP for web communication. [4 marks]
>
I -

118

A2.1.5 Describe the function of the

TCP/IP model
Digital networks are complex, interdependent systems with many different

devices, protocols, transmission media, and potential problems. Because

networks are so complex, conceptual models are used to aid understanding,

characterizing, troubleshooting and standardizing network operations.

A well-known conceptual model is the TCP/IP model.

A2.1 Network fundamentals

Each layer of the model articulates a specific networking activity. In other words,

at each layer, something happens to a message before it is passed to the next

layer. Normally, network traffic goes through layers sequentially. As a message is

received by a computer it travels from the bottom up and, as a message is sent, it

travels from the top down.

Application, transport, internet and network interface:
The role of each layer and the interaction between them
to ensure reliable data transmission over a network

A Figure 14 The different layers of the TCP/IP model

Table 3 Layers and roles of the TCP/IP model

Layer Role

Application layer Provides the interface between the applications on a computer and the

network. It defines protocols which applications use to exchange data over

the network, such as HTTP for web browsing, SMTP for email, DNS, DHCP and

simple network management protocol (SNMP) which is used for managing and monitoring

network devices.

Transport layer Facilitates direct communication services for application processes across various hosts.

(TCP and UDP) Transmission control protocol (TCP) employs sequencing, checksums, acknowledgments, and

retransmissions to guarantee orderly and error-free data delivery to the destination.

User datagram protocol (UDP) offers a quicker but less reliable service compared to TCP.

Internet layer Handles the packetization, addressing, and routing of data across different networks to ensure

it reaches its intended destination. The primary protocol in this layer is the internet protocol (IP),

which defines IP addresses that uniquely identify each device on the network.

Network interface layer | Concerns itself with the physical and hardware aspects of network communication. It handles

how data is physically transmitted over the network media, including aspects such as cable

specifications, signal encoding and decoding, data framing, and MAC addressing for

Ethernet networks. This layer is where network adapters (such as Ethernet cards and drivers)

operate, interfacing directly with the physical network medium (such as copper wires, fibre-

optic cables, or wireless signals). Protocols used at this layer include 802.3 (ethernet) and

802.11 (wireless).

Reliability comes from the TCP/IP model'’s layered approach, where each

layer’s specific protocols dictate precisely how data should be handled,

encapsulated, transmitted, and received. Error-checking, checksums,

sequencing and acknowledgments of messages all add to the reliability of

the data sent via TCP/IP.

119

120

A2 Networks

A simplified step-by-step example of how each layer in the TCP/IP
model functions

Figure 15 illustrates the journey of data from the user’s web browser through the

network to the web server and back to the user’s browser.

e
Step 1 Q I Step 8

T L

e SR
Step 2 Step 7
— "

G R
Step 3 Step 6
Y " —

e —— am)
Step 4 = e o Step 5
S Qe ",? O

A Figure 15 The different steps of the TCP/IP model

Here is a description of the steps shown in Figure 15.

Step 1. Application layer: User requests a web page

a.

b.

C.

The user enters a URL in their web browser and presses enter or clicks.

At the application layer the web browser (application) constructs an HTTP

GET request to retrieve the web page. This request is prepared according to

the HTTP protocol operating at the application layer.

The request is passed down to the transport layer.

Step 2. Transport layer: Preparing the request for transmission

a. At the transport layer, the HTTP request is handed down from

the application layer, where itis changed into a segment (called a TCP

segment). Each segment is given a TCP header, which includes sequencing

information, source, and destination port numbers (e.g., port 80 for HTTP,

port 443 for HTTPS), and a checksum for error checking.

A TCP connection is established using a three-way handshake process. SYN,

SYN-ACK, and ACK packets are exchanged between the client and server to

establish a reliable connection.

i. SYN (synchronization)

The client begins the process by sending a SYN segment to the

destination server. “Hey, | want to talk, do you want to talk?”

ii. SYN-ACK (synchronization-acknowledgement)

The destination server receives the SYN segment and responds with a

SYN-ACK segment. “Ok, | got your message, yes, |'m ready to hear

your message.”

iii. ACK (acknowledgement)

The client receives the server’s SYN-ACK and sends a final ACK segment.

“Great. | understand you are ready to talk, and I'm going to start

sending data!”

A2.1 Network fundamentals

After the three-way handshake, the TCP connection is considered

established, and data transfer, like our HTTP GET request, can proceed. The

segment is passed down to the internet layer. If for some reason the TCP

handshake fails, the request will not be passed to the internet layer and the

user might encounter a “connection timed out” message.

Step 3. Internet layer: Preparing the segment for routing

d. At the internet layer, each TCP segment is encapsulated within an IP packet,

which includes the IP address of the source (the user’s device) and the P

address of the destination (the web server). In addition, IP packets contain

the protocol (the type of data encapsulated, in this case, TCP), atime to live

(TTL), which prevents packets from circulating indefinitely on the network,

and a header checksum for error detection in the IP header itself.

At this layer, the packet is also assigned a next hop (where should this packet

be sent to next), which is usually the address of the router on your network.

After the packet has been created, it is passed down to the network interface

layer.

Step 4. Network interface layer: Final encapsulation and converting to signal

d. The network interface layer encapsulates the IP packet (which contains

the TCP segment and HTTP request) into an Ethernet frame (assuming you

are on an Ethernet network). This frame includes destination MAC address

(the MAC address of the next hop device), the MAC address of your own

machine, and control information and a checksum for error detection.

At this point, the frame is physically transmitted.

i. The network interface card (NIC) converts the Ethernet frame into

electrical signals (or light pulses, for example, depending on the

medium) suitable for the physical network connection.

ii. The signals representing the frame are finally transmitted over

the physical medium, be it an Ethernet cable, Wi-Fi signal,

or other technology.

Please keep in mind the network interface layer is where the protocols and

operations become specific to the type of physical network (Ethernet, Wi-Fi,

fibre-optic).

Between steps 4 and 5, the next part happens outside of your computer

and network: The frame is routed through the internet, potentially

hopping through multiple routers, until it reaches the server. Each router

uses the frame’s destination IP address to determine the next hop towards

the destination.

121

122

A2 Networks

_ ’

Broadcast address The broadcast

address is used to communicate

with all devices on a network. ltis

identified by having all host bits

setto 1.

Step 5. Receiving the request on the server

At the network interface layer, the server’s NIC receives the electrical

(or other) signals from the physical network and converts them into

an Ethernet frame. The NIC checks the frame checksum to ensure no

errors occurred during transmission. If errors are detected, the frame

is discarded. The NIC examines the destination MAC address. Ifit

matches the server’'s MAC address (or a broadcast address), the frame

is processed further. The netwark interface layer strips off the Ethernet

header and trailer, leaving the IP packet, and passes the frame to the

internet layer.

At the internet layer, the server’s IP layer examines the destination IP

address in the packet header. If it matches the server’s own IP address,

the packet is accepted. The IP header checksum is calculated to verify the

header's integrity. Corrupted packets are discarded. Finally, the IP layer

removes the IP header, exposing the encapsulated TCP segment. The TCP

segment is passed to the transport layer.

At the transport layer, the TCP layer looks at the destination port number

in the TCP segment header. This directs the data to the correct application

process listening on that port (port 80 for HTTP, 443 for HTTPS). If the

HTTP GET request was split into multiple TCP segments, the TCP layer uses

the sequence numbers to reassemble the data in the correct order. The

TCP checksum is calculated to ensure no errors were introduced during

transmission. Corrupted segments are typically discarded or trigger requests

for retransmission. If the TCP segment checksums are valid and the data is

successfully reassembled, the intact HTTP GET request is handed up to the

application layer.

Step 6. Server responds with the web page

a. At the application layer, the web server software generates an HTTP

response, containing the requested web page’s HTML content.

At the transport layer, the HTTP response is changed to a TCP segment,

encapsulated with TCP headers, and the segments are sent back to

the client.

At the internet layer, the response TCP segments are encapsulated within

IP packets.

At the network interface layer, the packets are converted to frames and

changed into signals, and are then transmitted.

Step 7. User receives the web page

d. At the network interface layer, the user’s network interface card (NIC)

receives the electrical (or other) signals from the physical network and

converts them into an Ethernet frame. After checking the frame, it is

discarded, and the IP packet is sent up to the internet layer.

A2.1 Network fundamentals

b. Theinternet layer inspects and then removes the IP header, exposing the

encapsulated TCP segment. The TCP segment is passed to the transport

layer.

c. Atthetransportlayer, if the TCP segment checksums are valid and the data

is successfully reassembled the intact HTTP GET request is handed up to the

application layer.

d. Atthe application layer, the web browser interprets the HTML content and

displays the web page to the user.

Step 8. Connection termination

Finally, after the web page is successfully transmitted, the TCP connection is

closed through a connection termination process, where FIN and ACK packets

are exchanged to gracefully close the connection.

a. AFIN packet signals that the sender (either the client or the server) has

finished sending data and wants to gracefully close the connection in one

direction.

b. An ACK packet confirms the receipt of data.

TOK

The process of transmitting a web page from a server to a client involves

multiple layers of communication, each handling specific tasks to ensure

accurate data transfer. This intricate process underscores the complexity and

efficiency of modern networking protocols.

To what extent do we rely on invisible systems in our daily lives, and how does

our understanding of these systems (or lack thereof) affect our trust in them?

Few users understand the intricate technical details of networks. To what

extent are network engineers and developers ethically responsible for

ensuring the security and privacy of data transmitted over the internet?

Practice questions

21. Outline the function of the application layer in the TCP/IP model. [2 marks]

22. Outline how the transport layer ensures reliable data transmission. [2 marks]

23. Describe the role of the internet layer within the TCP/IP model. [3 marks]

24. Describe the function of the network interface layerin the

TCP/IP model. [3 marks]

25. Describe the importance of the layered approach of the TCP/IP

model in ensuring the reliability of network communications. [5 marks]

123

I\ Network architecture

Syllabus understandings

A2.2.1 Describe the functions and practical applications of network topologies

A2.2.2 Describe the function of servers

A2.2.3 Compare and contrast networking models

A2.2.4 Explain the concepts and applications of network segmentation

Network architecture refers to the overall design of a network, encompassing its

components, layers, protocals, and how they interact.

A2.2.1 Describe the functions and practical

applications of network topologies
Network topology is the arrangement of devices (nodes) and connections

(links) within a network. Topology can be physical or logical. Physical topology

refers to the actual layout of cables, wires, routers, switches and other hardware

components. Logical topology refers to how data flows across the network,

regardless of the physical arrangement of devices.

Star topology

A star topology is a configuration where each device connects directlyto a

central device (usually a switch). This creates a star-shape with the central device

at the centre.

Reliability of star topologies is high, since each device is independently

connected. A single cable or device failure will not take down the entire network.

Only the affected device becomes isolated. Of course, if the central switch or hub

fails, the whole network fails.

A Figure16 Astartopology Transmission speed is generally fast. Modern switches and hubs minimize

transmission delays. Direct connections between devices and the central node

reduce the potential for bottlenecks that might occur in other topologies.

The scalability of star topologies is good, and adding or removing devices is as

simple as connecting a new device to an available port on the central switch.

However, central switches have a finite number of ports, ultimately limiting how

many devices you can add.

124

A2.2 Network architecture

Data collisions are rare because modern switches largely eliminate collisions by

managing traffic effectively.

The cost of star topologies can be high because they require more cabling than

some alternatives. Each device has its own dedicated line to the centre.

A common example of a star topology is a home network. Most home networks

use a star topology with a central router or wireless access point. Business LANs

often use a star topology, with computers and other network devices connecting

to centrally managed switches.

Mesh topology

Mesh topology is where devices (called nodes) connect directly to as many other

nodes as possible. This creates a mesh-like structure. Full mesh networks are

when every node is connected to every other node. Partial node networks are

when nodes are connected to some but not all other nodes.

Reliability of mesh topologies is very high. If one node fails or a connection

is broken, data can be automatically rerouted through other nodes. This

redundancy provides resilience. Reliability is improved because there is no single

point of failure like a central switch.

Transmission speed depends on factors such as the number of hops data takes,

the strength of connections between nodes, and network traffic. (A hop refers

to data packets being transmitted from one device, such as a router, switch or

gateway, to another device.) Mesh networks can be fast, but may also experience

some slowdown on heavily used paths.

Scalability of mesh topologies involves adding nodes, powering them on,

and placing them within range. Many mesh protocols facilitate automatic

configuration, making scalability very easy.

Intelligent routing algorithms in mesh networks help find the most efficient data

paths, reducing the chances of multiple signals competing on the same channel.

This makes data collisions uncommon.

The cost of a mesh network depends on the type of nodes used. Simple mesh

systems can be affordable, while more sophisticated enterprise-grade nodes will

be more expensive.

Common examples of mesh topologies include modern Wi-Fi mesh systems

(such as Google Nest, Eero) and some communities use mesh networks to

provide internet access in areas with limited infrastructure. Mesh networks can

provide reliable connectivity for sensors and other devices in manufacturing or

warehousing environments.

A Figure 17 A mesh topology

125

A2 Networks

126

Hybrid network

Hybrid networks combine elements from different networking topologies (such

as star and mesh) to optimize performance, reliability and scalability based on

specific needs and conditions. Hybrid networks are designed to leverage the

strengths of multiple topology types, avoiding the limitations inherent to any

single topology. For example, a hybrid network might use a star topology for its

core infrastructure, connecting main servers and routers, while employing a mesh

topology for peripheral devices to ensure robustness and redundancy.

—
TN

e
A Figure 18 Hybrid network topology

The reliability of hybrid networks is typically very high, benefiting from the

combined strengths of the incorporated topologies. The presence of multiple

paths for data transmission ensures that the network can maintain connectivity

even if certain components fail. This redundancy, drawn from mesh topology

aspects, alongside the centralized management from a star or bus topology,

ensures a balance between resilience and control.

Transmission speeds in hybrid networks can vary, influenced by the network'’s

specific configuration and the topologies it integrates. The use of direct

connections in certain segments (akin to mesh topology) can enhance speed

and reduce hops, while centralized elements might streamline data routing and

management, improving overall efficiency.

Hybrid networks offer flexible scalability options, allowing expansion in a manner

that aligns with the network’s evolving needs. Adding new devices or nodes

can be facilitated through the easier-to-scale components of the network, such

as those based on mesh or star topologies. This enables the network to grow or

reconfigure without significant disruptions to existing operations.

A2.2 Network architecture

The incorporation of intelligent routing algorithms is important in hybrid

networks, managing the complexity of data paths across different topologies.

These algorithms optimize the routing of data packets, taking into account

the diverse characteristics of the network's parts to enhance performance and

minimise collisions and congestion.

The cost of implementing and maintaining a hybrid network can vary widely,

depending on the complexity of the design and the types of topologies

integrated. While the flexibility of hybrid networks allows for cost-effective

solutions by combining inexpensive and more costly components judiciously, the

overall expense can be higher than that of more straightforward network designs

due to increased management and maintenance requirements.

Hybrid networks are particularly useful in complex environments where no single

topology meets all the requirements. Examples include large corporate networks

that use a combination of star topology for central offices and mesh topology for

connecting remote workstations and devices. Similarly, smart cities might employ

hybrid networks to integrate various services and infrastructure needs, ensuring

robustness, flexibility and coverage.

Practice questions

26. State one advantage of using a star topology in network design. [1 mark]

27. Outline the primary difference between physical and logical

network topologies. [2 marks]

28. Describe two features of mesh topology. [4 marks]

29. a. Describe the benefits of hybrid network topology using

examples from the text. [4 marks]

b. Describe a real-world application of hybrid network topology. [2 marks]

A2.2.2 Describe the function of servers

A server is a computer system (either hardware or software) that delivers data,

resources or services to other computers (known as clients) over a network.

Any computer can be a server, but servers are generally different from desktop

or laptop computers you might use. They are designed for very high reliability,

fault-tolerance and robust performance.

Domain name system (DNS) server

The function of a DNS server is to translate human-readable domain names (such

as www.google.com) into their corresponding numerical IP addresses (such

as 172.217.16.14). This translation is required for address resolution and packet

routing to work (see A1.2.5). If your local DNS server cannot find the IP address

for a domain name you have requested, it employs recursion by querying higher-

level DNS servers within the internet’s hierarchical structure until it locates the

server that can provide the correct IP address.

127

A
H
L

128

A2 Networks

You learned about DHCP in section

A2.1.1.

A DNS lookup

1. Enter a domain name (such as www.google.com) into your web browser.

2. The request for the domain name’s IP address is sent to your local DNS

server, which is typically operated by your internet service provider.

3. Thelocal DNS server checks its cache to see if it has a recent record of the IP

address for the domain name. If it finds the address in its cache, it returns the

IP address to your computer, and the process ends here.

4. Recursive query:

a. Ifthe P addressis notin the cache, the local DNS server sends a query

to a root DNS server. The root server does not know the IP address

but directs your local DNS to a top-level domain (TLD) server

(for example, for .com domains).

b. The TLD server, in turn, does not store the IP address but directs to

the authoritative DNS server for the domain (which knows the actual

IP address).

5. Authoritative DNS server:

a. The local DNS server then queries the authoritative DNS server for the

domain name you requested.

b. The authoritative server returns the corresponding IP address back to

your local DNS server.

c. The local DNS server caches the IP address for the specified time

(defined by the time to live (TTL) in the DNS record) to speed up

future requests.

6. The local DNS server sends the IP address back to your computer. Your

browser can now use this IP address to connect to the web server hosting the

website you requested.

7. Your browser sends a request to the web server at the resolved IP address to

load the web page.

DNS servers are spread throughout the world, ensuring that requests can be

answered from geographically close locations, reducing latency. DNS servers

store resolved domain-name-to-IP address mappings for a period of time. This

means frequently requested domain names can be served quickly from the

cache, reducing the load on the broader DNS system. For example, once your

DNS server knows acm.org can be reached at IP address 104.17.78.30, it does

not need to look it up again for a while. Large DNS providers use load balancing

techniques to distribute requests across multiple servers, preventing any single

server from becoming overloaded.

DNS systems use multiple servers with replicated data. If one server fails, others

can still provide resolutions. Top-level root servers are particularly resilient, using

multiple, geographically distributed servers to protect against failures.

Dynamic host configuration protocol (DHCP) server

The function of a DHCP server is to automatically assign IP addresses and other

network configuration parameters to devices on a network, enabling them to

communicate with other IP networks.

A2.2 Network architecture

When a device connects to the network, it requests networking settings from

the DHCP server. The DHCP server selects an available IP address from its pool

and assigns it to the device, along with other necessary configuration information

such as subnet mask, default gateway, and DNS server addresses. This process is

known as obtaining a DHCP lease.

The DORA process

Discovery, offer, request and acknowledgment (DORA) is used by DHCP to

assign IP addresses to devices on a network automatically.

* Discovery: The client sends a broadcast packet (DHCPDISCOVER) to locate

available DHCP servers.

e Offer: DHCP servers respond to the client with an offer (DHCPOFFER) that

contains an |P address the client can use.

* Request: The client responds to an offer by requesting (DHCPREQUEST) the

IP address from one of the servers.

* Acknowledgment: The server confirms (OHCPACK) the IP address has

been assigned to the client for a specific lease time.

DHCP servers are configured to manage a range of IP addresses and distribute

them as needed to client devices. This automated management simplifies the

process of connecting new devices to the network, ensures that each device has

a unigue |IP address, and reduces the potential for configuration errors.

For example, when a new smartphone connects to a Wi-Fi network, it sends a

DHCP discover message. The DHCP server responds with an offer that includes

an IP address and other network settings. Once the smartphone accepts the

offer, the server sends an acknowledgment, and the smartphone can then

communicate on the network using the assigned IP address.

DHCP servers can be set up to assign addresses dynamically (choosing from a pool

of available addresses) or statically (assigning a specific address to a device based

on its MAC address). This flexibility allows network administrators to ensure that

certain devices always receive the same IP address, which can be important for

printers, servers, or other network resources that need to have a consistent address.

Large networks often use multiple DHCP servers to ensure reliability and load

balancing. If one server fails, another can take over, providing continuous

network configuration services to client devices. This redundancy is crucial for

maintaining network connectivity and performance.

File server

A file server is a dedicated server used to store and manage data files and

directories in a netwarked environment, allowing multiple users and devices to

access and share files. This central repository for storing documents, images,

videos, and other data types facilitates collaboration and data sharing among

network users while maintaining centralized data management and security.

When a user or a device needs to access a file stored on the file server, they send

a request over the network to the server. The file server, upon authenticating

the user's access rights, grants or denies access to the requested file or folder. If

access is granted, the user can then read, edit, or save changes to the file directly

on the server, depending on their permissions. This centralized access control

helps in managing and protecting the data more effectively.
129

130

A2 Networks

File servers are configured with large storage capacities and robust file

management software to handle simultaneous access requests from multiple

users. This setup ensures that files are available whenever needed and can

be efficiently located and retrieved. For example, a file server might host a

company’s shared documents, making the documents accessible toc employees

from their computers or mobile devices without the need to physically transfer

files using external storage devices.

To enhance performance and reliability, file servers often employ redundancy

and backup solutions, such as redundant array of independent disks (RAID)

configurations and regular backup schedules. This ensures data integrity and

availability even in the event of hardware failures or data corruption.

File servers can be optimized for different scales of operations, from small office

environments to large enterprises, by adjusting storage capacities, network

configurations and access protocols (such as SMB for Windows environments

and NFS for Unix/Linux environments). The choice of file server setup and

configuration depends on the organization’s size, the volume of data handled,

and specific security, performance and accessibility requirements.

Mail server

A mail serveris a specialized server that handles the sending, receiving and

storing of email for users within a network. It acts as a digital post office,

facilitating communication between users by transferring email messages from

one account to another over the internet or within an organization’s internal

network. Mail servers can take the role of mail delivery agent (MDA) or mail

transfer agent (MTA) or both.

Mail servers operate based on standardized email protocols such as simple mail

transfer protocol (SMTP) for sending emails, post office protocol version 3 (POP3)

or internet message access protocol (IMAP) for receiving emails. A mail server

ensures that emails reach their intended recipients and that users can retrieve

their emails from the server.

When a user sends an email, the email client on their device connects to

the SMTP server. The SMTP component of the mail server processes the

outgoing email, determining where to send the message based on the

recipient’s email address, and then forwards the email to the recipient’s mail

server. If the recipient is within the same mail server, the email is directly routed

to the appropriate mailbox.

For incoming emails, the mail server uses either POP3 or IMAP. POP3 allows

email clients to download emails from the server to the client’s device and then

typically deletes the email from the server. In contrast, IMAP synchronizes the

email among multiple devices while keeping the emails stored on the server,

allowing users to access their mail from any device with internet access.

Mail servers are equipped with various security measures, such as spam

filters and antivirus programs, to protect users from malicious emails and to

manage unwanted spam emails effectively. These measures help to ensure

that only legitimate emails reach user inboxes. In more recent times, domain

keys identified mail (DKIM), sender policy framework (SPF) and domain-based

message authentication, reporting and conformance (DMARC) policies are

required for email to be accepted without being flagged as spam.

A2.2 Network architecture

Proxy server

A proxy server acts as an intermediary between a user’s device and the internet,

providing various functionalities such as enhancing security, improving performance,

and ensuring privacy. When a user requests a web page or any online resource,

the request is sent to the proxy server first. The proxy server then evaluates the

request according to its filtering rules—which may involve content filtering, user

authentication, or another policy enforcement—before sending the request to the

internet. Upon retrieving the requested resource, the proxy server relays it back to

the user, optionally caching the content for faster access in future requests.

Proxy Web
SErver

Client

A Figure 19 A simplified version of a proxy server

Proxy servers can perform several key roles:

* By masking the user’s real IP address, a proxy server enhances privacy and

security. It can also prevent direct attacks on an internal network and enforce

access controls to sensitive websites or services.

* Inan organizational or educational setting, proxy servers are used to block

access to specific websites according to content policies, such as sites that

are not safe for work or do not comply with institutional guidelines.

* Proxy servers can store copies of frequently accessed web resources. This

reduces bandwidth usage, speeds up access for users, and reduces latency,

since the information can be served from the proxy server’s local cache

instead of retrieving it from the original source each time.

* They can monitor and log all web requests, allowing organizations to keep

track of internet usage and detect potentially harmful or unauthorized activity.

For example, a company may employ a proxy server to control and monitor

its employees’ internet access. When an employee accesses the internet,

their request goes to the proxy server, which checks the request against the

company’s internet usage policies. If the request is for a website that is not

blocked, the proxy retrieves the content, returns it to the employee’s browser,

and logs the activity for future review. If the website is blocked, the proxy will

deny the request, possibly returning a message explaining the restriction.

Additionally, public proxy servers provide a means for users to conceal their

IP addresses and geographical location, offering a degree of anonymity when

browsing the internet. This is particularly useful for accessing geo-restricted

content or for users in countries with strict internet censorship policies.

Web server

Aweb server is a software and hardware combination that stores, processes and

delivers web pages to clients upon request. When a user enters a URL in their browser

or clicks a link, the browser sends a request to the web server hosting the site. The

server then processes this request and sends back the requested web page, typically

using HTTP protocol, which the browser then renders for the user to view.

131

132

A2 Networks

Web servers operate using HTTP and its secure version, HTTPS, which define

how messages are formatted and transmitted, and what actions web browsers

and servers should take in response to various commands.

Common web servers include Apache, Nginx and [IS.

How web servers work

1. Web servers host the files that make up websites, including HTML files,

style sheets (CSS), JavaScript files and multimedia content. This content

is stored in a manner that makes it easily retrievable and deliverable

upon request.

2. When a web server receives an HTTP request from a client (such as a web

browser), it interprets the request, locates the requested files, and returns

them to the client. If the requested content involves dynamic pages, the

server may need to execute server-side scripts (for example, PHP, Python or

Node js) to generate the content before sending it.

3. Theserver delivers the requested content back to the client over the internet,

ensuring that the content is formatted and encoded in a way that the client’s

browser can interpret and display.

4. Web servers implement security measures, including SSL/TLS encryption

for HTTPS, to ensure secure data transmission. They also manage access

controls and authentication to protect sensitive content.

A web server example

Imagine a small business, “Bekka’s Bakery”, has a website to showcase its

products and allow customers to place orders online. The website is hosted on

a web server. When a customer wants to view the bakery's menu, they enter the

website’s URL into their browser.

* The browser sends a request to the web server hosting the “Bekka’s Bakery”

website.

* The web server receives the request and locates the specific HTML file for the

menu page.

* Ifthe menu page content is static, the server immediately sends this HTML

file back to the browser. If the content is dynamic, the server might first run

some server-side scripts to fetch the latest menu items from a database.

* The server then sends the generated HTML content aver the internet to the

customer's browser, encrypted with HTTPS if supported.

* The customer’s browser receives the HTML file and renders the menu page

for the customer to view.

A2.2 Network architecture

@ Research skills

1. Working individually, research one of these topics.

a. Analyse the importance of DCHP servers in managing netwaork

configurations. Consider how DHCP servers assign IP addresses and

manage essential configuration details for network devices. What

challenges arise in terms of scalability and security, when managing

large networks? How can they be addressed?

b. Evaluate the role of file servers in organisational settings, focusing

on their scalability, reliability, and security measures. Consider how

these servers handle large volumes of data, ensure data availability

and integrity, and protect against unauthorized access.

c. Discuss the function and security considerations of proxy servers.

How do proxy servers enhance network performance and user

security? Think about their role in forwarding client requests to

other servers and discuss how they can cache data to improve

performance and filter requests to enhance security.

Use your research to make a 5 minute presentation—in person or as a video

presentation—to your class or working group.

2. Before you start your research, make a schedule for yourself, including

both the research and presentation preparation stages. Break the project

into smaller tasks. Remember to build in time to evaluate your research,

to make sure you stay focused on the question.

3. Once you have finished your research, decide the key points to include

in your presentation. Think about the presentation from the audience’s

perspective, too: make it succinct and interesting. Consider what

questions people may ask you and be prepared to answer them.

4. Presentyour findings to the class.

Reflect on your research and presentation: What did you do well?

What have you learned about your research and presentation abilities?

What would you do differently if you did it again?

Practice questions

30. State the primary function of a domain name system (DNS) server. [1 mark]

31. Outline the role of a dynamic host configuration protocol

(DHCP) server. [2 marks]

32. Describe two functions of a mail server. [4 marks]

33. Describe the benefits and potential drawbacks of using a proxy

server in an organizational setting. [4 marks]

34. Describe the role of redundancy in the design of

DNS servers. [4 marks]

133

134

A2 Networks

A2.2.3 Compare and contrast

networking models

Client-server model

In the client-server model, a server hosts, delivers, and manages most of the

resources and services, which are requested by the client. The client-server

model is characterized by request/response, where the client requests and the

server responds. This model is centralized, with servers acting as the centralized

points of access.

Client Server

A Figure 20 Client-server communication

Table 4 Advantages and disadvantages of the client-server model

Advantages Disadvantages

Control Central management makes it easier to implement If adequate resources are not devoted to effective

and enforce policies, manage resources, and ensure | management of the server, it will not operate

data consistency. optimally. Put another way, if you do not take care of

the server, it will not take care of you.

Scalability | Although dependent on the server's capacity, it is Scaling up often requires significant investment in

feasible to scale up by upgrading server resources or | server capacity and infrastructure.

adding more servers.

Security Centralized security measures can be more Centralized servers are lucrative targets for

straightforward to administer, offering potentially cyberattacks, which can compromise data integrity

better protection against unauthorised access. and availability.

Efficiency | Servers can be optimized for specific tasks, High client demand can overload servers, leading to

improving the efficiency of data processing and bottlenecks and reduced performance.

resource allocation.

Reliability | With professional maintenance and robust The server is a single point of failure. If the server

infrastructure, servers can offer high reliability and goes down, the services become unavailable to

uptime for clients. all clients.

Real-world applications

Accessing a website using a browser (client) that requests data from a server

hosting the website (server) is a real-world application of the client-server model.

The benefits might be centralized management and updating of website content.

Enhanced security measures can be centrally applied, and you do not need to

waorry about multiple versions of software. However, if the server goes down, the

website becomes inaccessible. Scalability might require significant resources for

traffic management.

A2.2 Network architecture

Using an email client such as Microsoft Outlook to send and receive messages

through a central server such as Microsoft Exchange offers benefits such as

centralized control over security protocols and data storage, and easier backup

and archiving. However, a single point of failure can compromise access

for all users, and there are potentially higher costs for server maintenance

and scalability.

A common task is accessing your bank account through a

banking app or website where transactions are processed on D

central servers. This method of access allows for enhanced —=

security protocols, and centralized transaction processing /

ensures consistency and reliability. Of course, a bank might be a

tempting target for cyberattacks, and any downtime would affect D

all users simultaneously.
L

Peer-to-peer (P2P) model L1
The peer-to-peer model is a decentralized network model where

each participant (peer) has equal capabilities and responsibilities.

Unlike the client-server model, there is no dedicated server. D

Instead, each peer can act as both a client and a server, sharing \

resources and services directly with other peers. This model is i D

utilized in file-sharing networks, blockchain technologies, and -

certain messaging systems. i)
A Figure 21 A peer-to-peer network is one where each

node (peer) is connected to every other node

Table 5 Advantages and disadvantages of the peer-to-peer model

Advantages Disadvantages

Control No central authority, enhancing resilience and Without a central authority, problems can be difficult

eliminating single points of failure. Decentralized. to track down, and usage metrics are difficult to gather.

Control is distributed among peers.

Scalability | Adding more peers increases the network’s Network performance can vary significantly,

resource pool and computational power with depending on the number and capacity of peers.

minimal cost.

Security P2P models are anonymous. This can be seen ...ora drawback, as threats are harder to identify and

as a benefit... address. That being said, lack of accountability can

make P2P networks susceptible to problematic software

(illegal, malware, unethical) being distributed.

Efficiency | Efficient distribution of resources among peers can | Inefficient resource usage can occur if not properly

reduce the load on individual nodes. managed, leading to redundancy and excessive

overhead.

Reliability | The network can continue operating even if some Reliability may be compromised by the transient

peers fail, enhancing overall reliability. nature of peers, leading to potential data availability

issues.

135

A2 Networks

Real-world applications

Using BitTorrent is a method to download or upload files where files are shared

directly between users’ computers without a central server. A major benefit is that

it reduces the need for powerful central servers, and it can be faster for sharing

large files, as multiple peers can transfer data segments simultaneously. Because

it is a P2P model, there is less control over data security and the speed of the

network is dependent on the number of peers (availability may vary).

Skype uses a P2P model for establishing direct connections between users for

voice calls. Benefits include scalability, as the system can handle more users

without needing much infrastructure investment, and potentially better call

quality due to direct routing. Drawbacks include reliability, which can be an issue

if peers have unstable connections. As with any P2P model, there are challenges

in implementing centralized data policies and security measures.

Bitcoin and other cryptocurrencies use blockchain technology, operating on a

P2P network where each node holds a copy of the transaction ledger. Benefits

include decentralization, which enhances security and reduces the risk of fraud,

and there is no single point of failure. Drawbacks include significant energy

consumption for consensus mechanisms in some blockchains, and transactions

can be slower compared to centralized models.

A2.2.4 Explain the concepts and

applications of network segmentation
Network segmentation refers to the division of a computer network into

smaller, distinct segments or subnetworks. This approach serves several

purposes, primarily enhancing performance and security. By breaking down a

larger network into manageable parts, network segmentation allows for more

controlled access, reduced congestion, and tailored security policies.

Internet

\

Lo & = |5
loT General Guest PCI

network network Wi-Fi network

A Figure 22 Anillustration of network segmentation

A2.2 Network architecture

Network segmentation strategically divides a computer network into smaller,

distinct parts or subnetworks. Security is improved on segmented networks

because only allowed traffic can access network resources within the same

segment. Network traffic cannot cross different segments. For example, if you

worked in a bank, you would want to separate the wireless network for guests

from the network with customer accounts. A device within the guest segment

could not cross into the customer account segment.

Segmentation also introduces better performance in networks. For example,

if your home network has two teenage users, each of whom have 37 different

games, videos and music streams playing at the same time, your network is

going to be congested, with poor performance for everyone (including the

parents, who might want to watch a video). But if we segment this network

and create a “teenage” segment and a “parent” segment, then the heavy

teenage traffic will be isolated from the parent traffic. Segmentation confines

network traffic to specific logical areas, reducing the load on the network’s

overall infrastructure.

Dividing a network into segments reduces congestion by distributing traffic

more evenly across the network. This distribution helps avoid overloading

any single pathway, ensuring a smoother flow of data. Network administrators

can identify and upgrade segments experiencing high traffic volumes without

overhauling the entire network, leading to cost-effective performance

enhancements. For example, if a network was not segmented and 50 students

were all streaming high definition video at the same time, they could negatively

impact the entire network. However, if those students were on a segmented

network, they would not impact other segments of the network (but their

segment might be very slow).

Segmentation allows for more manageable network growth. New segments

can be added as needed without disrupting existing configurations, thus

facilitating scalable and controlled expansion. Administrators can monitor

and manage traffic more effectively within segments. This improved oversight

enables quicker identification and resolution of issues, optimizing network health

and performance.

In general, you should think about segmentation as if you are isolating parts of

the same network. Segmentation is a very powerful tool for performance and

security, reducing congestion and efficiently managing network resources.

Methods of network segmentation

Network segmentation involves dividing a network into smaller, distinct

segments. This division can be achieved through various methods, including

subnetting and the use of virtual local area networks (VLANSs).

Subnetting

Subnetting is a technique used to divide a larger IP network into smaller, logically

segmented networks called subnets. This process involves manipulating the

subnet mask, which dictates how the IP address space is divided. _

The host address is the actual IP address assigned to a device on the network.

These addresses must be within the range of the network address and Host address The actual IP

broadcast address, excluding both. As you learned in section A2.1.4, the subnet address assigned to a device on

mask distinguishes between the network portion of an IP address and the T —

host (device) portion.

137

A2 Networks

Devices with the same network portion (as determined by the subnet mask)

are considered to be on the same local network and can communicate

directly. Devices with different network portions need a router to facilitate

communication.

The number 255 is significant in subnetting because it represents a full set of bits

Review binary numbers and in an 8-bit binary number, where each bitis setto 1. In binary, 255 is represented
converting between them, decimal as 11111777,

and hexadecimal numbers in
s T AT 2T To identify the network address, you perform a bitwise AND operation between

the IP address and the subnet mask.

The bitwise AND operation compares each bit of the IP address to the

corresponding bit of the subnet mask.

* [fboth bits are 1, the resulting bit is 1.

* [feitherbitis O, the resulting bit is O.

Worked example 2

Apply the subnet mask 255.255.255.0 to the IP address 192.168.1.10.

Solution
Step 1: Convert to binary

IP address: 192.168.1.10

Binary: 11000000.10101000.00000001.00001010

Subnet mask: 255.255.255.0

Binary: 1TTT11T11.111T1111.11111111.00000000

Step 2: Apply bitwise AND operation

IP address: 11000000.10101000.00000001.00001010

Subnet mask: 11111111.11111111.11111111.00000000

Result: 11000000.10101000.00000001.00000000

Step 3: Convert result back to decimal

Result in binary: 11000000.10101000.00000001.00000000

Convert to decimal: 192.168.1.0

Conclusion: the network address is 192.168.1.0.

Explanation

IP address: 192.168.1.10 (11000000.10101000.00000001.00001010)

Subnet mask: 255.255.255.0 (11111111.11111111.11171111.00000000)

Network address: The result of the bitwise AND operation (192.168.1.0)

shows which network the IP address belongs to.

138

A2.2 Network architecture

Worked example 3

Device A has an IP address 192.168.72.5 and a subnet mask of

PS5 aN25 Se2551()

1. Explain the relevance of the IP address and the subnet mask. What part

of the IP address refers to the network? Which part refers to the host?

2. DeviceB has IP address 192.168.70.5. Device C has IP address

192.168.72.100.

a. Foreach device, identify the network portion and host portion of

the IP, and state if it is on the same subnet as Device A or not.

b. Which of these devices can communicate directly with Device A?

c. Which of these devices needs a router to communicate with

Device A?

Solution

A device with an IP address of 192.168.72.100 would be able to directly

communicate with Device A, but a device with an IP address of 192.168.70.5

would need to use a router in order to reach device A.

1. The device is identified by its IP address. The subnet mask 255.255.255.0

tells you about the IP address: the first three octets (192.168.72) represent

the network portion of the IP address and the last octet (5) represents the

host portion.

2. a. * Device B:192.168.70.5

* Network portion: 192.168.70

* Host portion: 5

Device B is not on the same subnet as device A.

* Device C:192.168.72.100

* Network portion: 192.168.72

* Host portion: 100

Device C is on the same subnet as device A.

Device C can communicate directly with Device A. Devices on the

same subnet can communicate directly without needing a router.

Any device with an IP address in the range of 192.168.72.1 to

192.168.72.254 belongs to the same subnet as device A.

Device B needs a router to communicate with Device A. Since they

are not on the same netwaork, they cannot communicate directly.

139

A2 Networks

Access control list (ACL) A set of
rules that specifies which users or

system processes are granted access

to objects, as well as what operations

are allowed on given objects.

You will learn more about IP

addressing in the next section.

Subnetting improves routing efficiency by reducing the size of routing tables, as

routers only need to store routes to subnets rather than individual IP addresses.

It allows for better management of IP address space, enabling organizations to

allocate IP addresses more efficiently across different departments or geographic

locations. Subnets can be used to isolate network segments, limiting broadcast

traffic and improving security by controlling access between subnets through

routing rules and access control lists (ACLs).

An ACL is a set of rules that specifies which users or system processes are granted

access to objects, as well as what operations are allowed on given objects. Each

entry in an ACL specifies a subject and an operation.

Objects: These are resources such as files, directories or devices that require

access control.

Subjects: These are typically users, groups or system processes that are

attempting to access a resource.

Operations: These refer to actions such as read, write, execute or delete that the

subject can perform on the object.

Virtual local area networks (VLANS)

VLANSs enable the segmentation of a physical network into multiple logical

networks. VLANSs allow devices to be grouped together, even if they are not

connected to the same network switch, and manage network traffic in a way that

is independent of their physical location.

VLANSs offer the flexibility to group devices according to functional,

departmental, or application-specific needs rather than their physical location,

enhancing network efficiency and security. By segmenting network trafficinto

VLANS, sensitive data can be kept separate from other network traffic, reducing

the risk of data breaches. Inter-VLAN routing rules can further enhance security

by controlling which VLANs can communicate with each other. VLANS limit

broadcast domains, reducing unnecessary broadcast traffic on the network.

This containment improves network performance by ensuring that broadcast

trafficis only sent where it is needed.

Subnetting and VLANSs often work together within network segmentation to

optimise both the logical and physical aspects of the network.

VLANSs allow for logical separation without the need for physical separation

of devices. Subnetting can be used in conjunction with VLANs to map logical

segments to specific IP address ranges, enhancing the organization and

management of network resources.

By combining subnetting and VLANSs, netwaorks can achieve a high level of

security and performance optimization. VLANs segment the network, while

subnetting provides an additional layer of segmentation.

A2.2 Network architecture

A small company with 20 employees has a single switch connecting

all devices, including computers, printers and servers. The company

wants to segregate the network into two distinct sections, one for the

accounting department and one for the sales department, to enhance

security and reduce unnecessary network traffic between the two

departments. The company has one switch and does not want to buy

additional hardware.

The accounting department has 10 employees, and the sales department

has 10 employees. The switch has 24 ports.

The network administrator

assigns ports 1-10 to VLAN

10 (Accounting) and ports

11-20 to VLAN 20 (Sales).

The remaining ports can be

used for shared resources or

further expansion. Accounting A Rgure23 A 24-port switch

department devices are

connected to ports 1-10 on the switch. Sales department devices are

connected to ports 11-20.

An accounting department computer is plugged into port 3 on the

switch, making it part of VLAN 10. A sales department computer

is plugged into port 15, making it part of VLAN 20. The result is

network segregation, where computers in VLAN 10 (Accounting) can

communicate with each other but not with devices in VLAN 20 (Sales),

and vice versa. This segregation reduces unnecessary broadcast traffic

and enhances security. The network administrator can apply policies—

such as security or QoS (quality of service}—differently to each VLAN,

according to the needs of each department.

Classless inter-domain routing (CIDR) notation

CIDR notation is a method for specifying IP addresses and their associated routing

prefix. It replaces the older system based on classes A, B and C. CIDR notation

provides a compact and flexible way to define IP networks and their sizes.

The key points of CDR notation are as follows.

Format: CIDR notation combines an IP address with a suffix indicating

the number of bits in the subnet mask. For example, in CIDR notation

192.168.1.0/24,192.168.1.0is the IP address, and /24 indicates that the first 24

bits are the network portion.

Subnet Mask: The number after the slash (/) represents the number of bits

setto 1in the subnet mask. For example, /24 corresponds to a subnet mask of

255.255.255.0. In binary, this is TTTTT111.11111111.11111111.00000000.

Flexibility: CIDR notation allows more efficient allocation of IP addresses by

supporting variable-length subnet masking (VLSM). It enables more granular

control over network sizes, avoiding wasteful allocation of IP address ranges.

141

142

A2 Networks

Worked example 4

CIDR example

Imagine you are given the CIDR notation 192.168.100.0/22

Determine the:

1. subnet mask

2. network address

3. range of IP addresses in this subnet

4. broadcast address.

Solution

Step 1: Determine the subnet mask.

The /22 in the CIDR notation means the first 22 bits are setto 1 in the

subnet mask.

Binary representation of the subnet mask for /22 is:

1111T11.11111111.11111100.00000000

Convert each octet to decimal.

e 11111111 (binary) = 255 (decimal)

e 11111111 (binary) = 255 (decimal)

e 11111100 (binary) = 252 (decimal)

e 00000000 (binary) = 0 (decimal)

Subnet mask: 255.255.252.0

Step 2: Determine the network address.

Convert the IP address and subnet mask to binary and perform a bitwise

AND operation.

IP address: 192.168.100.0

11000000.10101000.01100100.00000000

Subnet mask: 255.255.252.0

1T1T1T11.11111111.11111100.00000000

Perform bitwise AND calculation.

11000000.10101000.01100100.00000000

1T111T11.11111111.11111100.00000000

11000000.10101000.01100100.00000000

Result: 192.168.100.0

A2.2 Network architecture

e Step 3: Determine the range of IP addresses.

Calculate the number of hosts per subnet.

For a /22 subnet mask, the number of host bits is 32 -22 =10.

Number of hosts = 210-2 =1024 - 2 = 1022 (subtracting 2 for network

and broadcast addresses).

The range of IP addresses:

First IP address (Network address + 1): 192.168.100.1

Last IP address (Broadcast address —1): 192.168.103.254

Step 4: Determine the broadcast address.

The broadcast address has all host bits setto 1:

Network address: 11000000.10101000.01100100.00000000

(192.168.100.0)

Hostbits: 00000000.00000011.11111111 (0.3.255in

decimal)

Broadcastaddress: 11000000.10101000.01100111.11111111

(192.168.103.255)

Summary

CIDR notation: 192.168.100.0/22

Subnet mask: 255.255.252.0

Network address: 192.168.100.0

IP address range: 192.168.100.1 to 192.168.103.254

Broadcast address: 192.168.103.255

143

A2.3 Data transmissions

Syllabus understandings

A2.3.1 Describe different types of IP addressing

A2.3.2 Compare types of media for data transmission

A2.3.3 Explain how packet switching is used to send data across a network

W A2.3.4 Explain how static routing and dynamic routing move data across

=3 |ocal area networks

A2.3.1 Describe different types

of IP addressing

The internet protocol (IP)

The internet protocol (IP) facilitates the routing and delivery of packets across

various networks. Central to the internet protocol is an IP address. An IP address

is a unique numerical address assigned to each device connected to a computer

network that uses the internet protocol for communication.

The distinction between IPv4 and IPv6 addressing

There are two types of IP addresses, IPv4 and IPv6. IPv4 is a 32-bit addressing

scheme, resulting in about 4.3 billion possible unique addresses. Addresses are

represented with dotted decimal format, for example, 192.168.1.1. An address

segment cannot be lower than O nor higher than 255. Many IPv4 addresses are

reserved for special purposes (these will be discussed later in this section).

IPv6 is a 128-bit addressing scheme, resulting in approximately 340 undecillion

(3.4 x 10°®8) possible unique addresses. IPv6 addresses are represented as eight

groups of four hexadecimal digits separated by colons (for example, 2001:0db8

:85a3:0000:0000:8a2¢e:0370:7334). Many IPv6 addresses are also reserved for

special purposes.

Table 6 Distinction between |IPv4 and IPv6

Feature IPv4 IPv6

Address size 32-bit address space 128-bit address space

Address representation Dotted-decimal notation Hexadecimal notation with colons

(e.g.,192.168.1.1) (e.g., 2001:0db8:85a3:0000:000

0:8a2e:0370:7334)

Address availability Approximately 4.3 billion unique | About 340 undecillion unique

addresses addresses

Header format

(The header is the beginning of a packet and

has routing information.)

Relatively complex, with 14 fields | Simplified, with 8 fixed fields

IPsec support

(IPsec is a protocol which facilitates encryption,

authentication and data integrity)

Optional Mandatory

A2.3 Data transmissions

The differences between public IP addresses and private
IP addresses

Public IP addresses

Public IP addresses are assigned to devices that directly access the internet.

These addresses are unique across the entire internet, meaning no two devices

can have the same public IP address simultaneously. Managed and allocated

by the Internet Assigned Numbers Authority (IANA) and distributed through

regional internet registries to ensure uniqueness, public IP addresses are used by

servers hosting websites, email servers, and any device that needs to be directly

accessible from the internet. Devices with a public IP address can be accessed

from anywhere on the internet, assuming the appropriate network and security

configurations allow it.

Private IP addresses

Private IP addresses are used within a private network and are not directly

exposed to the internet. These addresses allow multiple devices to communicate

within the same network. They are defined by RFC 1918, which specifies specific

IP address ranges for private use. These ranges are not routed on the internet,

making them reusable by anyone in private networks.

Private addresses are commonly used in home networks, office networks and

other LAN setups for devices such as computers, printers and smartphones.

Devices with a private IP address cannot be accessed directly from the internet

without a form of network address translation (NAT), which we will discuss later

in this section.

Table 7 Common private IP address ranges

Private address range Description

From 10.0.0.0t0 10.255.255.255 This range allows for a single large

private network with 16,777,216

possible addresses (24-bit block).

An example of a private IP address in

this range could be 10.1.2.3.

From 172.16.0.0t0 172.31.255.255 | This range is suitable for multiple

mid-sized private networks, offering

1,048,5/6 possible addresses across

16 contiguous 20-bit blocks. An

example from this range is 172.16.0.1.

From 192.168.0.0to This range is often used for smaller

192.168.255.255 private networks, such as home Wi-Fi

networks. It offers 65,536 possible

addresses across 256 contiguous

16-bit blocks. A common example from

this range is 192.168.1.1, frequently

used as a default gateway address in

home routers.

145

146

A2 Networks

A special note about 127.0.0.1

The IPv4 address 127.0.0.1 is known as the loopback address in IPv4 networking.

It is a special address that is used by a computer to direct network traffic back to

itself. The entire range 127.0.0.0 t0 127.255.255.255 is reserved for loopback

purposes, but 127.0.0.1 is the most commonly used address in this range.

IPv6 uses 0000:0000:0000:0000:0000:0000:0000:0001 for this purpose.

IPv6 has a convenient shorthand notation for this address, ::1, where the double

colon (::) represents a string of consecutive zeros. This shortened notation is the

standard and preferred way of representing the IPv6 loopback address.

The differences between static IP addresses and dynamic
IP addresses

Static IP addresses

A static IP address is permanently assigned to a device or server. Once a device is

assigned a static IP address, the address does not change. Static addresses must be

manually configured and managed, often by a network administrator or by the user,

depending on the network's setup. Can you imagine how much work this would

be if there were thousands of users in your organization? Static IP addresses are

ideal for devices that need to maintain the same |IP address, such as web servers,

email servers, and other devices that require stable addressing. The advantages

of static addressing include ensuring reliable and consistent communication for

services that need to be continuously available and accessible.

Dynamic IP addresses

Dynamic IP addresses are assigned to devices on a temporary basis. Each

time the device connects to the network, it may be assigned a new IP address.

Dynamic IP addresses are allocated by a DHCP server, which assigns IP addresses

from a pool of available addresses. Dynamic addresses efficiently manage

the limited pool of IP addresses by reassigning addresses to different devices

as needed.

The role of network address translation (NAT)

There are not enough IPv4 addresses to assign every device a unique address.

How would you solve this problem? We have an alternative in IPvG, but IPv6

sometimes requires new network hardware and has been slow to be adopted.

Network address translation (NAT) enables private IP addresses to map to a single

public IP address (or a few addresses), drastically reducing the number of public

IP addresses required for each device on the internet.

10.1.168.1

[——

Private IP addresses NAT One public IP address
10.1.1682 — —

pe——

10.1.1683

f—=\ A Figure 24 A NAT maps public IP address to private IP addresses

A2.3 Data transmissions

When a device within the private network initiates a connection to the internet,

the NAT device (typically a router) replaces the device's private IP address in

the packet header with the router’s public IP address before sending it to the

internet. It also modifies the source port number so that replies can be accurately

directed back to the originating device.

For incoming traffic, the NAT device translates the public IP address and port

number back to the corresponding private IP address and port number based on

an internal NAT table that tracks active sessions. This ensures that responses from

the internet reach the correct device on the private network.

You might have thousands of devices within a private network, but thanks to NAT

they would all seem to be coming from a single IP address. This is a powerful tool

in minimizing the number of public IP addresses used.

A2.3.2 Compare types of media for data

transmission

Wired (fibre-optic and twisted pair) and wireless

Fibre-optic cables use pulses of light to transmit data at very high speeds over

considerable distances. These cables contain glass or plastic fibres which

transmit light.

Twisted pair cables use pulses of electricity to transmit data. They consist of

pairs of insulated copper wires twisted together. Twisted pair cables are divided

into two categories: unshielded twisted pair (UTP) and shielded twisted pair

(STP). UTP is the most commonly-used cable in computer networking. STP

includes additional shielding to further reduce interference, making it suitable for

environments with high electromagnetic interference.

Wireless technology uses electromagnetic waves, such as radio frequencies,

infrared and microwaves, to send signals. Common wireless technologies

include Wi-Fi, Bluetooth, and cellular networks.

Factors to consider with data transmission include bandwidth, installation

complexity, cost, range, interference susceptibility, attenuation, reliability

and security.

—l]

< Figure 27 Wireless network

A Figure 25 Fibre-optic cables

A Figure 26 Twisted pair cables

147

A2 Networks

Table 8 Compare types of media for data transmission

Fibre-optic cables Twisted pair cables Wireless

Bandwidth Support extremely high data Provide moderate bandwidth, Bandwidth is limited compared

transmission rates, often sufficient for general office and to wired options and can be

reaching speeds of up to tens of | home internet usage, but lower | affected by the number of

gigabits per second. than fibre-optics. Bandwidth connected devices, distance

varies between categories, with | from the access point, and

Cat 6 and above supporting environmental factors.

higher speeds.

Installation Installation can be complex, Systems are well understood Installation involves setting up

complexity requiring specialized tools and can be installed and access points and configuring

and skills for connecting maintained by technicians network settings, which can be

and splicing. without the need for highly simpler and less invasive than

specialized skills. laying cables.

Cost Installation cost of cables and Relatively inexpensive Equipment costs can be

associated equipment can (especially UTP) and widely moderate, but there are no

be high compared to other available. costs for physical cables.

media types.

Range Supports long-distance Not ideal for long-distance Effective communication range

transmission with minimal signal | transmission without the use of | is limited. Although it can

loss, making it ideal for wide- repeaters to boost the signal. be extended with additional

area network connections. hardware, this adds to the cost

and complexity.

Interference Immune to electromagnetic Still suffer from interference and Susceptible to interference from

susceptibility interference (EMI), allowing data | signal degradation over long other wireless devices, physical

to be transmitted more reliably in | distances or in environments barriers, and environmental

industrial or densely populated with high EMI. factors, which can degrade

urban environment. performance.

Attenuation Very low signal attenuation over | Higher attenuation, impacting Signal strength decreases with

(reductionin long distances, maintaining signal strength and requiring distance and through physical

signal strength | signal integrity. the use of signal boosters for barriers, leading to attenuation

asit travels longer distances. and potential data transmission

through a issues.

medium)

Reliability Very reliable, with low latency Generally reliable within their Reliability can vary, affected by

and minimal signal degradation. | operational limits but can be interference, signal strength,

Not affected by weather impacted by EMI. and capacity issues in high-

conditions. traffic environments.

Security Intercepting data transmitted As with fibre-optics, More vulnerable to

via fibre-optics is challenging, intercepting data transmitted unauthorized access and

enhancing the security of the via twisted pair cables is eavesdropping if not properly

data transmission. challenging, making them secured.

reliable.

148

A2.3 Data transmissions

All of these factors can vary widely depending on specific conditions, technology

standards, and deployment scenarios. Moreover, actual user experiences may

vary significantly from these peak theoretical speeds due to factors like network

congestion, distance from the access point or cell tower, physical obstructions,

and the specific configurations of the netwaork.

Selecting the appropriate media type for data transmission in a network requires

careful consideration of various factors. These factors influence the network’s

performance, cost and overall effectiveness in meeting the demands of its users.

A2.3.3 Explain how packet switching is

used to send data across a network
How exactly are messages passed from your device to another device on

another network?

Packet switching is a method used to send data across a network by breaking

data into small segments known as packets. How those packets are routed is the

main focus of this section.

A Figure 28 Which route should a packet take to efficiently arrive at its destination?

Data segmentation

As data is sent to a destination, the data is changed into a packet (or many

packets, depending on the size of the data being sent). This process is known as

encapsulation. Encapsulation is the process of adding or wrapping data with

necessary protocol information before it is transmitted over the network.

When data is received by the destination, the data is rebuilt into the original

request. This process is known as decapsulation. Decapsulation is the process

of removing protocol information that was added to the data before it was

transmitted over the network.

An example of the process of data segmentation into packets

Imagine you are playing a multiplayer game of Minecraft with a friend online,

and you are building a structure together. Here is how packet switching works in

this scenario.

1. Action initiation

You decide to place a block of stone in your Minecraft world. This action needs to

be communicated to the game server so that your friend, who is also connected

to the same server, sees the block appear in the game.

A Figure 29 A character from

the popular game Minecraft

(online multiplayer mode)

walking forward

150

A2 Networks

2. Data segmentation

The action of placing a stone block is converted into data. This data includes

information about the type of block (stone), the coordinates where it should be

placed, and the player who is placing it. Instead of sending all this data in one big

chunk, the game breaks it down into smaller pieces, known as packets.

3. Packet creation (encapsulation)

Each packet contains a portion of the data related to your action. For example,

one packet might contain the coordinates of the block, while ancther packet

contains the block type (stone). Additionally, each packet is given a routing

header, which includes information like where the packet is coming from (your

computer) and where it needs to go (the game server).

4. Adding control information (encapsulation)

The packets also contain control information to ensure they are delivered

correctly. This might include sequence numbers so the server knows in what

order to reassemble the packets, and error-checking codes to detect if any

packets have been damaged during transmission.

5. Independent transmission

These packets are now sent from your computer to the game server. However,

instead of travelling together as a single large piece of data, they are sent

independently. Each packet can take a different route through the internet

depending on the current network conditions.

6. Routing

As the packets travel through the network, routers along the way decide the

best path for each packet based on network traffic and availability. For example,

one packet might travel through a server in New York, while another might go

through a server in Chicago. The routing decision is made dynamically for each

packet.

7. Arrival at the server

Eventually, all the packets arrive at the game server. Since they might have taken

different routes, they may arrive out of order or at slightly different times.

8. Reassembly at the server (decapsulation)

The game server uses the sequence numbers in the headers to reassemble the

packets into the complete action that you originally performed (placing the stone

block at specific coordinates). If any packets are missing or damaged, the server

can request that those specific packets be resent.

9. Updating the game world

Once the server has reassembled the action, it updates the game world to reflect

the stone block being placed. This update is then communicated to your friend’s

computer in a similar packet-switched manner, so they see the block appearin

the game at the same location.

10. Final display

Your friend’s game reassembles the packets it receives from the server, and the

stone block appears in their game exactly where you placed it, ensuring that both

of you see the same world and can continue building together seamlessly.

A2.3 Data transmissions

Bringing it all together

Remember:

* datais segmented into packets; each packet includes payload (the

actual data) and header information, which contains metadata such as

the destination address, source address, sequence information and error

detection codes

* once all the packets arrive at their destination, they are reassembled in the

correct order to reconstruct the original message; this process relies on

sequence numbers included in each packet's header.

Packet-switched networks send each packet independently. Packets may travel

through different paths to reach the same destination, depending on network

congestion, link failures and routing decisions. Packets are routed based on the

network conditions and the routing table information available at each node

(router). A routing table is a data file in routers that contains rules to determine the

best possible path for forwarding a data packet to its destination.

This flexibility allows the network to adapt to changes, such as traffic load,

ensuring optimal use of resources and maintaining data flow even if some parts of

the network fail. When you draw a picture of the internet, you might draw itas a

cloud because you cannot definitively know what path a packet will take.

The role of switches and routers

Switches manage how data packets are moved within a local network segment or

a LAN. Switches forward data packets based on MAC addresses. They maintain a

MAC address table to efficiently route packets to their correct destination within

the LAN. By doing so, switches contribute to reducing network congestion and

ensuring that packets reach their intended devices directly.

A Figure 30 A 36-port switch

Routers are responsible for forwarding data packets based on IP addresses.

They analyse the destination IP address contained in the packet’s header,

consult their routing table to determine the packet’s next hop, and route

the packet towards its destination across multiple networks. Routers enable

communication between disparate networks, making them essential for the

global interconnectivity of the internet. They assess multiple paths for packet

transmission, choosing the most efficient route based on current network

conditions, which may include considerations of speed, distance, traffic

congestion, or other metrics.

151

152

A2 Networks

A2.3.4 Explain how static routing and

dynamic routing move data across local

area networks
Static routing involves manually configuring routers with specific routes to

network destinations. This process requires network administrators to explicitly

define paths between devices across a LAN and beyond.

Dynamic routing enables routers to automatically discover and maintain routes to

network destinations. Routers communicate using routing protocols to exchange

information about network topology changes. This process allows network paths

to be adjusted dynamically, based on current network conditions.

Static routing

Static routing involves a network administrator entering routing information

directly into the router’s configuration. This information includes the destination

network address, subnet mask, and the next hop address or exit interface.

Each router maintains a routing table that contains the statically configured

routes along with any directly connected networks. This table is used to make

forwarding decisions for incoming packets. When a packet arrives at a router, the

router examines the packet’s destination IP address and searches its routing table

fora matching route. If a matching static route is found, the router forwards the

packet to the specified next hop or exits the interface. If no match is found, the

packet is dropped or sent to a default route if configured.

Static routing is ideal for small networks where routes do not change frequently.

Routes are predefined, making network behaviour more predictable.

Static routes do not require additional processing power or bandwidth to

communicate route information, as there is no need for routers to exchange route

information dynamically. Finally, by controlling exactly which routes are valid, an

administrator can improve the network’s security.

Static routing is not without disadvantages. These include the manual effort to

maintain routing tables as a network grows. Static routes do not adapt to network

changes, such as link failures, which can lead to increased downtime. In larger

networks, configuring static routes becomes complex and error-prone.

Dynamic routing

Dynamic routing involves routing protocols (for example, RIP, OSPF, BGP) which

define how routers communicate and exchange information. Routing protocols

enable routers to discover network destinations and maintain up-to-date routing

information. Routers send and receive routing updates to learn about the

existence of each other and network destinations and importantly, the time to

access neighbouring routers. Routing protocols use algorithms to determine the

best path for packet forwarding based on various metrics (for example, hop count,

bandwidth, latency). When there is a network change (for example, a link failure),

the routing protocol automatically recalculates paths and updates the routing

tables accordingly.

One of the main advantages of dynamic routing is routers can quickly adapt to

changes in the network, such as link failures or additions by finding new paths.

In addition, itis easier to manage in large and growing networks because routes

A2.3 Data transmissions

are updated automatically. Once dynamic routing protocols are configured,

the network can adjust to changes without manual intervention. Many dynamic

routing protocols are capable of selecting the most efficient route based on

various metrics, enhancing network performance.

Among the disadvantages, configuring and maintaining dynamic routing

protocols can be more complex than static routing. Dynamic routing requires

processing power and bandwidth for routers to exchange route information.

The time it takes for all routers to learn about network changes and reach a state

of consistent knowledge can affect network performance (this time is called

convergence). The exchange of routing information can introduce security

risks if not properly secured.

Table 9 Comparison of static and dynamic routing

Factor Static routing Dynamic routing

Configuration | Manually configured by specifying exact routes. Automatically configured through routing

protocols.

becomes cumbersome as the network grows.

Maintenance Requires manual updates for any network change. | Automatically adapts to network changes with

minimal manual intervention.

Complexity Simple to configure for small networks but Initially complex to set up but manages complexity

well in large networks through automation.

Resource usage | Minimal: does not require additional processing

power or memory for route discovery.

Higher: requires more processing power and

memory for route discovery and maintenance.

Convergence | Not applicable, as routes are static and do not

automatically adjust to network changes.

Dynamic protocols ensure the network can

converge to a new understanding of topology after

a change, which can vary in speed.

Scalability Poor: becomes impractical and challenging to

manage as the network size and complexity

increase.

Good: scales well with network size and

complexity due to automatic route adjustment.

Network size Best suited for small to medium-sized networks

where network changes are infrequent.

Better suited for medium-sized to large networks

or networks requiring high availability and

adaptability.

Practice questions

35.a. State an example of an IPv4 address.

b. State an example of a full IPv6 address

(not abbreviated or truncated).

36. Outline the difference between public and private IP addresses.

3/. Outline the advantages and disadvantages of using static

IP addresses versus dynamic IP addresses.

38. Describe the role of Network Address Translation (NAT).

39. List three advantages of using IPv6 instead of IPv4.

[T mark]

[T mark]

[2 marks]

[4 marks]

[2 marks]

[3 marks]

153

v Network security

Syllabus understandings

A2.4.1 Discuss the effectiveness of firewalls at protecting a network

A2.4.2 Describe common network vulnerabilities

A2.4.3 Describe common network countermeasures

A2.4.4 Describe the process of encryption and digital certificates

A2.4.1 Discuss the effectiveness of firewalls

at protecting a network
A firewall is a network security device or software that monitors and filters

incoming and outgoing network traffic at the packet level. Firewalls inspect

packet headers to filter traffic based on IP addresses and ports. Modern firewalls

(also known as next-generation firewalls or layer 7 firewalls) can inspect the

content of packets (not just the headers) and filter traffic.

Firewalls inspect each packet of data which attempts to enter or exit a network,

making decisions about each packet based on predetermined criteria.

A whitelist is a list of approved entities, such as IP addresses, domain names or

applications, which are allowed to communicate with the network. Traffic which

matches a whitelist entry is automatically permitted, ensuring that known safe

sources or necessary business applications have unimpeded access.

A blacklist contains identifiers such as IP addresses, domain names or

applications which are not approved. Blacklists block network traffic deemed

harmful or unnecessary for business operations, helping to prevent attacks from

known malicious sources.

Firewalls are configured with a set of rules which specify which types of traffic

are allowed or blocked based on attributes such as source and destination

IP addresses, port numbers, and protocols (TCP/UDP). These rules are

prioritized and processed in sequence. The firewall examines each packet

against these rules until a match is found, at which point the corresponding

action (allow or block) is taken.

TOK

The term firewall originally referred to physical walls within buildings designed

to prevent the spread of fire. Over time, it came to be used to refer to network

security systems too.

How can using figurative language help in the acquisition of knowledge?

154

A2.4 Network security

Strengths and limitations of firewalls

Table 10 Strengths of firewalls

Access control Firewalls control access to network resources. By filtering incoming and outgoing

traffic based on IP addresses, domain names, ports and protocols, they ensure

that only authorized traffic can access the network, significantly reducing the risk of

unauthorized access.

Traffic monitoring and logging | Firewalls monitor all network traffic, allowing for detailed logging and real-time alerts on

suspicious activities. This capability is vital for identifying and responding to potential

threats promptly.

Versatility and scalability Modern firewalls are highly versatile, offering capabilities beyond simple packet filtering,

such as VPN support, intrusion prevention systems (IPS) and deep packet inspection

(DPI). They can be scaled to accommodate the growing network demands of an

organization.

Application-level security Application layer (or next-generation) firewalls can inspect the content of the data

packets, providing security measures for specific applications. This allows for more

granular control and protection against application-level attacks.

Table 11 Limitations of firewalls

Internal threats Firewalls are less effective against threats that originate from within the network, such as from

a malicious insider. Since firewalls primarily control ingress and egress traffic, their ability to

mitigate internal risks is limited.

Sophisticated attacks Advanced persistent threats (APTs) and some forms of malware can bypass firewall

protections through encrypted traffic, zero-day vulnerabilities, or by masquerading as

legitimate traffic, making it challenging for firewalls to detect and block such threats.

Configuration and Properly configuring and managing firewalls requires a significant level of expertise.

management complexity | Misconfigured firewalls can introduce security vulnerabilities or block legitimate traffic,

hindering network operations.

Performance impact Inspecting and filtering traffic can introduce latency, especially if deep packet inspection or

other resource-intensive processes are involved. This can impact the performance of critical

applications and services.

Network address translation (NAT) to enhance network
security

NAT operates by modifying network address information in the IP header of

packets while they are in transit across a traffic routing device. From a security

perspective, NAT provides several benefits.

Review section A2.3.1, which

discusses NAT in depth.

One of the most notable security features of NAT is IP masquerading, where

multiple devices on a private network use one public IP address for all external

communications. This hides individual IP addresses of devices on the internal

network from the external world, making it more difficult for attackers to directly

target internal network devices.

By controlling which internal addresses are translated and allowed to

communicate with the external network, NAT serves as a rudimentary form of

access control. This can help prevent unauthorized access to certain parts of the

network or restrict internet access to specific devices.

155

156

A2 Networks

A2.4.2 Describe common network

vulnerabilities

Table 12 Common network vulnerabilities

Vulnerability Description and example

Distributed denial of | Aims to overwhelm a website or online service with excessive traffic from multiple sources,

service (DDoS) rendering it inaccessible to legitimate users.

Example: An e-commerce site is overwhelmed with traffic from thousands of infected

computers, causing it to crash during a major sales event.

Insecure network Protocols that lack security measures, making them vulnerable to interception and exploitation.

protocols Example: Using Telnet or FTP (insecure protocols) for remote server access allows potential

eavesdropping on credentials and data.

Malware Malicious software designed to damage, disrupt, or gain unauthorized access to systems.

Example: A ransomware attack encrypts files on the victim's computer, demanding payment

for decryption keys.

Man-in-the-middle

(MitM) attacks

The attacker secretly intercepts and possibly alters the communication between two parties

who believe they are directly communicating with each other.

Example: An attacker intercepts a Wi-Fi connection at a café to capture credit card information

sent during an online purchase.

Phishing attacks Fraudulent attempts to obtain sensitive information such as usernames, passwords and credit

card details by disguising oneself as a trustworthy entity in electronic communications.

Example: An email that appears to be from a bank asking recipients to confirm their account

details on a fake website.

SQLinjection An attack that involves inserting malicious SQL statements into an input field for execution, to

manipulate or exploit SQL databases.

Example: Entering a specially crafted SQL command in a website’s search box that causes the

site to reveal sensitive user information.

Cross-site scripting

(XSS)

Avulnerability in web applications that allows attackers to inject malicious scripts into content

viewed by other users.

Example: A comment on a blog that contains a script which, when viewed, steals cookies from

other users.

Unpatched software Software that has not been updated with the latest security patches, making it vulnerable

to exploitation.

Example: An operating system that has not been updated, allowing attackers to exploit

known vulnerabilities.

Weak authentication Security measures that are easy to bypass or crack, often due to simple or predictable

passwords, or lack of multifactor authentication.

Example: A website that only requires a username and a simple password, without requiring

any additional form of verification.

Zero-day exploits Attacks that take advantage of a previously unknown vulnerability in software or hardware,

before the developer has released a patch or the public is aware of it.

Example: An attacker discovers a flaw in a popular browser and develops code to exploit it,

spreading malware before the issue is publicly known and patched.

A2.4 Network security

A2.4.3 Describe common network

countermeasures

Table 13 Common network countermeasures to mitigate network vulnerabilities

Policy Description and example

Content security

policies (CSPs)

A browser-side mechanism that helps prevent malicious code injection attacks, such as cross-site

scripting (XSS). A CSP dictates from which domains and sources the browser can load scripts,

stylesheets, images or other resources.

Example: A website sets a CSP that only allows scripts to load from its own domain and a trusted

content delivery network (CDN). This blocks attempts to inject malicious scripts from unknown sources.

Complex password

policies

Rules enforcing the use of strong passwords (a mix of upper/lowercase letters, numbers, symbols,

minimum length) that are harder to crack. These policies often include password expiration and

preventing the reuse of recent passwords.

Example: A company requires employees to use passwords that are at least 12 characters long

and include a mix of uppercase, lowercase, numbers and symbols.

Encrypted protocols Using protocols like HTTPS (the secure version of HTTP) that encrypt the communication between

web browsers and servers. This prevents eavesdropping and man-in-the-middle (MitM) attacks,

safeguarding sensitive data in transit.

Example: You visit an online store with “https://” in the address bar, indicating that your credit

card information will be encrypted during transmission.

Secure socket layer Digital certificates installed on web servers to enable the use of HTTPS. They validate the server’s

(SSL) certificate / identity to the client, ensuring you are connecting to the legitimate website.

transport layer
security (TLS) Example: There is a padlock icon in your browser's address bar when visiting your bank’s website.

certificate This signifies the presence of a valid SSL/TLS certificate.

Update software Regular patching of operating systems, applications, and firmware fixes known vulnerabilities.

This reduces the “attack surface” that bad actors can exploit.

Example: Your operating system prompts you to install a critical security update that patches a

recently discovered vulnerability.

Distributed denial

of service (DDoS)

mitigation tools

Specialized services or software designed to detect and filter out massive amounts of malicious traffic

in a DDoS attack. They help ensure that legitimate users can still access websites and services.

Example: A large news website comes under a DDoS attack. Their mitigation tools detect the

surge in traffic, filter out malicious requests and maintain website availability for legitimate users.

Input validation

(filtering,

whitelisting)

Techniques used in web applications and software to ensure that user-submitted data is in the

correct format and does not contain malicious code. Filtering removes unwanted characters,

while whitelisting only allows specific, pre-approved characters or patterns.

Example: You try to create a username on a website with the code alert (XSS’). The input

validation blocks this attempt, preventing a potential cross-site scripting attack.

157

158

E@

A2 Networks

Policy Description and example

Email filtering

solutions

Detect and block spam, phishing emails, and malware that frequently comes through email

attachments. These solutions use advanced analysis to identify harmful patterns and known

malicious senders.

Example: An email filter blocks a phishing email disguised as an invoice from a familiar vendor

because it detects suspicious language and a mismatched sender address.

Intrusion detection

systems (IDS)

Network or host-based systems that monitor for suspicious activity or policy violations.

They raise alerts when they detect potential attacks, but do not directly block the traffic.

Example: An DS on a company network detects unusual port scanning activity likely aimed at

finding vulnerable systems.

Intrusion prevention

systems (IPS)

Similar to IDS, these systems have the capacity to take proactive action to stop detected attacks,

such as blocking malicious traffic.

Example: An IPS notices four consecutive failed logins from the same IP address and blocks

the IP address from access.

Multi-factor

authentication (MFA)

A requirement for multiple forms of verification to access systems, reducing the risk of

unauthorized access.

Example: MFA might require a standard password plus a one-time password (OTP) so that users

must enter a password along with a time-sensitive one-time code. The OTP may be generated

by an app or sent via SMS. This increases the difficulty of compromising an account because it

requires more than just a password.

Virtual private

network (VPN)

Extends a private network across a public network, creating a secure and encrypted connection

between devices and the private network. This encryption ensures that data transmitted

over the VPN is protected from unauthorised access. Refer to section A2.1.1 for more detail.

Security testing and employee training

Regular security testing and employee training should not be seen as one-time

events. Continuous updates and reinforcement are important in a rapidly shifting

threat environment.

Tailored training is essential. Employees in different roles require specific training

relevant to their job functions and data access.

Regular security tests, such as penetration tests and vulnerability scans,

proactively search for weaknesses within your systems, software and networks.

These tests mimic real-world attack methods to uncover exploitable flaws before

cybercriminals do. The cybersecurity landscape is constantly changing as new

attack techniques and vulnerabilities emerge. Frequent testing ensures you

remain updated on your security posture and can adapt defences as needed.

Security testing not only reveals issues but also validates that your

countermeasures (firewalls, IDS/IPS, and so on) are correctly configured and

working as intended. Many industries, such as finance and healthcare, have

regulations mandating regular security testing and audits. These tests provide

evidence of your organization’s commitment to security.

Employees are often the most vulnerable entry point for cyberattacks. Attackers

use social engineering, phishing emails and other tactics to trick employees

into giving up credentials or downloading malware. Effective training

transforms employees from potential liabilities into your first line of defence.

A2.4 Network security

They learn to recognize phishing attempts, handle sensitive data responsibly,

spot unusual activity, and follow security best practices. Regular training

reinforces security concepts and procedures, minimizing the risk of mistakes that

could lead to security breaches. A security-aware workforce understands threats

and actively reports suspicious activity to [T teams. They become partners in

maintaining a robust security posture.

Security testing results highlight areas where employees require more training.

For example, if 2 phishing test reveals a high rate of success, training can focus

on phishing awareness and email security. Security teams gain valuable data on

employee awareness from training quizzes and simulations. This data helps guide

the allocation of security resources and future training plans.

Training and testing, when combined, establish a clear understanding of security

expectations for employees. This encourages greater accountability and a shared

responsibility for data protection.

Wireless security measures

Wireless security goes beyond just securing your Wi-Fi network name and

password. While encryption (WPA2 or WPA3) is important, MAC filtering,

whitelists and blacklists add another layer of defence for your wireless network.

Every network interface card (NIC) on a device, such as a laptop or phone, has a

unique identifier called a MAC address. MAC filtering allows you to specify a list

of authorized MAC addresses that can connect to your Wi-Fi network. It prevents

unauthorized devices from connecting, even if they crack your Wi-Fi password.

MAC addresses can be spoofed (faked) by determined attackers. Newer devices

may have random MAC addresses for privacy reasons, requiring constant

updates to the filter list.

A whitelist is a list of approved MAC addresses that are explicitly allowed to

connect to your network. Any device not on the whitelist is denied access.

A blacklist, on the other hand, is a list of specific MAC addresses that are

explicitly denied access to your network, even if they know the password.

Whitelisting offers a more secure approach as unknown devices are automatically

blocked. Blacklists require knowing the MAC addresses of all authorized devices

beforehand, which can be cumbersome for a dynamic environment.

MAC filtering, whitelists and blacklists are most effective when combined with

strong WPA2/WPA3 encryption. Encryption scrambles the data transferred over

your Wi-Fi network, making it unreadable even if someone manages to connect.

A skilled attacker with the right tools might still be able to bypass them.

A2.4.4 Describe the process of encryption

and digital certificates
Encryption is the process of converting data into a coded form to prevent

unauthorized access. It involves using algorithms to transform plaintext into

ciphertext, a scrambled version of the original data that can only be read

if decrypted. Digital certificates, also known as public key certificates or

identity certificates, are electronic documents used to prove the ownership

of a public key.

159

A2 Networks

(O
Search online for “Alice and

Bob examples”. Learn about the

histary of Alice and Bob, and

how they are used in discussions

about cryptographic systems and

protocols.

Symmetric and asymmetric cryptography

Symmetric cryptography is a method of encryption where the same key is used

for both encryption and decryption of data. This key, often referred to as a secret

key, must be shared between the communicating parties in a secure manner.

Symmetric encryption algorithms are typically fast and efficient, making them

suitable for encrypting large volumes of data. However, the requirement for key

exchange over a secure channel can be challenging in terms of key management,

especially in systems with a large number of users.

Imagine Alice and Bob want to communicate securely. They decide to use

symmetric encryption with a shared secret key. Alice chooses a secret key and

securely shares it with Bob in person.

1. Alice writes a message: “Meet me at noon.”

2. She encrypts this message using the secret key and the symmetric encryption

algorithm, resulting in ciphertext (a scrambled message).

3. Alice sends the ciphertext to Bob over an insecure channel (such as the

internet).

4. Bob receives the ciphertext and uses the same secret key and algorithm to

decrypt it, recovering Alice's original message: “Meet me at noon.”

The same key used for encryption is also used for decryption, and it is important

that the key is shared securely between Alice and Bob. If a nefarious hacker had

the secret key, then the hacker could also read the message.

Asymmetric cryptography, also known as public-key cryptography, involves a

pair of keys for each user: a public key and a private key. The public key is openly

distributed and can be used by anyone to encrypt data intended for the owner

of the pair. Conversely, the private key is kept secret by the owner and is used

to decrypt data encrypted with the corresponding public key. Asymmetric

cryptography also enables digital signatures, where a user can sign data with

their private key, and others can verify the signature with the user’s public key.

This method solves the key distribution problem of symmetric cryptography, but

it is generally slower due to the computational complexity of the algorithms used.

Imagine that Alice wants to send Bob a secure message, and they decide to

use asymmetric encryption. Bob generates a pair of keys: a public key, which he

shares with Alice, and a private key, which he keeps secret.

1. Alice writes a message: “Meet me at noon.”

2. She encrypts her message using Bob's public key.

3. Alice sends the encrypted message to Bob.

4. Upon receiving it, Bob uses his private key to decrypt the message, reading

Alice's original text: “Meet me at noon.”

The message is encrypted with Bob’s public key, which anyone can use to

encrypt messages for Bob. However, only Bob can decrypt the message with his

private key, ensuring the message'’s confidentiality. This method allows secure

communication without needing to share a secret key in advance.

A2.4 Network security

Table 14 Key differences between symmetric and asymmetric cryptography

Feature Symmetric cryptography Asymmetric cryptography

Key types Single key (secret key) used for both encryption Two keys: a public key for encryption and a private

yp and decryption. key for decryption.

Key Keys must be shared securely between parties, Public key_s. canbe fre(?ly d|str|buted, V_Vhll_e pf'vate
L . keys remain confidential, easing key distribution

distribution posing a challenge for large systems.
challenges.

Encryption Generally faster due to simpler algorithms. Slower_ bec_ause of the complex mathematical

speed operations involved.

Often used for secure key exchange, digital

Use cases Suitable for encrypting large volumes of data due | signatures, and situations where secure

to its efficiency. communication is required without prior

key exchange.

. Depends on the secrecy of the key and secure key Prowdgs ahigh Iew_el O]f secun‘Fy, especially
Security for online communications, without the need

exchange methods.
for secure key exchange.

. Less demanding on computational resources, More demanding due to the complexity of the
Computational . . - . . - .
resources making it more efficient for devices with limited algorithms, requiring more processing power for

processing power. encryption and decryption.

The role of digital certificates

A digital certificate is an electronic document that uses a digital signature to bind

a public key with an identity—information such as the name of a person or an

organization, their address, and so on. The certificate can be used to verify that

a public key belongs to an individual, organization, or device. Digital certificates

are issued by trusted entities called certificate authorities (CAs), which verify the

certificate holder's identity before issuing the certificate.

Imagine Alice owns a website and wants to secure her site to protect her

users’ information. To do this, she needs to implement HTTPS on her website,

which requires a digital certificate. The underlying mechanism for this secure

communication is the TLS protocol, or its predecessor, SSL.

1. Alice generates a key pair: a public key and a private key.

2. Shethen submits a certificate signing request (CSR), which includes her

public key and website information, to a CA.

3. The CA verifies Alice’s identity and the authenticity of her website. Upon

successful verification, the CA creates a digital certificate for Alice's website,

signing it with the CA’s private key.

4. Alice installs this digital certificate on her web server.

Now, when a user visits Alice’s website, their browser checks the digital

certificate. Since the certificate is signed by a trusted CA, the browser

establishes a secure, encrypted connection using the public key in the

certificate. This process is largely invisible to the user but ensures that the

communication between the browser and Alice’s website is secure.

HTTPS is a very common place to encounter digital certificates in use, but there

are other use cases of digital certificates you should be aware of.

162

A2 Networks

SSH is commonly used for secure remote login and other secure network

services over an unsecured network. SSH traditionally uses password-based

authentication, but it can also be configured to use SSH keys (a form of digital

certificates) for authentication. In this setup, a user generates a pair of keys:

a private key kept secret and a public key placed on the server. Authentication is

performed by proving possession of the corresponding private key.

Digital certificates are also used for code signing, where developers sign their

software or code with a digital signature. This signature verifies the software’s

source and ensures that it has not been tampered with since it was signed.

When users download or run the signed software, their system checks the digital

signature using the public key in the certificate. If the signature is valid, it indicates

that the software is genuine and has not been altered.

VPN often use digital certificates for client and server authentication. In a typical

VPN setup using protocols such as IPsec or SSL/TLS, a server presents a digital

certificate to the client and, optionally, the client can also present a certificate

to the server. This mutual authentication process ensures that both parties are

who they claim to be before establishing the encrypted VPN tunnel. Digital

certificates in VPNs enhance security by adding a layer of authentication on top of

encryption.

Digital certificates are also used for signing digital documents (PDFs, Word

documents, and so on) to verify the signer’s identity and ensure the document’s

integrity has not been compromised since it was signed. This application is

essential in legal, financial and official communications where authenticity and

non-repudiation are critical.

The use of public and private keys in asymmetric

cryptography
In asymmetric cryptography, also known as public-key cryptography, two

different but mathematically related keys are used: a public key and a private key.

The public key is used to encrypt data. When someone wants to send a secure

message to the key owner, they encrypt the message using the recipient’s public

key. This ensures that only the recipient can decrypt the message, as only they

possess the corresponding private key.

Here is a short summary of how a public key is used to encrypt data.

1. The sender must obtain the recipient’s public key. This can be done through

a public directory, a digital certificate, or directly from the recipient.

2. Thesenderwrites the message they intend to send. If the message is lengthy or

requires additional security measures, it might first be compressed or hashed.

3. Thesenderuses the recipient’s public key and an asymmetric encryption

algorithm to encrypt the message. Common algorithms include RSA, ECC

(elliptic curve cryptography), and ElGamal, each with its own method for

using the public key to encrypt data.

The private key is used to decrypt the data encrypted with the corresponding

public key. In the context of secure communications, when a message is received

which has been encrypted with the recipient’s public key, the recipient uses their

private key to decrypt it. This process ensures confidentiality, as only the intended

recipient can access the decrypted information.

A2.4 Network security

In digital signing, the private key is used to sign a document or a piece of data.

The signer generates a hash of the document and then encrypts this hash with

their private key, creating a digital signature. This signature is then attached to

the document.

To verify a digital signature, the recipient (or any party wishing to verify the

signature) uses the signer’s public key to decrypt the attached signature, thus

revealing the hash. The recipient then generates a new hash of the received

document and compares it to the decrypted hash. If they match, it confirms that

the document has not been altered since it was signed and that it was indeed

signed by the holder of the corresponding private key, thus verifying the integrity

and authenticity of the document.

@ Research skills

Hash functions are algorithms that take an input (or “message”) and return a

fixed-size string of bytes, typically a digest that is unique to each unique input.

They are designed to be one-way functions, making it computationally infeasible

to reverse the process and derive the original input from the hash output. Hash

functions are widely used in cryptography for ensuring data integrity, generating

unique identifiers, and supporting secure password storage.

Imagine you have a message, “Hello, world!” and you apply a simple hash

function to it, such as MD5.

Input: “Hello, world!”

After applying the MD5 hash function, you get the output (digest).

Output: “fc3ff98e8c6a0d3087d515c0473f8677"

This output is a unique representation of the input message. If you slightly

alter the input, even just changing “Hello, world!” to “hello, world!”

(note the lowercase “h”), the hash output will be dramatically different,

demonstrating the sensitivity of hash functions to input changes.

Use web-based resources to find information about hash functions.

* What are the advantages and disadvantages of MD57

* Research at least one other hash function and compare it with MD5.

Explain when you would and would not use each function.

Encryption key management

An encryption key is a string of bits used by encryption algorithms to encrypt

data. This key dictates the output of the encryption process, and the same key

(in symmetric encryption) or a corresponding key (in asymmetric encryption) is

required to reverse the transformation, making the original data readable again.

If you have the key, you can open the lock.

Encryption key management refers to the processes and policies for handling,

storing and protecting encryption keys.

Proper key management ensures that encryption keys are only accessible to

authorized entities. Compromised keys can lead to unauthorized data access,

negating the benefits of encryption. By securely managing keys, organizations

can reduce the risk of data breaches. Even if data is intercepted, it remains

protected if the keys are secure. Many regulatory standards, such as GDPR,

163

A2 Networks

HIPAA and PCI DSS, mandate strict management and protection of encryption

keys as part of their data protection requirements. Non-compliance can result in

significant fines and legal consequences.

Effective key management ensures that keys are available when needed. Loss of

an encryption key can result in the loss of access to critical data, potentially

halting operations. Part of key management involves backing up keys securely,

ensuring they can be recovered in the event of accidental deletion or loss,

without compromising their security. As organizations grow and adopt new

technologies, their key management strategies need to scale accordingly.

Efficient key management solutions can adapt to increasing volumes of keys

and evolving cryptographic standards.

Practice questions

40. Qutline the strengths and limitations of using firewalls to protect

a network. [4 marks]

41. Describe how network address translation (NAT) enhances

network security. [4 marks]

42. Describe how a specific network countermeasure mitigates a

common vulnerability. [3 marks]

43. Distinguish symmetric and asymmetric cryptography,

emphasizing their differences and applications. [6 marks]

@ Linking questions

1. Do networks and databases use the same form of encryption

algorithms (A3)?

2. How do cloud computing and distributed systems utilize networking to

deliver services (A1.1.9)?

3. How do the concepts of binary and hexadecimal data structures relate to

network communications (B2)?

4. Are similar ethical principles needed when transmitting data over a

network and using data in machine learning algorithms (TOK)?

5. How can network types or transmissions impact database

performance (A3)?

6. What are the similarities and differences between network security and

database security (A3)?

7. How do network technologies influence machine learning

algorithms (A4)?

End-of-topic questions

End-of-topic questions

Topic review
1. Using your knowledge from this topic, A2, answer the guiding question as

fully as possible:

What are the principles and concepts that underpin how networks operate?

Exam-style questions
2. Describe the purpose and characteristics of a wide area

network (WAN). [4 marks]

3. a. Outline two examples of the use of a personal area

network (PAN). [4 marks]

b. Describe the function of network devices in a PAN. [2 marks]

4. a. Describe the purpose and benefits of virtual private

networks (VPNs). [3 marks]

b. State one limitation of VPNs. [1 mark]

E 5. Describe the function of each layer within the TCP/IP model. [4 marks]

6. a. Describe the purpose of cloud computing. [3 marks]

Describe the benefits of cloud computing. [3 marks]

c. Describe the limitations of cloud computing. [3 marks]

7. a. Describe the concept of edge computing. [3 marks]

b. Describe the benefits of edge computing. [3 marks]

c. Qutline one example of edge computing. [2 marks]

8. Describe the purpose distributed systems. [3 marks]

9. a. Describe the function of modern digital infrastructure. [4 marks]

b. Outline two examples of networks in real-world use. [4 marks]

10. Describe different types of IP addressing. [3 marks]

11. Distinguish between IPv4 and IPv6. [4 marks]

12. Qutline two types of media for data transmission. [4 marks]

13. Explain how packet switching is used to send data across a network,

including the processes of encapsulation and decapsulation. [6 marks]

14. Describe the differences between static and dynamic IP addresses. [4 marks]

15. Describe how static routing and dynamic routing move data across

local area networks. [4 marks]

16. Discuss the effectiveness of firewalls at protecting a network. [6 marks]

17. Outline two common network vulnerabilities. [4 marks]

18. Outline two common network countermeasures. [4 marks]

19. Describe the difference between symmetric and

asymmetric cryptography. [4 marks]

E 20. Describe the importance of regular security testing. [3 marks] 165

A3
1

‘|"|'I | Databases

What are the principles, structures and operations

that form the basis of database systems?

Databases are ordered data repositories. They are used to store dataina

language c d to query and manipulate the data. Many

databases use relationships to understand the connections between

the data being stored. Understanding the connections enables you to

discover patterns and trends within the data. The operations that can be

A\ A Database fundamentals

Syllabus understandings

A3.1.1 Explain the features, benefits and limitations of a relational database

A3.1.1 Explain the features, benefits and

limitations of a relational database

A database is a systematically stored collection of data. The datais stored ina

logical manner, usually in several interconnected tables. You probably interact

with databases everyday without even being aware of it. Here are some examples

of databases that you may have had interactions with.

Retail management databases: If you use an online shop you are probably

going to be interacting with a database as they are used to keep track of the

products being sold, the customers buying the products, and the companies

supplying the products.

Social media: If you use social media you are interacting with elements of a

database. Your profile is part of the records they store about people, your posts

are stored in records, and interactions you make across the platform are stored.

Medical records database: Medical records are stored in databases, and any

interactions you have with a doctor or specialist are stored within a file, as well as

information about the staff in the medical establishment and treatments they offer.

Data might be stored in a single entity (known as a flat file). The problem with

storing data in a flat file database is that data is often repeated throughout

the entity. This leads to data inconsistency because, if there are several similar

versions of the same data, it is challenging to know which is the correct data.

It also means that deleting data requires looking through masses of data in the

flat file, trying to ensure that all traces of the data are removed.

Another problem could be the volume of data being stored. In the flat file model,

lots of data is repeated, which uses up valuable storage space very quickly.

Therefore, databases are usually splitinto several entities that have links (known as

relationships) between them.

You almost certainly interact with a database on a regular basis.

One application of databases is to store information about users

in online games.

For example, if you play a massively multiplayer online role-playing

game (MMORPG) game, such as Lost Ark, a database will be used to

track your achievements, your transactions, your in-game chats, your

friend list and your inventory. When you save the game, your current

status is updated in the database, ready to reload when you rejoin

the game.

Entity A table within a database.

167

A3 Databases

Owner | Owner Address | Patient Name Type VetlD | Name Address | Date Treatment | Type Cost

ID Name ID

1029 Alison 12 1011 Oskar Dog 4400 Rachel 345 23/05/25 |Worming | Tablet 50
Bachman | Green Ridley

Lane St
20192 99554

1922 Aria 458 1012 Seb Cat 4100 Lucy 29 23/05/25 | Broken Surgery | 400
Mathers Rigistr Entle Tail

4993 Street.

3049

1029 Alison 12 3999 Jaques Hamster | 4400 Rachel 345 23/05/25 |Cutof Medication| 50
Bachman | Green Ridley Paw

Lane St

20192 99554

2032 Theo 45 2393 Kai Dog 4400 Rachel 345 23/05/25 | Broken Surgery | 450
MNaidoo Rue Ridley Leg

Martignac St
99554

2032 Theo 45 2393 Kai Dog 4400 Rachel 345 17/08/25 | Cast Surgery | 200
Maidoo Rue Ridley Remowval

Martignac St

99554

A Figurel Anexample representation of a flat file database of clients of a veterinary practice

As you can see from the figure, a flat file database is very inefficient and has

Anomaly An issue that can occur Insert anomaly: You cannot add details for a vet without adding information

because of incorrect handling of about a patient and an owner, meaning that a vet has to treat a patient before

Bl e d el sEss being added to the database.

Deletion anomaly: You cannot delete data without all data in the record being

deleted. For example, if you delete all the information about a vet then you lose

all the information about the parent and owner.

Update anomaly: If an update is needed (such as a change of address) and you

do not change all records, then you will have different data in the database and

no longer know which is the correct version.

One of the biggest databases in the world is that of the database is used by the government of the United States

Central Intelligence Agency (CIA) in the United States of to make decisions about political policies.

America. The CIA also maintains the World Factbook. This

section of their database is accessible to the public and

free to use. The World Factbook stores facts about the

history, people and geography of the world, such as:

YouTube also utilizes a massive database. Every day, more

than 5 billion videos are watched on YouTube, more than

any other video hosting website. Information stored about

videos includes the account publishing the video, the

* Cheomseongdae (which means “star-gazing tower” length, the style of video, and possibly linked content,
in Korean) is the oldest surviving astronomical enabling users to continuously watch videos they find
observatory in Asia interesting. YouTube is designed for entertainment, and in

+ theworld’s largest mangrove forest is in the some cases to educate.
Sundarbans National Park in India, a park thatisalso a What responsibilities do the developers of a database

UNESCO World Heritage Site. have to ensure the data stored within the database is

The World Factbook provides information to users about accurate?

different countries around the world, while the full CIA

A3.1 Database fundamentals

Any calculations and queries require accurate data, and incorrect information will

create incorrect results. Flat file databases are difficult to scale, as the more data

you have, the more likely these problems are to occur. This is why we make use of

relational databases.

Figure 2 shows the flat file database that has been normalized into a relational

database.

PATIENT
OWNER

Patient_ID | Patient_Name | Type Owner_ID | N 1 | Owner_ID | Owner_Name | Address
01 Oskar Dog 1029 1029 Alison 12 Green Lane

Bachman 20192

1012 Seb Cat 1922 1922 AriaMathers | 458 Rigistr.
3999 Jacques Hamster 1029 4093

2393 Kai Dog 2393 2032 Theo Naidoo | 45Rue

Martignac
1 TREATMENT

Patient_ID | Date Treatment | Type Cost Vet_ID N

@ N | 1011 23/05/25 | Worming Tablet 50 4400

1012 23/05/25 |Broken Tail |Surgery | 4000 | 4100 @>

3999 23/05/25 | CutonPaw | Medication | 50 4400

2393 23/05/25 | Broken leg | Surgery 450 4400 1 VET

2393 17/08/25 | Cast Removal| Surgery 200 4400
Vet_ID| Name | Address

A Figure 2 A relational database

Features of a relational database

Entity: The relational database now consists of four entities each containing data.

The patient entity stores information about the animal, the owner entity stores

the information about the owner of the animal or animals, and vet information

is stored in the vet entity. The final entity is the treatment entity, which stores

information about the treatment each patient received as well as the date of

the treatment.

Primary key: Primary keys are unique identifiers for an instance in an entity. For

example, there may be more than one dog called Oskar in the patient entity.

However, because of the primary key (the patient ID) we can tell which Oskar

we are referring to.

Foreign key: A foreign key creates a relationship between the instances in the

entity so we can link information together. For example, you would like to know

the owner of each patient so you can update them on progress. To do this, the

primary key of the owner from the owner entity is placed in the patient entity. This

creates a link. The foreign key in the patient entity allows you to match the owner

using the primary key.

4400 | Rachel | 345 Ridley St

99554

4100 | Lucy | 29 Entle Street.

3049

Normalization A process to

organize data in a database to

minimize the risk of anomalies.

Primary key A unique value for

each row in a database.

Foreign key A primary key value

that has been placed in another

entity to create a relationship.

169

@ Research skills

170

A3 Databases

Attribute An attribute represents a

characteristic of the data.

Relationship The link between two

entities.

Cardinality The type of relationship

between two entities.

Understanding how the data

relates to each other in a database

often requires research to

specify problems correctly and

decompose the problem.

Think about a database you

interact with regularly, such as an

online shop, a social media site,

or a school information system.

Identify the data that is stored and

investigate what the purpose of the

database is. Can you suggest some

entities that are being used?

Owner_ID | Name Address | Phone

(PK)
393939 Andrea 29 Main St| 333 4003

39291 Pia 12River |3930102 | Owner primary key placed
Lane in pet table as a foreign

5893021 | Amalia 34River |3921019 | keytocreatelink.
Lane

Pet_ID (PK) | Name Type Owner_ID (FK)

HB849 Paolo Hamster 393939

C192 Felix Cat 393939

C059 Bao Cat 5893021

A Figure 3 Relationship between tables using a primary key as a foreign key

Composite key: Sometimes there are no unique values in a record, so you

have to link different values together to make them unique. This can be seen in

the treatment entity. The patient ID cannot be used, as a patient may have many

treatments. However, if patient ID and date are used they become unique, as a

patient would not have more than one treatment in a day.

Concatenated key: Sometimes, when there are no unique values in a record,

data from the attributes can be placed together to create a unique key.

For example, in a table of people it may be a challenge to find a unique key.

If you take a substring of a first name, surname, and date of birth you are more

likely to get a unique value. This is known as a concatenated key.

Relationships: There must be relationships between the entities otherwise the

data exists alone and is not very helpful.

Cardinality: Cardinality is the type of relationship between the entities. There are

three you need to be aware of.

*+ One-to-one: Aninstance in one entity can only be related to one instance in

another entity. In the example above, one patient can have one owner.

* One-to-many: An instance in one entity can be related to many instances in

another entity. In the example above, one vet can perform many treatments.

*+ Many-to-many: Many instances in one entity can be related to many

instances in another entity. A real-life example could be that many students

are enrolled in many courses.

Modality: Modality is the necessity of the relationship between entities. There

are two types of modality you need to be aware of.

* Optional relationship: There may be a relationship, but there does not

have to be. For example, Actor (mandatory) and TV Show (optional). This

relationship is optional because actors do not have to be in TV shows. Some

actors are only on stage.

* Mandatory relationship: There has to be a relationship between the two

entities. For example, Receipt (mandatory) and ltems (mandatory). This

relationship is mandatory because to have a receipt you have to have bought

at least one item.

A3.1 Database fundamentals

Relationships enable links to be made between the data in a relational database. _

Benefits of a relational database \dentify suitable cardinality and

Community support: There are multiple streams of support for users of modality relationships for:
relational databases. e teacher and student

Concurrency control: Relational databases can be used by concurrent users * class and teacher

without error using ACID properties (this will be explained further in this topic). e 700and animal

Data consistency: Due to the lack of data repetition, data is more consistent. « person and clothes

Data integrity: Due to the lack of data repetition, data is more likely to be * animals and children.

correct.

Data retrieval: Using SQL commands, data retrieval is easier.

Reduced data duplication: Due to the use of entities and relationship, there is

less data duplication.

Reduced redundancy: As data is stored across entities using relationship links,

there is less redundant data.

Reliable transaction processing: Relational databases have several checks that

occur when transactions take place to ensure that the transactions are reliable.

Scalability: Relational databases are easier to scale than flat file databases.

Security: Relational databases have built-in security to support a multiuser

environment.

Limitations of a relational database

Big data scalability: Relational database models are not the best model for

storing data that will be mined to make complex decisions.

Design complexity: The different entities and models within the database can

be complex and challenging to implement.

Hierarchical data handling: The nature of the database model means trees are

stored in a hierarchical manner. This can lead to inefficient traversal of the tree,

especially if there are deep hierarchical layers.

Rigid schema: The schemas of the database are rigid data types, and

relationships must conform to very specific rules.

Object-relational impedance mismatch: Relational databases are useful for

storing data in dedicated databases. However, if the data then needs to be used

in an object-oriented space, for example, when dealing with big data, sometimes

the models might not be fully compatible.

Unstructured data handling: Unstructured data that does not follow the rigid

scheme of the database model can be difficult to place within the model.

171

172

A3 Databases

The World Data Center for Climate is one of the world’s largest databases. It holds hundreds of terabytes of data

regarding the world climate. The online database allows users to search the archives and upload data to the website.

The search interface is very simple and the

way the results are communicated is not el Q

user-friendly. Resuits
T sreiw v ba"sna s

Think about the knowledge that is being

communicated by this website (scientific

data about the climate for the scientific ICEQGT Ararctic oo i Bakscnee 1 Sew Lol [e IR

community). Consider the different users of

ey vaoe - | hey maw 1>] -~ -

sy

HighRas Mgrlat S0 (Glotal 395 21 Coean 528 45z BoT0zhemisty made [rana BN
this database: SESOM L4 BECOME mitft ¢ chatt Cyet o and cddy perrittieg 0 resclusion (n 20

* non-specialist users
Sy T cegact v gl ncsibamadanan wih yghilal mldi e

o climate scientists rm-mmmvmmlwuwmlfim-pnuvvzr,lw

bezumwmrn W ode MEzel s 2 For 8 gyovy .,

* school students researching fora Projeet Wi R w0 KGR sl sors Mo o) (st wd b0 R0 Saoim Pagrrr ey o) el
FRAZW LA BEol? sttty Lw-bwd | 2341 e dowd ndty iy g o ressaran b

project. The ~uys-lustishe Lol e Senet

For these three different types of user, Cgefion Bty oech L e

consider the user’s ability to access P . g g o o . ST 14 Y

information, to understand it as it is A Figure 4 Search interface for the World Data Center for Climate

presented, and whether the

information available matches

their needs.

What challenges are raised when communicating knowledge in the form of a database?

Practice questions

1. Describe two anomalies that may occur in a flat file database. [4 marks]

2. Explain how primary and foreign keys are used to create

a relationship in a database. [3 marks]

3. State an example of a one-to-many relationship. [1 mark]

4. State an example of a mandatory relationship. [1 mark]

Identity two benefits of using a relational database. [4 marks]

AWl Database design

Syllabus understandings

A3.2.1 Describe database schema

A3.2.2 Construct ERDs

A3.2.3 Outline the different data types used in relational databases

A3.2.4 Construct tables for relational databases

A3.2.5 Explain the difference between normal forms

A3.2.6 Construct a database normalized to 3NF for a range of real-world

scenarios

A3.2.7 Evaluate the need for denormalizing databases

A3.2.1 Describe database schema

A database schema is a blueprint of the database that identifies the different | Conceptual model | Least

entities (tables), attributes (fields) and relationships (links) within the database, detailed

including the restraints on the data. The database schema is a model detailing

how the database has been set up, but the schema does not contain any actual g

data. There are different models within the schema. These models describe the Most

database for different users of the system including users, administrators and _ detailed

developers. A Figure 5 A diagram showing the

hierarchical levels of the database schema

Schema A plan showing the overall

design of the database.

Entity relationship diagram (ERD)
A universally understood diagram

showing the database schema.

The three schemas that you need to be aware of in this course are the conceptual

schema, the logical schema and the physical schema.

The conceptual schema

This model of the database identifies all the entities within the database and the

relationship between these entities. This model does not contain specific details

such as the attributes within the entities nor information about the restraints on

the data, but does identify the types of relationships between the data. This level

of the database schema is viewed by both the users and the administrators/

developers. Entity relationship diagrams (ERDs) are used in the conceptual

model to show the relationships.
ERD diagrams are similar to

Examples of relationships constructing the design of classes

e One player plays for one team. in object-oriented programming

(OOP), covered in section B3.1.2.

* Oneteam has many players. Just like in OOP, you need to have

* Oneteam is managed by one manager. a clear model identifying attributes

and behaviours that can be
This is shown in Figure 6. understood by others.

173

A3 Databases

174

Player Team

Manages

Manager

A Figure 6 Anexample entity relationship diagram at a conceptual schema level

The logical schema

This model of the database identifies the different attributes (the data that will be

stored about each item in the entity) within each of the entities. This will include

the primary keys and foreign keys which create the relationships between the

entities. This level of the schema will be used by both the programmer and the

administrator. However, this level will not be used by the user.

An example of the detail required in the logical schema is shown in Figure 7,

using the same database example as the example outlined in the conceptual

schema. The figure shows the information that will be stored about the Player, the

Team, and the Manager. The primary key is bold and the foreign key is denoted

with an asterisk (*).

Player Team

Player_ID N 1 Team_ID

Name Name

Squad_Number Location

Position League

Nationality Manager_ID*

Team_ID*]

]

Manager

Manager_ID

Name

Nationality

A Figure 7 Anexample entity relationship diagram at a logical schema level

A3.2 Database design

The physical schema

This model of the databases identifies the different attributes and their data types

as well as the primary key and foreign key link that will create the relationships

between entities. The physical schema is a description of how the data will be

stored in the database, including specific files, indexes and storage structures.

This level of schema will be used by the programmer as this is the schema used to

initially set up the database.

Continuing with the database examples from the conceptual and logical schema,

an example of the detail required in the physical schema is shown in Figure 8.

The image shows the entities, the attributes, and their data types. Primary keys

are denoted using the initials PK and foreign keys FK.

Player Team

Player_ID: CHAR (6) PK Team_ID: CHAR (6) PK

Name: VARCHAR(20) N @ 1] Name: VARCHAR (20)
Squad_Number: INT Location: VARCHAR (20)

Position VARCHAR(10) League: VARCHAR (15)

Nationality VARCHAR(20) Manager_ID CHAR(6) FK

Team_IDCHAR(B) FK :

Manag>

1

Manager

Manager_ID: CHAR(6) PK

Name: VARCHAR (40)

Nationality: VARCHAR(20) FK

A Figure 8 Anexample entity relationship diagram at a physical schema level

A3.2.2 Construct ERDs

Entity relationship diagrams (ERDs) show the entities (tables), attributes (fields),

and relationships within a relational database. There are different levels of ERDs

within the database schema. This section explains how to construct an ERD.

The different items within the ERD

Entity: An entity is an object that can have data stored about it. Entities are

usually named using a noun and are represented using a rectangle. Examples of

entities include: Student, Car, Player, Course, Product, Menu item.

Key: An entity needs to have at least one key (the different keys were outlined

in A3.1.1).

Relationships: The way in which the entities interact with each other is known

as the relationship. Relationships can be thought of as the verbs that connect the

entities. For example, Student studies Course, Teacher teaches Course, Menu

contains Menu items.

175

A3 Databases

Look back at section Al.1.1 for more

information about relationships.

In some versions of the entity relationship diagrams, the relationship is identified in

adiamond. The type of relationship (known as the cardinality) can be one-to-one,

one-to-many or many-to-many. The relationship also needs to show the modality—

whether the entity is mandatory or not within the relationship. For example, actor

to theatre show is optional as many actors have not acted in theatre productions.

But menu to menu item is mandatory since a menu has to have a menu item.

Note that relationships are only read one way. A menu has menu items, buta

menu item does not belong to a menu unless you specify this.

Attributes: The attributes show the data that will be stored about each of the

items in the entity. For example, a car may have a make, model, engine size,

fuel type and registration number.

There are different representations of ERDs. All show the same data but are

represented differently. Three of the recognized conventions are shown in Figure 9.

Mandatory relationship
Chen notation style

Entity Relationship Optional relationship

Example at conceptual level

1 N
Bana Records Song

Crows foot style | Mandatory many V\ Optional many

Entity Entity M

Atiribute | | Mandatory one @ Optional one

Attribute | |

Example at conceptual level

Band | Song

Barker Style One-to-one Many-to-many

Entity Entity

Attribute One-to-many Optional relationship
Sipbuica 200 000000000 9~ 2 =

Example at conceptual level

Band Song

A Figure 9 Different representations of ERDs

176

A3.2 Database design

To construct an ERD, follow these steps.

Step 1: Identify the level of ERD required (conceptual, logical or physical). This

will determine the detail required.

Step 2: Identify the entities involved and, if required, the attributes and data types.

Step 3: Identify the relationships (using verbs) between the entities.

Step 4: |dentify the cardinality of the relationship, one-to-one, one-to-many or

many-to-many.

Step 5: Identify the modality of the relationships. Are they optional or

mandatory?

ERDs provide a foundation to build a database. By modelling the components

of a database in a very clear manner it can be understood by other developers,

which improves database maintenance. Working through the model, you can

identify entities and relationships. Understanding the interconnectivity allows you

to spot mistakes before development begins.

@ Communication & Research skills

ERD diagrams communicate the schema of the database clearly so it can be

understood by many people. Developing ERD diagrams requires pattern

recognition.

Research in pairs the following questions.

* How could ERD diagrams be seen as independent of languages?

* How does the accepted universal ERD diagram enable the database

design to be understood by all designers?

* What role do ERD models play in the acquisition of knowledge within

computer science?

Share your findings with another pair. What commonalities are there in your

answers? What differences do you have?

Work together as a four to create definitive answers you are all happy with.

A3.2.3 Outline the different data types used

in relational databases
The data types you have available for use in a database depend on the database

system you are using. Look at the documentation provided with your database

software. This book will refer to MySQL data types.

There are three main data types in MySQL: string, numeric and date/time. The

following examples are not exhaustive, but they outline the main data types

available of each kind.

(N
Construct a logical level ERD

diagram for the following system:

A doctor treats several patients

per day.

You need to identify the entities,

attributes, and relationships

required.

177

A3 Databases

Table 1 String data types

Data type Example Description

. A string (letters, numbers and special characters) of a fixed
CHAR ! '

(size) P@ssWord length. The length of the fixed string can be O to 255.

. @AbA1ITCC A string (letters, _numbe_rs and special charaders) of a variable

VARCHAR (size) length. The maximum size can be specified and can be up to

(A better password) 65,535 characters.

TEXT(size) This is example text of A string field with a maximum size of 65,535 characters (around

longer text. 64 KB).

Used to store backups of | A string field with a maximum size of 16,777,215 characters
MEDIUMTEXT

books, and so on. (around 16 MB).

A string field with a maximum size of 4, 294, 967, 295 characters
Used to store backups of S .

LONGTEXT code and applications (around 4 GB of text, which is enough to store approximately

PP * | 8,000 books).
ENUM(vall, val2, Ms, Mr, Mrs, Mx, Dr, Prof, | A string field where the value is limited to one of a number of

val3..) Other, None values (for example, a title list on a website).

SET(vall, val2, Sport A string field that can have O or more values from a list of values
val3,...) Sport, Art (for example, selecting interests from a list of interests).

Table 2 Numeric data types

Data type Example Description

BIT(size) 110 A bit value can have a size from 1 to 64.

BOOL 0 Zero equals false and non-zero equals true.

INT (size) 48575392 A whole number. The size specifies the display digits (up to 255).

FLOAT(p) 5.333 A floating point number. The p specifies whether it is treated as a float or double.

Table 3 Date/time data types

Date type Example Description

DATE 2010-10-29 Adate. The format of the date is YYYY-MM-DD.

DATETIME (fsp*) 3?1&12_529 Adate and time. The format of this is YYYY-MM-DD hh:mm:ss.

TIMESTAMP (fsp*) A timestamp will add the current date and time.

TIME (fsp*) 13:04:39 Atime in the format hh:mm:ss.

YEAR 2015 The year stored in YYYY format.

the queue.

transactions.

* Fractional seconds precision: the timestamp stores the fraction of the second up to 6 digits of precision. 6-digit precision for seconds, for

example, gives the integer value plus 6 decimal digits (for example, 54.283483 seconds). This may seem excessive but, considering the

number of databases and the variety of data being stored worldwide, it can be very useful in a number of different scenarios.

* To measure time very accurately. Measuring time in whole seconds would not work, for example, for measuring the fastest laps in a

Formula One race, or to decide the winner of the 100 m sprint at the Olympics.

* When many events are happening at the same time. For popular events, such as festivals or music gigs, there can be thousands of people

inan online gueue and everyone wants to buy tickets at the same time. Using fractional seconds ensures everyone gets a fair place in

* When working with distributed databases, it is essential that transactions are coordinated. Using fsp can help to effectively manage

178

The data type informs MySQL what type of data is held within the data field and,

therefore, how it will interact with the data. For example, anything stored as a

string data type cannot have calculations performed upon it but numerical data

types can. Consistency is important when choosing data types so data can be

imported and updated correctly.

D iy o
Developers must understand the data that they will need to store, so they can

understand what data types they will need to work with. To do this, they must

examine real-world problems.

When developing databases, you are often presented with documents

showing how the data is collected. These could be presented as online or

offline forms, posts or playlist details.

Using the screenshot of a playlist in Figure 10, identify the:

* attributes that would be stored

* data types of the attributes to be stored.

Throwback Thursday Classics

Song Band

Master Of New York Ten Inch Monkeys

Girls Rancid Rancid

Tall People Joystickhead!

How Much Do You Love Pies? No Rest For the Teachers

Cambridge Circus TO.OTHB.RUS.H.

Deaf Tigers Collapsing at the Disco

A Figure 10 Screenshot of a playlist

If you do not choose the correct data type, you may get issues with data not

being used in the correct way. For example:

if data is stored as string, you may not be able to use it to perform calculations

if you want to query using dates, the data needs to be stored as a date

if you set it as ENUM—a predetermined list of values—then if the item is not on

the list, users will not be able to store the data they want to.

A3.2 Database design

The correct data type is essential

for developing a database, as it is

with programming (discussed in

section B2.1.1).

Suggest suitable data types for the

following attributes.

* Name: the name of a person.

e.g. Nora Digby.

* |DNumber: an ID number for a

person e.g. 38292.

* Vegan: whether a person is

vegan or not.

* Height: the height of a person

in metres. e.g. 1.92.

* Address: the address ofa

company e.g. Rotkreuzplatz 89,

Zythus, 9332.

* Ticket cost: the cost of a ticket

e.g. 34.99.

* Quantity ofanitemin a

warehouse e.g. 392.

TOK

When developing databases,

developers make decisions

about what data will be stored

and what data types will be used

to store the data. This is a form

of knowledge classification:

developers have to determine the

acceptable values for each attribute

within the database.

The databases that store scientific

calculations are an example of

this. If the developer decides to

store the data as a float rather than

as a double, some accuracy may

be lost.

To what extent does the way

knowledge is classified using data

types affect what we can learn from

the data?

179

A3 Databases

A3.2.4 Construct tables for relational

databases

Building tables that make use of keys is essential when creating a relational

database. It is important you plan the tables correctly to ensure that data integrity

is always maintained. One problem of a badly designed database is duplicated

data. Duplicated data can lead to problems with deletion since, if your data is

not linked together, there may be data left within the database resulting in wrong

results from queries (deletion anomaly). If data is updated and the data is not

correctly linked, not all associated records may be updated (update anomaly).

The correct linking of data can occur through keys.

STUDENT

Student|D: varchar(6) PK

SFirstName: varchar(15)

SFamilyName: varchar(30)

SGrade: int

SAddress: varchar(255)

SEmergencyContact: varchar(30) TEACHER

SEmergencyTelNumber: TeacherlD: varchar(6) PK
varchar(15)

TFirstName: varchar(15)

TFamilyName: varchar(30)

N TSubjects: varchar(255)

TAddress: varchar(255)

TelNumber: varchar(15)

Destination: varchar(25) FK

TRIP

Destination: varchar(25) PK 1

Flight: char(1)

Description: text

TeacherlD: varchar(6) FK

A Figure 11 The relationship between entities using keys

Keys link data together, showing clearly that there is a relationship between the

two items and that they should be treated as related data.

Using keys, you can avoid deletion anomalies and update anomalies through

cascading. Delete cascade makes use of primary keys and foreign keys. When

a row with a primary key is deleted, all rows that are referenced with the foreign

key are also deleted. This removes all related data, ensuring data is left over in the

table.

Update cascade also makes use of primary keys and foreign keys. If a primary key

is updated in a table, all subsequent related rows are also updated. This ensures

data integrity across the tables.

A3.2 Database design

A3.2.5 Explain the difference between

normal forms
Databases that are not designed properly can have the following issues.

Insert anomalies: You cannot add data correctly as the data is dependent on

other attributes in the database.

Deletion anomalies: The database may have attributes that rely on non-

related attributes. If you delete the non-related attributes, you unintentionally

lose data.

Update anomalies: Any update in a badly designed database will be a

challenge as you have to look through every section of the database to ensure all

items are deleted. This is not a challenge in a small database, but for a database

with hundreds thousands, or millions of records, this becomes a significant

problem.

Normalization is a developer's tool that ensures a database is correctly designed.

Normalization turns an unnormalized, badly organized database into a

well-designed database, minimizing the likelihood of anomalies occurring.

There are three stages of normalization you need to be aware of: unnormalized

to first normal form, first normal form to second normal form, and second normal

form to third normal form. In this course you need to know the differences

between the forms and be able to follow the steps to normalize a database

to third normal form. One of the main things you need to remember when

normalizing is:

The data should rely on the key,

the whole key and nothing but the key.

When creating databases, you are thinking about functional dependencies; that

is, what data relies on other data. Forexample, in Table 4, the primary key for

the patient indirectly tells you the patient’s name and address, as the primary

key is unique to this patient. Normalization makes use of these dependencies to

break down the original entity into smaller entities where all data is functionally

dependent on the key. Once you have a normalized database, you minimize the

chances of the anomalies occurring, and the database is more reliable.

e
Identify the anomaly that has

occurred in each of the following

scenarios.

* Two people have bought the

same ticket for an event.

* There are three addresses for

the same person.

* Thereisa petinthe database

without an owner.

Real-world systems are complex. Every interaction in * whatinformation they need to store about people and

the real world has many nuances. Programmers need what relationships they need to identify in that data to

to abstract the information into a general model that allow them to represent their customers accurately

works for many people. Consider the Amazon database.

This contains information about the products people

buy and the media (books, music, film, and television

what information to store about products that will

enable them to make good business decisions.

shows) people consume using Amazon. The Amazon Identify the challenges that database programmers face

programmers have to consider: when trying to accurately represent real-world datain

normalized databases.

182

A3 Databases

Table 4 Data for normalization

To understand normalization, consider the data in Table 4.

Dentist Dentist Dentist | Patient | Patient Patient | Treatment | Treatment Date Price

ID Name Practice ID Name Address Detail

Filling with

192 Luis Reorder | Heaton | 190 :iv‘fes'ey g;’s:””y Filling technical | 22/06/25 150
y assistance

Check

up and

138 Ana Torres f;nfke CheckUp |dleaning |22/06/25 |80
with

hygienist

Filling with

193 Henry Gosfield | 190 Wesley [125unny | u technical | 25/06/25 | 150
Stewart Kyle Close .

assistance

Camil 98 Al Crown 148 amie M& | Crown including | 25/06/25 | 300
Manon Grove

X ray

Check

1 North up and
150 Ole Huber CheckUp | cleaning 25/05/25 (80

Wharf .
with

hygienist

. . Filling with
Romesh

194 spittal | Jamie 3North | g technical | 25/05/25 (150
Ranaweera | Fields Christoph | Wharf assistance

Amalie 19 Maker Cleaning
172 Cleani ith 25/06/25 | 50

McGovern | St eaning Wi . /06/
hygienist

The first thing _you need to ensure |_s UNE Unnormal form

that all values in the table are atomic,

meaning they only contain one value Dentist_ID Initial candidate (possible) primary key identified

in each cell. Table 4 is atomic as all of Dentist_Name

the values only have one value. Once _ _

you have confirmed the atomicity, Dentist_Practice

you place the data into unnormal form Patient_ID Repeating groups identified using indentation
(UNF), choosing an initial primary key)

and identifying the repeating groups. Patient_Name

Repeating groups are the new data that Patient_Address

needs to be added when a new entry is S ;

created. In Table 4, for each new entry, reatmen

you need to add: Patient ID, Patient Treatment_Detail

Name, Patient Address, Treatment, Date

Treatment Detail, Date and Price.
Price)

A3.2 Database design

Table 5 Unnormal form to first normal form

UNF 1NF (First normal form) Actions

(Dentist_ID DENTIST (Dentist_ID Non repeating data is placed in an

]] entity, entity is named and a primary
Dentist_Name Dentist_Name key given.

Dentist_Practice Dentist_Practice)

Patient_ID TREATMENT (Patient_ID Repeating data is moved to a new
table and a unique key found.

Patient_Name Patient_Name

_ _ The primary key from one table
Patient_Address Patient_Address is placed in the second table as a

Treatment Treatment foreign key.

Treatment_Detail Treatment_Detail

Date Date

Price) Price

Dentist_ID*)

Table 6 First normal form to second normal form

INF 2NF (Second normal form) Actions

DENTIST (Dentist_ID DENTIST(Dentist_ID First entity ignored.

Dentist_Name Dentist_Name Patient data removed from treatment

]))) entity as it does not rely on the
Dentist_Practice) Dentist_Practice) whole key, just Patient_ID, which is

TREATMENT (Patient_ID TREATMENT(Patient_ID* transformed intto a foreign key.
Patient_Name Treatment Patient entity created and primary key

identified.

Patient_Address Treatment_Detail

Treatment Date

Treatment_Detail Price

Date Dentist_ID*)

Price PATIENT (Patient_ID

Dentist_ID*) Patient_Name

Patient_Address)

183

A3 Databases

Table 7 Second normal form to third normal form

2NF 3NF (Third normal form) Actions

DENTIST(Dentist_ID DENTIST(Dentist_ID All entities need to be checked for all

] _ attributes relying on the key.
Dentist_Name Dentist_Name

)))) Treatment information does not rely on

Dentist_Practice) Dentist_Practice) all parts of the key, only on treatment.

TREATMENT (Patient_ID* APPOINTMENT(Patient_ID* Treatment becomes a foreign key.

Treatment Treatment* Entity renamed.

Treatment_Detail Date Treatment entity with all treatment

details created.

Date Dentist_ID*)
All entities now have data that relies

Price PATIENT (Patient_ID only on the key.

Dentist_ID*) Patient_Name

PATIENT (Patient_ID Patient_Address)

Patient_Name TREATMENT(Treatment

Patient_Address) Treatment_Detail

Price)

@ Thinking skills

Developing databases into

third normal form requires

logical thinking. One of the key

requirements is abstracting the

required information.

Consider the following

unnormalized database based ona

picture sharing site:

Username

image

image_date

caption

location

location_coordinates

location_country

Develop a flow chart for each of the

stage of the normalization process.

184

The differences between normal forms may seem confusing at first: they are

outlined for you here.

First normal form: The repeating data is moved into a new entity. The non-

repeating data stays in its own entity and is given a unique identifier (primary

key). The primary key from the non-repeating entity is placed in the new entity

as a foreign key. In the new entity a unique identifier is found. This will most likely

be a composite key. The issue with the first normal form is that the new entity

will have attributes that only rely on one part of the key, known as partial key

dependencies. This does not align with the normalized database philosophy of

“the whole key and nothing but the key”.

Second normal form: The partial key dependencies are removed into their

own entity and a primary key is identified. The primary key features in the entity

it was removed from as both a primary key and a foreign key at this point. The

issue with second normal form is that some attributes in the entities do not rely

on the key, they are their own information. These are known as transitive or

non-key dependencies. These, again, do not align with the normalized database

philosophy of “the whole key and nothing but the key”.

Third normal form: The transitive or non-key dependencies are moved into their

own entity and given a primary key. The primary key becomes a foreign key in the

entity it was removed from. Transitive dependencies can be present in any of the

entities previously created. Once they are removed, your entities should meet

the normalized database philosophy of “the whole key and nothing but the key”.

A3.2 Database design

TOK

Explain the difference between the

normalization stages.

When normalizing data, developers make assumptions about the data they

have been given, deciding what data must be stored and what data can be

left out of the final data model. For example, developers may assume that

every ticket for a sporting event has a seat associated with it. What are the

roles of assumptions when developing a normalized database model?

A3.2.6 Construct a database normalized to

3NF for a range of real-world scenarios
In programming, encapsulating the data within a class keeps the data safe and

accurate. Entities in a database are similar. By keeping all data in one place and Learn more about encapsulation

minimizing duplication, the data is more secure. and information hiding in
section B3.1.5.

Two examples of how data normalizing is used in real-life scenarios are an

e-commerce database and a library database.

E-commerce database

An e-commerce website called Negozio connects local artists selling handmade

gifts to registered customers. Transactions store the item sold, the artist and

the seller.

An excerpt of the unnormalized flat file database is shown in Table 8. As you

can see in the excerpt, customer data is stored every time the customer makes a

purchase. The artist details are stored every time one of their products is sold.

Table 8 Negozio transaction data

Customer | Customer Email |Customer |ltem |ltem Quantity | Cost | Date Artist | Artist Artist Email

ID Address |ID Description ID Name

. 95 East Small gold Maja’s .
4843 Raya@mail.com Wharf 5504 fing 1 49 | 3/3/25 |49455 Jewellery M|S@mail.com

4532 | Woodentoy |, 120 |4/3/25 |96854 |54 | 5nshine@mail.com
chest craft

Handmade Sarah's .
6422 ceramic bowl 4 25 12/8/25 | 58584 Ceramics SCC@mail.com

.) 22 Light Handmade Sarah’s .
3758 Bligh@mail.com Street 6422 ceramic bowl 6 25 |13/8/25 | 58584 Ceramics SCC@mail.com

. Boris) .
6665 | Football print |1 45 |4/10/25 (1222 Printshop Boris@mail.com

9182 | Printed apron | 2 15 |a/10/25 [1220 | Boris Boris@mail.com
Printshop ’

4737 Frankie@mail.com |25 %@ | 5504 |Smallgold 1 49 |3/3/25 |a94s5s | M2 MjS@mail.com
Grove ring Jewellery

4728 Rory@mail.com |22 O™ | 9383 | Ramenbowl |6 20 |[12/6/25 | 58584 |22 | scC@mail.com
e ’ Street Ceramics @ ’

. 4 East Small gold Maja’s .
5844 Alysha@mail.com Street 5504 fing 1 49 12/6/25 | 49455 Jewellery M]S@mail.com

Heather’s .
4783 | Laser cutbag |1 80 [12/6/25 1M Handicraft Heather@mail.com

185

A3 Databases

Table 9 shows the normalization process for the negozio.com database. First

normal form removes the transaction data to a new table, adding the customer ID

as a foreign key. In second normal form, the item and artist data is removed as

this only relies on one part of the composite key. In third normal form, the artist

information is removed to a new table as the artist information does not depend

on the item’s primary key.

Table 9 Normalization process for the Negozio database

UNF TNF

Customer_ID

Customer_Email

Customer_Address

ltem_ID

Item_Description

CUSTOMER(Customer_ID

Customer_Email

Customer_Address)

TRANSACTION(ltem_ID

ltem_Description

Quantity Quantity

Cost Cost

Date Date

Artist_ID Artist_ID

Artist_Name Artist_Name

Avrtist_Email Artist_Email

Customer_ID*

2NF 3NF

CUSTOMER(Customer_ID

Customer_Email

Customer_Address)

TRANSACTION(ltem_ID*

Quantity

Date

Customer_ID*)

ITEM(ltem_ID

Item_Description

Cost

Artist_ID

Artist_Name

Artist_Email)

CUSTOMER(Customer_ID

Customer_Email

Customer_Address)

TRANSACTION(ltem_ID*

Quantity

Date

Customer_|D*)

ITEM(ltem_ID

ltem_Description

Cost

Artist_ID*)

ARTIST (Artist_ID

Artist_Name

Artist_Email)

A3.2 Database design

Library database

A library database is used to manage a group of libraries to record which books

have been borrowed and who has borrowed them. The database also stores

details of any outstanding fines per person. For this group of libraries, a person

belongs to and can borrow books from only one library—they cannot borrow

books from other libraries in the group. An extract from the current unnormalized

flat file datzbase is shown in Table 10. Each time a person borrows a book, the

library data and the borrower information is stored. If a book is borrowed more

than once, the book data is also duplicated.

Table 10 Unnormalized library database extract

Library Location | Borrower | Borrower | Book Book Fiction | Date Date Fees

Name ID Name Number Borrowed | Returned | Due

Central City 121 James Shark tales 3939- Yes 23/06/25 |08/08/25|10
Centre 2929

121 James Fishing for 3958- No 23/06/25 |08/08/25

beginners 6873

122 Elisabeth | The crow 8628- Yes 23/06/25 |08/08/25
lane 4920

Alliance | Evergrove | 134 Anjana The glass 2847- Yes 24/06/25 |10/08/25

card 2933

134 Anjana Copenhagen | 2810- No 24/06/25 |10/08/25

—-aguide 4958

134 Anjana The silver 5849- Yes 24/06/25 |10/08/25

river 1920

University | University | 144 Filippo Python for 9201- No 23/06/25 |10/08/25 | 20

Quad starters 4830

Java 101 1092- No 27/06/25 |20/09/25
4920

145 Portia Psychology | 4839- No 30/08/25 |20/09/25

for starters 5802

Python for 9201- No 30/08/25
starters 4830

Table 11 shows the normalization process for the library database. First normal

form removes the borrower, book, and borrowing information into a new table.

Second normal form removes the book information as it does not rely on the

whole of the composite key. In third normal form, the borrower information is

removed as there are transitive dependencies within the loan table.

187

188

A3 Databases

Table 11 Normalization process for the library database

UNF INF

Library_Name LIBRARY(Library_Name

Location Location)

Borrower_ID

Borrower_Name

Book

Book_Number LOAN (BorrowerlD

Fiction Borrower_Name

Date_Borrowed Fees

Date_Returned Book

Fees Book_Number

Fiction

Date_Borrowed

Date_Returned

Library_Name*)

2NF 3NF

LIBRARY(Library_Name LIBRARY(Library_Name

Location) Location

Borrower_ID¥)

LOAN (Book _Number*

Date_Borrowed LOAN (Book_Number*

BorrowerlD Date_Borrowed

Borrower_Name BorrowerlD*

Fees Date_Returned

Date_Returned Library_Name*)

Library_Name?*) BOOK (Book_Number

BOOK (Book_Number Book

Book Fiction)

Fiction) BORROWER (Borrower_ID

Borrower_Name

Fees)

A3.2 Database design

A3.2.7 Evaluate the need for denormalizing

databases
The first thing to note about denormalized databases is that these databases

have been previously normalized to a satisfactory level and denormalization has

occurred because this will optimize the database performance.

When a database that has been normalized is being queried heavily, the use of

joins to link the data can become very intensive and slow down the database

significantly. One way you can overcome this is to unnormalize the database,

meaning that you keep some of the data together despite this meaning some

data will be repeated. For example, in the online shopping database in Table 9,

the artist details may be stored with the item details as these are often presented

together, rather than having to join the tables each time the data is needed.

Advantages and disadvantages of denormalizing
a database

Advantages

* Simpler queries as the database has to look at fewer entities to collect all

the data.

» Faster data retrieval as the database has fewer joins to complete.

Disadvantages

* More challenging updates and inserts as some of the data is repeated.

* Updating code can be difficult to write as the data is in multiple places.

* There may be inconsistencies as there are duplicate copies of data.

* The fact there are many copies of some data requires more storage.

When deciding to denormalize a database, you need to balance having a

speedier, easier-to-query database against the challenges of storing multiple

copies of the data, leading to update and insertion challenges. Data warehouses

often use denormalized databases.

TOK

When developing databases, there

are many things to consider.

Imagine you are asked to develop

a database for a ferry company. You

need to consider:

* Ship: Name, IMO number,

registration, capacity, number

of passengers, number of

vehicles, colour, captain.

* Passengers: Name, address,

passport, destination, age,

nationality.

* Vehicle: Vehicle type, license

plate, size, manufacturer,

model, colour.

* Route: Start, end, duration,

weather, areas crossed.

You can store many types of

data, but do you need to store

everything?

How can the abstraction of the data

help to model the real world within

a database?

(e
Normalize the databases in Table 12 and Table 13 to third normal form.

Table 12 Extract from unnormalized playlist database

Playlist | Playlist Date Song Name Song Artist Name | Artist Type Active

ID Name Created Release Date Since

9222 | Dad Music | 21/01/25 | Sorrytoseeyougo |17/08/1978 | The Punkettes | Alternative Rock | 1970

Bye Bye 06/06/1977 | The Punkettes | Alternative Rock | 1970

Imma See 23/05/1985 Js;‘:f:”d the | Alternative Rock | 1981

4829 | Happy Study | 21/03/25 | The Key Concepts | 18/10/24 Old Gregg Upbeat 2022

More or Less 12/10/23 MSTCRW Upbeat 2022

VR Pyramid 12/10/23 De Marseille | Upbeat 2021

4841 Rage Tunes | 22/03/25 | Trust Me 29/12/98 Stereosound | Metal 1992

A3 Databases

Table 13 Extract from unnormalized match ticket database

Member | Name Address | Seat Stand Price Ticket Opponents | Opponent | Match

ID Number Colours Type

ST85 Jlj?:r(iesron fih'::f’”h 34A |L 75 39202 [Sunnyside |Red & White |Cup

458 M 60 95842 Olten Blue & Black | League

123C L 70 30101 Clay hill Orange Cup

ZA49 g::;:an fiihe 998 A 120 49302 |Sunnyside |Red & White | Cup

93B A 125 29292 Clayhill Orange Cup

Practice questions

6. Explain what is contained in a logical database schema. [3 marks]

7. Explain how ERDs are used to model a database. [6 marks]

8. Describe two reasons why a database should be normalized. [4 marks]

9. State suitable data types for the following attributes.

a. Price ofticket.

b. Whether a playlist is downloaded to a device or not.

c. Name ofa candidate.

d. Description of candidate. [4 marks]

10. Normalize the database in Table 14 to third normal form. [5 marks]

Table 14 Extract from unnormalized student visit database details

Trip Name | Destination | Max Leader Leader Contact | Student | Name Grade | Age

Places ID

Sustainable | Copenhagen | 10 Alice Croft | 438029183392 | 39101 Eamon Green | 10 16

Denmark

201921 Lovisa Wright | 10 16

94030 Kirsty Porritt | 11 17

40393 Becky Black |11 17

Creativity Venice 10 Lawerence | +3829101011 392001 Martina 11 17

Debiton Hayes

Nabiha 10 16
Ansari

Soraya Azad | 11 17

Assad Khan | 11 17

A Cl Database programming

Syllabus understandings

A3.3.1 Outline the difference between data language types within structured

query language (SQL)

A3.3.2 Construct queries between two tables in SQL

A3.3.3 Explain how SQL can be used to update data in a database

A3.3.4 Construct calculations within a database using SQL's aggregate

functions

4

=¥ A3.3.5 Describe different database views

A3.3.6 Describe how transactions maintain data integrity in a database

A3.3.1 Outline the difference between

data language types within structured

query language (SQL)
Database management systems use four different types of language to create

databases, manipulate databases, and enable safe interaction with the database.

The database management system can be thought of as an umbrella for each of

the languages. This is shown in Figure 12.

Database management

system

{ Data definition

language (DDL)

Transactién control

language (TCL)

Data control language ~ Data manipulation
(DCL) language (DML)

A Figure 12 An overview of the database languages

Data definition language

The data definition language (DDL) is used to create the database structures.

It is used to create the schema, the tables, and constraints within the database.

Using DDL statements, you can create the outline of the database.

Commands in the DDL include the following.

* CREATE Used to create database objects.

* ALTER Used to change the structure of the database.

* DROP Used to delete objects from within the database structure.

191

192

A3 Databases

If you are studying at Higher Level,

you will learn more about this in

section A3.3.6.

* TRUNCATE Used to remove all records from the entity within the database

structure.

* RENAME Used to rename an object within a database structure.

* COMMENT Used to add a comment to the database structure.

Data manipulation language

The data manipulation language (DML) is used to access the data within the

database and to manipulate the data within the database. For example, querying

the database for information, updating records, and deleting records.

Commands in the DML include the following.

* SELECT Used to retrieve data from the database.

* INSERT Used to add data into the entity.

* UPDATE Used to update the existing data within an entity.

* DELETE Used to delete all records from an entity (but not the entity itself).

* CALL Used to call an SQL operation.

* LOCK TABLE Used to aid concurrency in the database.

Data control language

The data control language (DCL) is used to control access to the database.

The DCL helps to maintain security in the database as it allows user to have

access to the database or it can revoke data from the database.

Commands in the DCL include the following.

* GRANT Allows useraccess privileges in a database.

* REVOKE Allows the removal of privileges in a database.

Transaction control language

The transaction control language (TCL) is used to complete the changes

in a database.

Commands in the TCL include the following.

* COMMIT Used to complete queries and save them within the database.

* ROLLBACK Used if there is an issue in an operation to restore the database

back to its last COMMIT statement.

TOK

The Oxford English Dictionary defines language as:

The system of spoken or written communication used by a particular

country, people, community, etc., typically consisting of words used

within a regular grammatical and syntactic structure; (also) a formal

system of communication by gesture, esp. as used by deaf people.

(Oxford English Dictionary, 2023)

Using the above definition to help you, to what extent do you believe that

DDL s a language?

A3.3 Database programming

Using SQLL to develop a database

The following SQL statements are used to create data structures in the database.

For each example, the SQL command has been given and, when appropriate,

examples provided from an SQLlite database running in the DataGrip IDE.

Create a database

You can create a database using the statement in Table 15.

5 Table 15 SQL code to create a database

Syntax Example

CREATE DATABASE database name; CREATE DATABASE testDB;

Create a table

You can use the statements in Table 16 to create a table within a database.

a Table 16 SQL code to create entities within a database

Syntax Example with descriptions

Without key

CREATE TABLE table name(

Attributel datatype,

Attribute2 datatype,

Attribute3 datatype,

Attributed4 datatype,

)

With primary key

CREATE TABLE table name(

Attributel datatype NOT NULL PRIMARY KEY,

Attribute2 datatype,

Attribute3 datatype

)7

CREATE TABLE Customer (
CustomerID int NOT NULL PRIMARY KEY,

CustomerEmail varchar(255),
CustomerAddress varchar(255)

)i

NOT NULL PRIMARY KEY indicatesthereisa

constraint on this data. The value cannot be empty and

it must be unique as it is a primary key.

With primary and foreign key

CREATE TABLE table name(

Attributel datatype NOT NULL PRIMARY KEY

Attribute? datatype;

Attribute3 datatype;

Attributed4 datatype;

FOREIGN KEY (Attributed) REFERENCES

table name(Attributed)

)i

CREATE TABLE Item (
ItemID int NOT NULL PRIMARY KEY ,
ItemDesc varchar(255),
ItemCost real,

ArtistID int,
FOREIGN KEY (ArtistID)

REFERENCES Artist(ArtistID)

)i

In the ltem entity there is also a foreign key. The attribute

is created and then identified as a foreign key, creating

the link between the Artist and ltem entities.

193

A3 Databases

Syntax Example with descriptions

With concatenated key CREATE TABLE Purchase (
ItemID int NOT NULL ,
Quantity int,
Date date NOT NULL ,
CustomerID int NOT NULL ,
PRIMARY KEY (ItemID, Date,

CustomerlID),

FOREIGN KEY (ItemID) REFERENCES

Item(ItemID),
FOREIGN KEY (CustomerID)

REFERENCES Customer (CustomerlID)

):

CREATE TABLE table name(

Attributel data_ type,

Attribute2 data type,

Attribute3 data type,

Attribute4 data type,

PRIMARY KEY(Attributel, Attributel2)

In this entity there is a concatenated key. These are also

foreign keys.

Delete table

Sometimes you want to be able to delete tables as they are no longer required in

the database. This is shown in Table 17.

194

a Table 17 SQL code to delete an entity

5 Table 18 SQL code to alter an entity

Syntax Example

DROP TABLE Table name; DROP TABLE delivery;

Alter table

Sometimes it is necessary to make changes to tables as they require new

attributes. This is shown in Table 18.

Syntax Example with descriptions

ALTER TABLE Table name

ADD attribute data type;

ALTER TABLE Customer
ADD deliveryAddress
varchar(255);

A delivery address attribute is added to

the Customer entity.

ALTER TABLE Table name

DROP COLUMN attribute;

ALTER TABLE Customer

DROP deliveryPreference

Removes delivery preference from the

Customer entity.

A3.3 Database programming

Modifying data in a table

Once you have created a table, it is useful to be able to add data, modify data

and delete data from the table. This is shown in Table 19.

a Table 19 SQL code to modify the data in an entity

Syntax Example

INSERT INTO table name
(Attributel, Attribute2, Attribute3..)

INSERT INTO Customer (CustomerlID,

CustomerEmail, CustomerAddress,

deliveryAddress) VALUES('2', 'Christopher@

WHERE condition;

VALUES (valuel, value2, value3...) mail.com', '34 Maple Crescent,
Midtown', 'Unit A Industry Road, Midtown');

UPDATE table name

. _ . _ UPDATE Item
ii'iu};gtrlbutel valuel, Attribute2 SET ArtistID = '101°

WHERE ItemID = '2940';

DELETE FROM table name WHERE condition; DELETE FROM item WHERE ItemID '49393"';

A3.3.2 Construct queries between two

tables in SQL
Queries are used in databases to extract data and provide context for data.

Data within a database has little relevance unless it is put into context. Queries

can be used for filtering, which means finding the data you want to know from

the database, for example, all the customers in the database who own a specific

brand of car. Queries can be used for pattern matching—searching for patterns

in the data when you don’t know exactly what you are looking for, for example,

all customers who have bought a red item. Finally, queries can be used to order

data. For example, you may wish to find the top ten customers, and ordering the

data will enable you to see this information.

@ Thinking skills

Developing commands to extract data from databases requires algorithmic

thinking. Developing SQL statements requires you to think algorithmically.

Construct SQL statements to complete these database tasks.

1. Create the database called Artefacts.

2. Within the Artefacts database, add the following entities with the shown

attributes:

CURIO (Curio_ID (PK), Curio_name, Curio_Type)

CABINET (Cabinet ID (PK), Cabinet Description,
Cabinet location)

COLLECTION (Cabinet ID (PK/FK), Curio ID(PK/ID))

Query An instruction developed in

SQL to extract information from the

database.

Social media sites use databases

to store masses of data points

identifying users’ likes and dislikes.

Online shops use databases

to store numerous data points

identifying consumer likes and

dislikes. To access this data and

make it useful, companies need to

manipulate the data using specialist

language.

To what extent do a shared code

and language, such as those in the

SQL language, help or hinder the

pursuit of knowledge on a global

level?

Like programming in SQL, in

section B2.3.2 you will construct

code to select data when specific

conditions are met.

195

A3 Databases

Tables 20 to 32 detail some useful SQL commands to extract data from a database.

% Table 20 SQL Select code

Command Explanation of the command

SELECT The Select operator returns selected attributes from a table. If you want to return all attributes from a table,

you use the * wildcard. You can also use the % wildcard to search for a specific substring within a text field.

Syntax

SELECT * FROM Table name;

SELECT Attributel, Attribute2, Attribute3 FROM Table name;

Example

SELECT ArtistID, ArtistName FROM

Artist;

Output

Example

SELECT * from Artist;

Output

% Table 21 SQL Select distinct code

Command Explanation of the command

SELECT The Select distinct operator only returns unigue values from the entity. For example, you may use it if you

DISTINCT wanted to find all the different types of items sold in a shop.

Syntax

FROM table name;

Example

Output

SELECT DISTINCT Attributel, Attribute2, Attribute3

SELECT DISTINCT ItemID FROM Purchase;

A3.3 Database programming

£, Table 22 SQL From code

Example

Output

Command Explanation of the command

FROM The From operator indicates the table where the data should be extracted from. This is

important, as if this is from one table, you do not need a join, but if the results are from two

or more tables, a join is required. You use this when you want to extract data from a table.

Syntax

SELECT * FROM Table name;

SELECT * from Customer;

% Table 23 SQL Where code

Example

Output

Command Explanation of the command

WHERE The Where operator indicates there is a condition that has to be met when completing the select

statement. Similar to an If statement in programming, the data is only shown from the database

where the condition is met. You may use this to find all items over a certain price, or all customers

located in a certain country.

Syntax

SELECT Attributel, Attribute2, ... FROM table name

WHERE condition;

Select * from Item WHERE ItemCost > 300;

197

Table 24 SQL Between code

Example

Output

Command Explanation of the command

BETWEEN The Between operator selects values between a range (inclusive of the start and end values). The

Between operator works on numbers, text or dates. You may use this if you want to find all items

in the database within a certain price range.

Syntax

SELECT * FROM table name

WHERE attributel BETWEEN valuel AND valueZ2;

Select * from Item WHERE BETWEEN AND :

Table 25 SQL Order by code

Command Explanation of the command

ORDER BY The Order by operator is used to order the results either in ascending or descending order. The

ASC data can be sorted on as many attributes are required. You may use this if you have lots of items

and you want to be able to find them quickly.
DESC

Syntax Output

SELECT * FROM table_

name

ORDER BY attribute ASC

or DESC;

Example

SELECT * from item
ORDER BY ASC;

1se programming

e Example Output

SELECT * from item
ORDER BY DESC,

ASC;

% Table 26 SQL Group by code

Command Explanation of the command

GROUP BY The Group by operator groups the rows that have the same values into summary rows. You may use

it to find the number of customers in a specific country.

Syntax

SELECT Attributel, Attribute2

FROM table name

WHERE condition

GROUP BY Attribute

ORDER BY Attribute

Example

SELECT * FROM Customer

GROUP BY

ORDER BY DESC;

Output

Example with Count Output

SELECT COUNT(). S e _ . -
i y Uussomer i Y - 'IiI'FiHII!I':'f

FROM Customer

GROUP BY -

A3 Databases

% Table 27 SQL Having code

Command Explanation of the command

HAVING The Having operator is similar to the Where operator. It is a condition that has to be met before the data

is displayed. However, since Where cannot be used with the aggregate functions, the Having clause

must be used instead.

Syntax

SELECT COUNT (Attribute), Attribute

FROM table name

GROUP BY attribute

HAVING COUNT (Attribute) condition;

Example

SELECT COUNT (CustomerID), CustomerCountry

FROM Customer

GROUP BY CustomerCountry

HAVING COUNT (CustomerID) > 2;

Output

&, Table 28 SQlJoin code

Command | Explanation of the command

JOIN The Join operator is used to combine rows from different tables when there is a common attribute between

them. The common attribute is known as the foreign key. There are several joins you need to know.

e (Inner) JOIN Returns all the records that have matching values in both tables.

e LEFT (outer) JOIN Returns all the records from the left table that have matched records on the right

table.

* RIGHT (outer)JOIN Returns all the records from the right tables that have full matched records on the

left table.

Use this to collate information from across entities.

Syntax

SELECT table namel.attributel, table namel.attribute2, table namel.attribute3,
table name2.attribute2

FROM table namel

INNER JOIN table name2 WHERE table namel.attributel = table nameZ2.attribute2;

Example

SELECT Item.ItemID, Item.ItemDesc, Item.ItemCost, Item.ArtistID, Artist.ArtistName,
Artist.ArtistEmail
FROM Item

INNER JOIN Artist ON Item.ArtistID = Artist.ArtistID

WHERE ItemCost > 100;

A3.3 Database programming

£, Table 29 SQl like code

Command Explanation of the command

LIKE The Like operator is used within the Where operator to look for non-exact matches. This is known as

pattern matching within the attribute.

There are two wildcards used within the database system.

* _represents one single character.

* g represents any number of characters (zero, one, or many). Use this when you do not know how

many characters you are looking for.

This operator can be used to extract all data when you are not sure of the exact match. The example

below shows all artists containing the word “waork™. A join has been used to match the Artist information

from the Artist table to all products from the Product table containing the word “work”.

Syntax

SELECT Attributel, Attribute2

FROM table name

WHERE Attribute LIKE pattern;

Example

SELECT * from Artist
WHERE ArtistName LIKE '%work':;

Output

Example

SELECT Item.ItemCost, Item.ItemDesc, Item.ArtistID, Artist.ArtistName

FROM Item

JOIN Artist on Artist.ArtistID = Item.ArtistID
WHERE Artist.ArtistName LIKE 'S%work';

201

[] ItenDesc ° : [ArtistID % : [0 ArtistNam

. Abstract Wall #

» Abstract Wall

self porirait

Mountain §

:T’il.lt_ n

The waves

Table 30 SQL And code

Command Explanation of the command

AND The And operator is used where there are two or more conditions that must be true before the

data is displayed. For example, the customer must be based in Italy and the customer must have

ordered an item worth more than 100 euros.

Syntax

SELECT Attributel, AttributeZ2,

FROM table name

WHERE conditionl AND condition2;

Example (without Join)

Select ’ '
FROM Item

WHERE > AND LIKE '%featur%’;

Output

featuring two cC3ts

Example (with Join)

SELECT Purchase. , Purchase. , Purchase. , Customer. -

Customer.

FROM Purchase
INNER JOIN Customer on Purchase. = Customer.

WHERE Customer. = 'Italy' AND Purchase. <'2025-07-01";

Output

Table 31 SQL Or code

Command Explanation of the command

OR The Or operator is used where there are two or more conditions that can be true and the data will

be displayed. For example, the customer must be based in ltaly or France.

Syntax

SELECT Attributel, Attribute2

FROM table name

WHERE conditionl OR condition2;

Example (without Join)

SELECT * from Customer

WHERE = 'Italy' OR = 'France';

Output

[CustomerAddress

Example (with Join)

Select Purchase. , Purchase. ; Customer. , Customer.

, Customer.

FROM Purchase

INNER JOIN Customer on Purchase. = Customer.
WHERE Purchase. BETWEEN '2025-07-28"' AND '2025-07-31'
AND Customer. = 'Italy' OR Customer. = 'France';

Output

1] CustonerEnail YW : [Cust A Nl : [CustomerC

» Ianffmall.con

& Jordanpnail

Tanfmail . con

rdani

A3 Databases

£, Table 32 SQLNot code

Command Explanation of the command

NOT The Not operator is used to exclude certain data. If you know what you want to exclude rather than

what you want to include, then this is the best option.

This could be used if you want to exclude all customers from ltaly and France.

Syntax

SELECT Attributel, Attribute2

FROM table name

WHERE NOT condition;

Example (without Join)

SELECT * from Customer
WHERE NOT CustomerCountry = 'Italy' AND NOT CustomerCountry = 'France';

Output

Example (with Join)

SELECT item.ItemDesc, item.ItemCost, item.ArtistID, Artist.ArtistName
from Item

JOIN Artist on Artist.ArtistID = Item.ArtistID
WHERE NOT Artist.ArtistName LIKE '%Work%'

AND NOT Artist.ArtistName LIKE '%Ceramics$’;

Output

A3.3.3 Explain how SQL can be used to

update data in a database
Indexes in databases are used to speed up queries. They provide a method to

quickly look up the data. Rather than having all the data in the table, an index is a

pointer to the data in the table—similar to an index in a book.

A3.3 Database programming

Indexes are required in very large databases due to the volume of data that is

being processed at any given time. For example, imagine you are in a library but

the information and books are not organized in any particular way. You would

have to spend a long time looking for the information or book. In a normal

library, all the data is indexed using a classification system. You can use the index

to locate information quickly. Databases are similar. They contain thousands,

millions, or billions of records, potentially containing petabytes of data. Being

able to access data quickly is essential for companies to run efficient queries.

Indexes help to serve as lookup tables to quickly retrieve data.

Databases store data in rows organized into tables. Each row has a primary key

that uniquely identifies the data in the rows. These keys are stored in indexes to

access the data quickly. Each time a new data item is created, the index needs to

be automatically updated, and this can take time.

There are three update operations available in a database: adding, modifying,

and removing. Every time each one of these updates is made, indexes need to

be rebuilt and reorganized, which adds a significant overhead to the operation.

There are vast data repositaries on the internet. * The gapminder.org database from the World Health

Organization allows you to search development

indicator metrics for all countries across the world

and then download the data as a spreadsheet to

manipulate. This data can show you factors, such

as birth rate, GDP or the number of years students

spend in school, for one specific country or fora
* The Library of Congress in the USA which stores whole region.

information about current laws in the USA, the USA

copyright office, and the prints and photographs

office. When querying this database, you can discover

what is and is not within copyright, and you can find

information regarding laws and how the laws are

applied in specific situations.

* Worldwide.espacenet.com is a database storing all

the patents that have been filed and granted in the

European Union. When querying the database, you

can see all ideas that are protected and cannot be used

without permission when developing new inventions.

You have access to all of this information. When

developing knowledge claims in TOK, consider: how can

the data retrieved from databases be used to support the

knowledge claims you develop?

The three main modification operations are outlined in Table 33.

% Table 33 SQL code to add and modify records in a database

Operation SQL command Description

New record INSERT INTO This operation is used to add a new record into an entity.

Syntax Example |WArtistIp Y ¢ |MArtistName Y ¢ | M ArtistEmail

NSERT INTO INSERT INTO 1 101 | Evie Ceramics B cémail.com

table name Artist (ArtistID, 2 102 | Rojas Artwork | Rojas€@mail.com

(attl:'ibUtEI ’ Art]}StNam?: 3 103 | Heather Needlework |HNWE@mail.com

attribute2, ArtigtEmail) 4_ 104.‘ Vantage Prints .va.nta efmail.cor attribute2) VALUES e e
('106"', 5 105 | Alejandro Jewellery |Ale@mail.com

VALUES 'Clodagh 6 106 | Clodagh Traditional |Trad@mail.com
(valuel, Traditional',
valuez, 'Trad@mail.com')
value3)

A3 Databases

UPDATE table
name

SET attributel
= value

WHERE

condition;

UPDATE Artist

SET ArtistName =

'Vantage Prints’,
ArtistEmail =
'Vantage@mail.com'
WHERE ArtistName =

'Queenies Prints';

Operation SQL command Description

Modify record UPDATE SET The Update statement is used to update existing records in an entity.

Syntax Example Output

Remove record

Syntax

DELETE FROM
table name

WHERE

condition

DELETE

DELETE FROM

Customer

WHERE CustomerID =
14!;

The Delete statement is used to delete specific records in an entity.

Output

5| Vereenafmail .com Apple Grove, Lakeview

98 Westside, Midtown 6| Zhifmail .com 98 Westside, Midtowm

A3.3.4 Construct calculations within a

database using SQL's aggregate functions
Aggregate functions allow you to perform calculations on the data in the

database. Databases are used to support strategic decision-making within a

company. They can also be used by small independent users to perform data

analytics on their own data, such as: the average number of items sold, the

maximum sales, the sum of the sales, and so on.

Analytic functions you can perform include average, count, max, min and sum.

Average: This finds the average of a value in the database.

% Table 34 SQL code to perform averaging calculations on data in a database

Syntax Example and description

SELECT AVG(Attribute)

FROM Table Name;

Output

SELECT AVG (Purchase.Quantity)
from Purchase;

This shows the average number of items purchased by each person in the

database in the purchase table.

A3.3 Database programming

e SELECT AVG(Attribute) SELECT AVG (Purchase.Quantity)

from Purchase
FROM Table name Where CustomerID = 3;

WHERE Attribute = value; Output

This shows the average number of items purchased by the customer with the

CustomerlD 3.

Count: This returns the number of rows that match a specific criterion.

% Table 35 SQL code to perform count calculations on data in a database

Syntax Example and description

SELECT COUNT (Attribute)FROM SELECT Count (ItemID)

Table Name; FROM Purchase;

Output

This operation counts the number of ltem|Ds that appear within the

purchase entity. This does include duplicates.

SELECT COUNT (Attribute) Select Count(ItemID)
FROM Purchase

FROM Table Name WHERE Quantity>1;

WHERE condition; Output

This operation counts the number of ltem|Ds that appear within the

purchase entity when more than one item has been ordered. This does

include duplicates.

SELECT COUNT (DISTINCT Select Count(DISTINCT ItemID)

Attribute) FROM Purchase;

FROM Table Name; Output

This operation counts the number of itemlDs ltem|Ds that appear within

the purchase entity. However, this only counts the unique item|Ds,

ltemIDs not the duplicates.

207

A3 Databases

E Max: This returns the highest value in an entity for a selected attribute.

% Table 36 SQL to find the maximum values within data in a database

Syntax Example and description

SELECT MAX SELECT MAX(ItemCost), ItemID, ItemDesc

(Attribute) FROM Item;

FROM Table Name; Output

This operation selects the maximum value based on the item cost. The ltemID and ltemDesc are

also displayed.

SELECT MAX SELECT MAX (ItemCost), ItemDesc, Item.ItemID

(Attribute) FROM Item
WHERE ArtistID = 103;

FROM Table Name

WHERE condition; Output

This operation selects the maximum value based on the items cost if the ArtistlD is 103.

Min: This returns the smallest value in an entity for a selected attribute.

% Table 37 SQL code to find minimum values within data in a database

Syntax Example and Description

SELECT MIN (Attribute) |SELECT MIN (ItemCost), ItemDesc, Item.ItemID
FROM Item;

FROM Table Name;

Output

This operation selects the minimum value based on the item cost. The ItemID and

ltemDesc are also displayed.

SELECT MIN (Attribute) |SELECT MIN (ItemCost), ItemDesc, Item.ItemID
FROM Item

FROM Table_NamE WHERE ArtistID = 101;

WHERE condition; Output

This operation selects the minimum value based on the item cost if the ArtistID is 101.

A3.3 Database programming

Sum: This returns the total sum of a numeric attribute within an entity.

% Table 38 SQL code to return the sum of data within a database

Syntax Example and description

SELECT SUM (Attribute) SELECT SUM(ItemCost)
FROM Item;

FROM Table Name;
Output

value of all items in the database.

SELECT SUM(ItemCost)

FROM Item

WHERE ArtistID =

SELECT SUM (Attribute)

FROM Table Name 105;

WHERE Condition; Output

This operation sums the item cost of all values in the item table. This shows the

This operation sums the item cost of all values in the item table if the ArtistID is 105.

A3.3.5 Describe different database views

Databases are only useful when you can view the data within them. Database

developers understand how to develop databases and construct queries to view

the data. But database users are not necessarily developers, and constructing

queries would add a layer of complexity that would not be user-friendly.

Views help to bridge the gap between database developers and users.

Views in SQL databases are virtual tables. These tables do not store data—they

are tools to show data from multiple tables in an organized way. Queries are used

to gather data from multiple tables. This data is then placed into the virtual table

to display the information to the user. These virtual tables constructed from the

queries are known as views. When the query has been executed and data added

View A view is a virtual table used to

show information from the database

to non-expert users.

to the virtual table, it is known as a materialized view.

@D social skills and thinking skills
To understand what database users need to see to make

their job easier, you need a good understanding of other

databases and how they work. This can then help to

abstract the correct data into the views.

People interacting with a database are often not subject

experts. For example, a school database includes all the

information about the schoal, including pupils, teachers,

non-teaching staff, curriculum subjects, school resources,

and finances. The person using the database could be the

administration assistant in the school office. They access the

database to send messages to parents and to find teachers

for cover. They need to see parent contact details and teacher

timetables, but not grading information or pay information.

Imagine you have been asked to develop a database to

store information for an online business selling gifts and

greetings cards. Consider three different database users.

* A person shopping at the online store. They buy cards

and gifts for their family and friends.

= Apersonworking in the purchasing office. They make

decisions about what cards and gifts to buy from suppliers.

* A personworking in the customer services

department. They deal with customer queries.

How could you discover what information would be useful

for each type of database user? How could you design a

view to help them see only what they need to see?

What should the view include? What should the view exclude?

210

A3 Databases

Table 39 shows some advantages of materialized views.

Table 39 Advantages of materialized views

Advantages Description

Views can be

used to hide the

complexity of

the data

Database information is stored across multiple tables. Bringing the data together requires joins

and complex queries. A view allows information to be presented so that the queries, joins and

aggregations are hidden from the user. These results can also be tailored to show or hide columns of

information dependent on the users’ requirements. So, views hide the complexity of the database from

the users to make their interactions with the database simpler and more user-friendly.

Views can be

used to provide

data consistency

Data consistency ensures data is accurate and up to date across the database. For a database to

function correctly, data must be consistent. This maintains integrity, quality and reliability. If the data in

a database is not consistent, then issues and anomalies arise. Views provide a single point of access

to view data and ensure that all data is derived from the same place. Ifthe underlying data changes in

the entities, the results in the view will change. This ensures all users accessing the view have accurate,

up-to-date data.

Views make

use of

independence

Database views are separate from the database schema, so the information users can access using the

database views is separate to the database schema. The schema underlying the view is used to collate

and display the data, but the view does not have access to this. This is a useful feature as it enables the

database schema to be altered without affecting the structure and accessibility of the views. So, if any

changes need to be made to the schema, the users will not experience any difference.

Views can be

used to enhance

database

performance

Database queries make use of data from multiple tables. This is inclusive of joins, aggregations and

complex calculations. Running a query can use significant processing power and slow down the

database. A view pre-processes the complex calculations and aggregations and so can enhance the

performance of a database. By constructing a view, the complex tasks are pre-completed, speeding

up the processing and the overall performance of the database.

Views can be

used to simplify

queries

Relational databases rely on complex queries across multiple tables. They make use of joins,

aggregations and calculations to provide key information from the database to the user. Using views,

you can abstract the data but hide the details of the database schema away from people who do not

need to see it. The results of the query are saved in a view that can be reviewed at any time.

Views can be

read-only or

updatable

Database views are usually read-only. The changes to the underlying data should only be made

using the correct methods, which enable the database to maintain integrity. In very specific cases,

views can be used to update a database. This is only possible if there is a one-to-one relationship

between the view and the table underlying the view. Views cannot be updatable if there are aggregate

functions, such as grouped by, or if they have used union or made use of subqueries. Changes to

the underlying function will not be reflected in the view unless the view is recreated. As views are

read-only, or updatable only in very specific circumstances, using views to access data helps to

maintain the database integrity.

Views can be

used to provide

security

Companies have many different employee levels. Higher-level management can usually see all data

within a database, while employees at an administrative level often have very restricted access to

data. For example, users at a senior level may see details of employees’ salaries, performance records

and personal information. Employees at an administrative level may only need to see contact details.

However, it is not practical to have separate databases for each level of employee in the system.

Views provide a solution to this problem. A view can be created to gather all the data into one place,

with confidential data hidden from the view so that each employee can only access the data they

are allowed to access. Views limit access to the entities they have drawn the data from, ensuring

confidential data remains confidential.

A3.3 Database programming

TOK

Programmers develop code within databases to help with decision-making.

Examples of these decisions include whether someone can get insurance,

whether someone is eligible for a loan, or whether someone is accepted into

aschool.

To what extent are programmers ethically responsible to share how these

decisions are being made?

A3.3.6 Describe how transactions maintain

data integrity in a database
Consider a database that is selling train tickets. There may be an entity containing

customer information, an entity containing train information, and a transaction

table showing the tickets that have been sold and the customer who purchased

them. If someone emailed the company to change their reservation, more than

one employee could read the email and change the data at (roughly) the same

time. If two people change the data, how do we know what data is correct?

Transaction_ID|Customer_ID |Journey_ID Date Quantity

293884 8593020 BAT2902 05/06/2025 |10

293885 5589022 BAT2902 05/06/2025 (|1

293886 5730201 NAI4910 05/06/2025 71

293887 5883901 NAI3939 05/06/2025 | 3

293888 8992020 NAI3939 05/06/2025 |43

User two edits

A Figure 13 Anillustration of the problem when two people try to access the same data

You could solve the problem by only letting one person have access to the

database, but this is not an effective solution as databases are only useful when

they are multi-access. To solve the issue of multi-user access, databases have

transactions that make use of ACID properties.

A transaction is a single operation that accesses, deletes or modifies the

data within a database. Transactions access data using read, write and modify

operations. To maintain consistency before, during and after the transaction,

ACID properties are observed by the database management system.

Figure 14 shows the ACID properties.

Atomicity: The entire transaction must be completed, or the transaction should

not happen at all. There can be no partial transaction.

Consistency: The database moves from one consistent state to another consistent

state after the transaction occurs. For example, values must remain the same after the

transaction occurs. Primary keys remain unique after the transaction has occurred.

Foreign key relationships are maintained after the transaction has occurred.

Abstraction hides the complexity

from the end user. This means that

the user does not see how the

data in the view has been created.

They do not see the raw data,

the calculations that have been

performed, or how the data has

been filtered. This can be helpful

if you only need to use the data

provided, but it can limit your

understanding of the data.

To what extent does abstraction

in the database views hinder

or support the production of

knowledge?

Transaction A single operation in

a database used to read, write, or

modify data.

Consistency

Isolation Durability

A Figure 14 ACID properties

211

212

A3 Databases

Isolation: Maintains the independence of database transactions. All transactions

are isolated until all previous transactions have been committed. This ensures

that consistency is maintained despite concurrent transactions occurring at the

same time.

Durability: Provides guarantees for committed transactions. The system makes

sure that all changes are committed even if there is a system failure.

The uses of ACID properties are as follows.

* Maintaining the integrity of the database as outlined by the database

schema.

* Ensuring the overall consistency of the database after each transaction. This

maintains the integrity of the database so all data in the database remains

reliable.

* Eliminating partial and unsuccessful operations from the database, ensuring

database integrity.

* Restoring the data to the last known consistent state using the rollback

function, in case of database failure or system failure.

Databases are used to store details of banking transactions. This includes what

money has been used for, how much money to debit from an account, how much

money has been paid to someone, and how much money to credit an account.

With many transactions happening on bank accounts it is important that the

transactions are carried out correctly and that the data within the database can

be relied upon. Bank account transactions are a classic example of how ACID

properties function.

BEG"_'I Subtract data BEG"\.'I Subtract data COMMIT
Transaction|—| —» Transaction— .

one from account o from account Transaction

fl‘Ll Success M Success l
v A

Error | Add money to Error | Add money to SAVEPOINT

second account second account

Success Y Success = [suceess | oty
Transaction Transaction

ROLLBACK ROLLBACK

A Figure 15 Abank account transaction

Bank account transactions make use of the transaction control language (TCL) and

ACID properties to ensure transactions happen correctly.

* Thetransaction begins. The bank account that the money is being subtracted

from is isolated. No other transaction can use this bank account. (ACID

property: isolation)

* The moneyis removed from the account.

* The second bank account, that the money is being added to, isisolated. No

other transaction can use this bank account. (ACID property: isolation)

* The money is added to the second bank account successfully. (ACID

property: consistency)

A3.3 Database programming

* The transaction is successful and the change committed. (ACID property:

atomicity)

* Therecords are released from isolation and available for use by other

transactions. (ACID property: durability)

TCL is used to apply the ACID properties in a relational database system. TCL

commands make sure the data is isolated and transactions occur correctly before

the transaction is committed. If the transaction fails at any point, the rollback

action occurs.

TClL is a subset of commands within SQL. There are four commands that you will

find helpful within TCL.

Begin transaction: |dentifies that the transaction has begun and the ACID

properties should be observed.

SQL command: START TRANSACTION;

Commit: Used to save all transactional operations to disk. This means that the

operations are permanent and can be viewed by all users of the database system.

SQL command: COMMIT;

Rollback: When carrying out a transaction and everything executes correctly,

the transaction is committed and the changes saved. However, errors do occur,

and when they do, the database can be rolled back (restored) to previous save

points. The mistakes are rectified and the data is in a consistent state.

SQL Command: ROLLBACK TO savepoint name;

Savepoint: Database operations can be divided into logical blocks.

For example, all insert operations can be completed at the same time and all

delete operations can all be completed at the same time. The save point allows

the database to be saved in logical increments.

SQL command: SAVEPOINT savepoint name;

Advantages and disadvantages of using ACID properties

in a relational database

Advantages

¢ ACID ensures data remains consistent before and after the transactions

occur. This is important because databases are used to make decisions. It is

essential the data is consistent at all times.

¢ ACID properties maintain the integrity of the data. If ACID properties

were missing from a relational database, the data in the database could be

lost. Unreliable databases lead to unreliable data, and the database would

not be able to support the operations it was designed for.

¢ ACID properties enable multiuser access to the database. The isolation

properties enable transactions to be completed concurrently. Having many

people being able to access the database supports businesses using the

database.

* ACID properties enable recovery. Savepoints and rollbacks enable data to

be restored, even if there is a system failure or a database crash. As the data

integrity can be guaranteed even after a system failure, ACID properties help

to maintain accuracy of data.

ACID properties are used to make

sure only one transaction at a time

can access a record. This prevents

conflicting actions happening

within the database. When ACID

properties are in place, the

database is in a stable form.

To what extent do ACID properties

ensure the data returned by a

database query is true?

213

214

A3 Databases

Disadvantages

* Maintaining the ACID properties on a database can cause performance

overhead in the system. The transactions required additional processing to

maintain the ACID properties. In small databases this is not a big problem,

butin larger databases it becomes more of an issue.

* ACID properties cause some scalability challenges. VWWhen multiple

transactions occur concurrently over large databases, this can cause added

complexity.

* Implementing ACID properties increases complexity in a system. Expertise

is required when developing and maintaining the database, so more

resources are required overall.

* Ensuring data integrity in the database using ACID properties requires

increased management time.

Although the disadvantages are significant, they are usually outweighed by the

advantages of having a fully integral database.

TOK

One of the most important functions of a database is to support decision-

making. Data stored in medical databases helps doctors to make decisions

regarding treatment options for patients. Data in banking databases helps

bank staff to decide what credit and saving options to offer to their customers.

Data in university databases helps administrators to make decisions about

current and future student offers.

Considering the importance of decisions being made using data in

databases, what ethical responsibilities do developers have to ensure the data

represented in the database is up to date and accurate?

Practice questions

11. Construct an SQL statement to add the following entity to a database:

Crime (Crime ID(PK), location, type, witness) [3marks]

12. Construct an SQL statement to find the average number of products

ordered in the following entity:
ORDER (Order_ ID(PK), Item ID, Item name,

number of products_ordered) [3 marks]

13. Describe two advantages of using views in a database. [4 marks]

14. Describe the role of ACID in maintaining the integrity of database

transactions [4 marks]

15. Describe two disadvantages of maintaining ACID properties

in a database. [4 marks]

H
Y

AW Alternative databases

and data warehouses

Syllabus understandings

A3.4.1 Outline the different types of databases as approaches to storing data

A3.4.2 Explain the primary objectives of data warehouses in data

management and business intelligence

A3.4.3 Explain the role of online analytical processing (OLAP) and data mining

for business intelligence

A3.4.4 Describe the features of distributed databases

A3.4.1 Outline the different types of

databases as approaches to storing data
A relational database is one model of storing databases. However, there are

several other types of databases you need to know about in this course. You need

to be able to know how they work and in which situations they may be used.

NoSQL model

In contrast to relational databases storing data in multiple related tables, NoSQL

databases store data using documents. For example, instead of storing book

information in a book table which is related to the author table and then the

publisher table, all books would be stored in separate documents combining all

the book information together. NoSQL databases make use of flexible schemas and

can scale well so are best to use with large volumes of data and high user loads.

Examples of flexible schemas include the following.

* Embedding information that is related to a document inside the document.

For example, if you want to track employees within departments you can

store department data within the employee document.

* You can use documents to store reviews. If you have a website, you can embed

recent reviews but store older, less relevant reviews in a different model.

* When displaying products on a website, users want to know many different

things about the product. Using a document, you can store all the attributes

together.

Platform as a service (PaaS) model

The platform as a service (PaaS) model is commonly referred to as a cloud-
based implementation. A cloud-based database is a database system that

follows a traditional structure but is hosted on a remote computing platform. This

enables the database to be accessed across the globe and, depending on user

requirements, it can scale dynamically. As with all cloud-based implementations,

accessing a database through a network may potentially create a bottleneck

(latency) and thus slow down service.

Originally, databases started as

index cards where users hand

wrote the information and stored

them in a filing cabinet. This moved

to storing all the information within

one table and then normalized

databases. Now we have

normalized, unnormalized, flat file,

cloud, and distributed databases.

How can we know that the

development of new database

models is an improvement on

past models?

See section Al.1.9 to review the

different types of services in cloud

computing.

215

A3 Databases

When you use a cloud database, the database is hosted online and networks

are utilized to speed up access to the database across the globe. Cloud

databases are often used to facilitate data access over wide geographical areas.

For example, if a bank used a database to house financial data, the further away

the access point is from the network, the longer it would take to access the

database. Using a cloud-based database enables the database to be distributed

around the world, speeding up the process.

Cloud-based databases allow users to:

* dynamically scale (expand or contract) quickly and easily when necessary

* span the globe effectively using distributed data centres

* manage the database themselves or through a third party

* easily back up data.

Data stored on cloud-based databases is more likely to be professionally

managed. This means that robust backup and restore features are in place,

and if issues occur, there will be less downtime.

Spatial database model

Spatial databases are optimized to store information about geographical

data such as points, lines and polygons. They can also handle complex 3D

objects and topological data. The purpose of spatial databases is specifically to

store and manipulate this geographical information. They are usually known as

geographical information systems (GIS). GIS databases allow SQL statements

to query, analyse and manipulate data with several enhancements specific to

geographics.

Examples of these include the following attributes.

Measurement: The ability to calculate line length and distances between

boundaries.

Geoprocessing: Modify current features to create new ones.

Query geographic relationships: For example, do two boundaries overlap?

Construct new geometrics: For example, by specifying boundary nodes.

Query specific information about a feature: For example, finding the centre

point.

In-memory database model

As the name suggests, an in-memory database keeps all of the stored data

within the database, in the RAM of the computer system. Traditional database

systems keep the data stored on the system back-up storage: it is retrieved on

demand. As in-memory databases store all the memory in RAM, they are faster

to run than traditional databases, and fewer read /write instructions are required

by the CPU. As a result, in-memory databases are used for real-time, faster

processing. The downside of in-memory databases is that if the database crashes,

all of the data will be lost. Non-volatile random access memory (NVRAM) can

help, but the number of read/write cycles to NVRAM are limited.

216

A3.4 Alternative databases and data warehouses

In-memory databases are commonly used for:

* real-time processing applications * processing sensor data

such as medical devices, machine
. . . * e-commerce applications

learning or real-time banking

.) . * geospatial processing.
* online interactive gaming

A3.4.2 Explain the primary objectives of

data warehouses in data management and

business intelligence
Businesses work best when they understand the behaviours and requirements

of their clients. For example, supermarkets often offer loyalty cards to customers

to encourage customers to use that supermarket brand more often than their

competitors. However, the use of these points cards also enables supermarkets

to collect millions of data points about consumers. This data can be used to

identify new trends in spending, changes in the behaviours of shoppers, and

products that are losing appeal over time.

By analysing the data within their business, supermarkets can identify the

products that customers want the most and buy and sell these at lower prices as _

the higher volume of sales protects their profit margins. The supermarket can offer

niche products at a higher price point to maintain their profit margin on lower- Data warehouse An append-only

volume goods. Offering discounts on everyday products and personalizing deals data repository, used to house

for consumers ultimately boosts the supermarket’s profits. Data warehouses historical data.

enable this level of analysis to occur.

Data warehouses are database management systems that are solely interested in

performing analytical functions. They are not involved in transactional processing.

Data warehouses only work with historical data that has come from a wide range

of sources, including log files and transactional files. As data warehouses store

large amounts of data from many different sources, they are very good for aiding

decision-making.

@ Thinking skills

Identifying patterns in data helps developers to * |dentify the data that needs to be stored. You may find

understand the links between items and make effective it useful to use an ERD.

business decisions: what products to invest in, what

products to retire, what geographical locations are

experiencing growth and need more resources.

* |dentify the relationships between the different

entities.

» |dentify the business decisions that can be made using
Imagine you have been asked by a local business owner e e

to develop a database to help them understand their

business in more detail. The business is a fruit and Compare your work with another group. What can you
vegetable shop. It gathers produce from local farms to learn from their activities? What can they learn from you?

sell at its shop in the local market town. It also offers a fruit

and vegetable subscription service: customers sign up

and get vegetable boxes delivered to their door.

As a bigger group, consider to what extent companies

should tell their customers what data they collect and

how this data is being used to make decisions.

With a partner, analyse the data and complete the

following tasks.

217

218

A3 Databases

Companies use data warehouses as they offer the following advantages.

* Theyenable integration of many different sources of data.

* Datain the warehouse does not change, itis only historical.

* Data can be analysed about one particular subject or area of the business.

* Theycananalyse changes over time.

Data warehouses are used in companies to help build reports and complete

analysis. They are there to maintain the organization's historical information and

be used as a source for decision-making.

/—— Data warehouse fi

4 h

Integrated: from multiple

different sources

< 4

&)

Time-variant: historical Non volatile: data once in

data only the database is not deleted

N2 a =
A Figure 16 The different components of the data warehouse

Data warehouses are subject-oriented: Databases that are not data

warehouses are often used to carry out transactions and complete queries.

These databases store information in many different entities. When transactional

databases are queried, the query draws data from different entities using joins.

Data warehouses separate data into subjects, so you can analyse by subject

rather than by transactional data. This is shown in Figure 17. In this example, you

can see the difference between transactional operations and data warehouse

subjects in a cinema database.

Database operations Data warehouse subjects

Ticket sales transactions
Customers Employees

Food and drink sales transactions

Films Sales

Payroll calculations and transactions

3 and Promotions
Accounts transactions drinks

A Figure 17 The different operations and subjects within a cinema database

A3.4 Alternative databases and data warehouses

By separating the data into subjects, businesses can perform analytics on different

areas of the business. By identifying trends in different areas, they can determine

where best to invest and make adjustments to improve the business.

Data warehouses are integrated: They gather data from multiple different

databases and logs across the system. To gather all the data safely in a data

warehouse, the data needs to go through a data cleaning process and get

transformed into data that is readable by the data warehouse. This is known as the

extract, transform and load (ETL) process.

* Extract: Data is gathered from many different sources across the system.

¢ Transform: Datais transformed into a form that the data warehouse can

read. This stage includes data cleaning and data filtering.

* Load: The prepared data is loaded into the data warehouse.

Data cleaning is required before extracting. Data cleaning techniques that may

be utilised at the extract phase include the following.

+ Data normalization: Data is organized into a consistent format matching the

data in the warehouse. (This is not the same as extracting data into different

tables.)

* Data cleansing: Errors that are apparent in the database are identified and

corrected.

* Data filtering: Unwanted data in the data set is removed.

+ Data validation: Data is checked to make sure it meets the restrictions

in place in the data warehouse. This is to minimize inconsistency in the

database.

Data warehouses are time-variant: Data warehouses are append only. This

means you can write to them but not delete from them. Historical data is keptin

a data warehouse meaning you can view files from one month ago, six months

ago, one year ago, or even longer. This is different to transactional databases,

which only keep the more recent transactions. Keeping historical data enables

companies to look for trends in data, which is valuable when it comes to strategic

decision-making.

Data warehouses are non-volatile: A data warehouse is physically separate to

the databases it gathers data from (the source databases). The source databases

are constantly being read from, amended, and having data deleted. They are

volatile (changeable) data sources. In data warehouses, the data is loaded into

the warehouse, then added to. No changes are made to the data once it has

been added to the warehouse. In this sense, the data warehouse is non-volatile,

meaning it is non-changeable.

For businesses, there are many benefits of using a data warehouse.

* Understanding the patterns and trends within the data, which allows better

future predictions (forecasting) and planning.

* Managing the enormous volumes of data that a company generates.

* Data warehouses are more user-friendly than traditional databases for

business analytics and decision-making queries.

¢ Allowing multi-user access to data, as the data cannot be changed once

added to the data warehouses.

Data warehouses are used for

analytical processing and data

mining, which you will learn more

about in section A3.4.3.

Data is collected and placed into

data warehouses. Analytics are

then performed on the data. This

data is used to make decisions

within businesses.

Consider a health insurance

company. It collects data from its

customers about which healthcare

professionals they work with and

what health devices they use or

wear. The insurance company can

use this data to provide analytics

about customer lifestyles, possible

health problems, and possible

future medical needs.

Companies collect data and use

the information in data warehouses

to make decisions. Based on

ethical considerations, what kind

of decisions should not be made

using data in data warehouses?

219

’3 Dat
abases

@D Thinking skills

220

_ A3.4.3 Explain the role of online analytical

Online analytical processing

(OLAP) Database analysis
technology used to query, extract

and study data summarized from

a database.

OLAP is a key tool used for making

decisions when using databases.

Many of these decisions are made

using Al tools.

To what extent should you trust

the data being produced by

Al-enhanced OLAP tools? When

using Al-enhanced OLAP tools,

what features of the data produced

would allow you to trust the data?

What features would make you

wary of it?

Share your findings with a partner

ora small group. Do they agree

with you?

processing (OLAP) and data mining for

business intelligence

What is online analytical processing?

Online analytical processing (OLAP) is a key tool for identifying information

within a data warehouse. OLAP uses a star or snowflake schema to represent data

in a multi-dimensional table, known as an OLAP cube.

Storing the data in a cube format allows the data to be queried in multiple

ways. The data can be queried as a whole, or along any single axis (X, Y or Z).

Examining the data from multiple angles can provide the user with many different

interpretations. These different interpretations can then be used to support

decision-making.

To create a OLAP cube you need to link the data together. This can be completed

using primary keys and foreign keys within the database schema. For example,

consider the following database. There is a transaction entity storing data

regarding the sales within a company. The transaction entity employs foreign

keys to link it to the data about the product, the supplier and the subscriber

who purchased the product. The foreign keys are used to gather the additional

attributes from the related table to bring all the data together in a multi-layers

format (the OLAP cube). This is shown in Figure 18.

[Produc’r_Type] [Supplier_ID

Product_ID Product_Name

[Subscriber_ID*, Product_ID*, Quantity, Date]

Subscriber_ID

\ Subscriber_Type

[Subscriber_N ame]
[Subscriber_Address]

A Figure 18 Visualization ofan OLAP cube

The OLAP cube is central to the OLAP system. It isimportant that you understand

how this data has been collated when you think about data analytics within the

OLAP framework. OLAP is pre-processed and organized before analytics occurs.

This contrasts with data mining, which only makes use of raw data. OLAP and

data mining can be used in tandem. Data mining tools are used to analyse user

behaviours from raw data within a data warehouse. OLAP software is then used to

inspect and draw conclusions by looking at the data from different angles. Using

both data mining and OLAP in combination supports effective decision-making

with a company.

A3.4 Alternative databases and data warehouses

How do OLAP systems work?

Data in data warehouses is collected from multiple sources. Data in the data

warehouse is cleaned and, when using OLAP systems, pre-processed and

organized into data cubes (known as OLAP cubes). An OLAP cube is a cube of

data organized on different axes. One aspect of the data will be organized on the

X-axis, one on the Y-axis, and another (usually time) on the Z-axis. An example is

shown in the cube in Figure 19.

Y-axis

Product dimension

® = Data point

. X-axis

sl Customer dimension

/-axis

Time dimension

A Figure 19 Example of an OLAF cube

Each cube is organized on multiple axes and the cubes are then arganized

into different sections known as dimensions. Business analytics make use of the

different dimensions to query different areas that the data warehouse contains.

This gives the decision-makers access to many different perspectives on the data.

Companies might use the following dimensions.

Customer data dimension: Storing all the data about the company’s customers,

including demographics, geographic location, browsing and purchasing history.

Geographical data dimension: Storing all the information about the

geographic location where purchases are being made, including location,

demographics, purchases in the area.

Time period data: Storing information including what purchases were being

made, what adverts were being run, and what was trending during a given time

period.

By pre-curating data into these categories from different tables and multiple

sources, the data warehouse queries are more efficient.

OLAP uses five different operations to find information from the data warehouse.

These operations provide information that supports effective decision-making

within companies. There are five types of OLAP operations that can be performed

on data.

221

222

A3 Databases

Roll-up: This function analyses and summarizes the data within the cube. Using

the hierarchical structure, the data at the bottom of the cube is summarized and

then the data on the next level is added to the summary. For example, a count of

an item on the bottom layer is rolled over to the next year and the final count from

the cube is presented to the user.

Drill-down: This function allows analysts to look closely at the dimensions of

the data. Analysts use this function to search for specifics. For example, looking

across time periods to understand the growth or decrease in demand for a

product over time.

Slice: Data in the cube is organized in a logical manner. A cube containing all the

information about location may contain one location on the first slice, a second

location on the second, and so on. This is helpful if you want to look at trends

across all locations. However, the slice function allows you to look at one specific

slice and examine specific trends in that area.

Dice: This allows analysts to select multiple dimensions across the cube. As the

cube is organized with all data from a specific domain, we can look carefully into

the cube for specific information. A cube may contain all the items for sale in one

location, so using the dice operation on the data in the cube could allow us to

find all the sales for one specific item in a specific region.

Pivot: This allows analysts to get a new insight into the data by viewing it from a

different dimension, by rotating the data cube on a different axis.

OLAP is used to support effective decision-making within businesses. The main

way OLAP can support this is by providing the information to support these

activities.

Sales reporting: Companies that have sales as a core business can use sales

reporting to help make decisions. The more sales a company makes, the

better its profits will be. OLAP can help to identify which products are selling in

different markets. By identifying the products that are selling well in each market,

a company can ensure that it has enough supply in that location to meet the

demand.

Marketing: Successful marketing campaigns can generate more custom and

so boost company profits. OLAP enables companies to analyse their marketing

campaigns, looking at potential successes and areas for improvement.

Understanding the marketing that works best for the company can help to

improve the overall performance of the business.

Management reporting: Business decisions are often finalized by management

teams. Data is usually required to support any strategic decisions. The analytical

tools provided by OLAP can be used to develop reports for management,

showing the different trends in the company and possible outcomes of any new

trends.

Processing management: Effective businesses rely on processes working

correctly to make sure their products and services are in the right place at

the right time. Understanding OLAP can be used to identify weaknesses in

processes. The information learned from this can be used to adjust the process,

improving the overall efficiency of the company.

A3.4 Alternative databases and data warehouses

Budgeting: Ensuring cost effectiveness can help a business maximize its profit.

Using the insights from OLAP can help businesses to analyse weaknesses and

strengths in their marketing costs, production costs, and logistics costs. Ensuring

that the right products are in the right place at the right time helps to manage

budgets.

Forecasting: This is one of the most powerful business tools. Forecasting is the

process of using past data to try to predict future consumer behaviour. Using past

trends identified by the OLAP system allows businesses to forecast future trends,

consumer habits, and logistical requirements. This allows them to identify how

best to invest in the future to maximize their profit.

Data mining

In OLAP, the data is pre-curated into cubes of data based on different

subjects. This allows for more efficient data querying. Data mining requires

no pre-processing of the data. The raw data is used to identify patterns and

trends within the data warehouse, so that useful information can be extracted.

Companies use data mining to make business decisions, helping them to

develop effective marketing campaigns, increase their sales and minimize costs,

ultimately increasing their profits.

Data mining programs use data warehouses to analyse patterns and relationships

in data. Companies can use data mining to discover browsing trends, purchasing

trends and engagement trends organized by location, demographic and

product type.

Have you ever opened up your social media

accounts and wondered how the adverts knew

exactly what you were thinking? This could be a

result of data mining. Social media accounts are very

valuable in terms of consumer data. The accounts

can track who you engage with, what posts you are

interested in, and what your likes (and dislikes) are.

They can see where you have been and who you

have been with. Although you cannot see the links

immediately, the data mining behind social media

can discover common patterns between your actions

and the actions of those you interact with. Using

analytical tools, an algorithm can then determine

what your current interests may be and then send

you adverts to sell you products related to this

interest. If you have been talking about buying new

trainers with some of your friends, your friends might

have searched for different trainers... and now you

are seeing adverts for trainers! A Figure 20 Data collected through social media can

TOK

You may have learned in your TOK

class that the interpretation of data

can be open to bias. Bias from the

person interpreting the data or bias

from the person interpreting the

results. OLAP cubes allow data to

be examined from many different

perspectives, helping to identify

previously unknown links between

data points.

Can the information produced by

OLAP change established values

or beliefs?

be used to determine your interests

Data mining makes use of the following techniques to uncover these hidden

patterns and trends: classification, clustering, regression, association rule

discovery and sequential pattern discovery.

See topic A4 for more information

about the mechanics behind data

mining techniques.

223

224

A3 Databases

Classification

Classification is using information about a product to label an item in a specific

way on a superficial level. This is similar to classifying each item on your desk

using the labels writing tool, technology tool, reading material, and so on. Within

the classification process, a model is developed using known items. Each item

is fed into the system and labelled correctly. This information is then used to train

the system. Once the system is fully trained, unknown items can be added to the

data set and these will be assigned the correct label by the computer system.

Labels can be used to match items to consumers. The classification process

extracts data from the warehouse to develop a model, placing the data in

different segments and then using this data to predict future trends. A simplified

model of the classification process is shown in Figure 21.

Classification

system developed

LTraining data fed into the :> Classification algorithmJ

Results of prediction e
) Classification rules

used for business
L defined

decisions

_— Data for prediction fed
Prediction result (e into the system

A Figure 21 Asimplified model of the classification process

Companies use classification along with data warehouses to use past data to

inform future successes. Training data is used to classify items, and consumers can

also be classified in a similar way. These classifications can be used to match items

with potential customers. When a new item is added to the model and classified,

this information can be used to match the item with potential customers.

Marketing campaigns can then be created specifically for these markets.

Another example could be past marketing campaign information that can be fed

into the system along with how successful they were in certain demographics.

New marketing ideas can be fed into the system and classification can determine

the best way to get this campaign to consumers, for example, whether to use

social media or to run traditional adverts on television.

Clustering

Clustering is a technique used to group different objects together based

on seen or unseen patterns. Clustering items together allows you to

discover which items are similar and which are different from each other.

A3.4 Alternative databases and data warehouses

Using this information can help companies to determine potential customers for

products. Figure 22 shows a visual representation of clustering. An unknown item

(shown here as a red triangle) is added to the data set. The clusters it most closely

aligns with are most like the product (that is, the data within the circle).

Clustering can help a company identify where a new product or service may sit

among its current customer base. A new product could be introduced to the data

and this will be clustered within the current data. The clusters closest to the new

product will indicate possible target markets for the new product. This can be

cross-referenced with other techniques to plan the best marketing strategy for

the product.

Regression

Regression is a supervised learning technique used to predict the numerical

value of one item based on another item. This works for any continuously valued

attribute. Regression is usually used for trend analysis and financial forecasting.

Financial forecasting is important for companies as it helps them to plan for the

future. Research and development budgets, staffing, marketing budgets and

similar are all decided based on financial and future financial planning.

Companies can use regression when trying to make a prediction about profits.

Using past data from sales and the profits at that time, companies can introduce

different sales data to predict the profits that would be made if the sales figures

were reached.

Association rule discovery

Association rule discovery is when the data is explored to find associations, rules

and patterns between the items in the data. These rules could be expressed

as "if X, then Y is likely”. These rules are important as they can help to discover

previously unknown trends within data.

24P O
A Figure 24 The association rule discovery process

Companies can use association rule discovery to determine the likelihood that a

product will be bought. By using association rules, companies can target special

offers to increase the likelihood the products will be purchased.

A Figure 22 Unsupervised machine

learning used to develop clusters

Value to

analyse added

A Figure 23 Animage showing the linear

regression trend

Association rule discovery uses information in data party food and celebration decorations to show support

warehouses to show links between products. Sometimes for their team. But this is not an association that exists all

this is correct—if a person buys car cleaning products the time, so constantly marketing decorations containing

then it may be good to recommend car air fresheners country flags and party food may not be a good idea.

as itis likely they are keeping their car clean. However,

data mining tools may not account for cultural factors.

For example, during sporting events, people may buy

What features of information produced by data mining can

have an impact on its reliability?

225

226

A3 Databases

Association rule discovery in supermarkets

Supermarkets use information gathered from loyalty

cards and loyalty apps to tailor special offers to

customers, making them more likely to purchase a

given product. Association also helps to determine

prices. If you sell two products at a lower cost

knowing the customer is likely to buy the third, you

can increase the price on the third. For example, in

the summer, supermarkets might put small discounts

on sausages and barbeque sauce but increase the

price of charcoal for barbecues. Customers think

they are getting a good deal and remain loyal to the

brand but profits remain unchanged.

g

PR, |

A Figure 25 A supermarket loyalty app, used to track user

shopping habits

Sequential pattern discovery

You may understand a sequence as a list of logically ordered items.

The sequential pattern discovery tool in machine learning uses algorithms to

discover unknown sequences within data warehouses. This allows companies

to predict the next movement of customers.

Link T | Link 2 | Link 3 | Link 4 | Link 5 | Link 6 | Link 7 | Link 8 | Link 9 |Link 10| Link 11 |Link 12

User One o X X X X o o X X X X

User Two X X X X o o o X X o o

UserThree| x X X X X o o X X o o

User Four X X X X X o X X X X X

User Five o X X X o o X X X o o

User Six X X X X o o o X X o o

A Figure 26 The sequential pattern discovery process

Fraud detection

When you use a bank card to spend money, your bank can see

where you spend the money and the amount you spend. If you

suddenly start spending money in a new, different location, this

may be flagged as suspicious activity. If you continue to spend

in your home location and a different location at the same time,

this is an indication of fraud and your bank may call you.

However, if your location changed from your home location

to a train station and onto a new location, the bank's pattern-

matching algorithm may not flag this as suspicious activity.

This pattern sequence suggests that activity in a train station or

airport indicates a move in location is likely. A Figure 27 Withdrawing money from an ATM

A3.4 Alternative databases and data warehouses

Other uses of sequential pattern discovery include the following.

Website navigation: Pattern sequencing can be used to analyse clicks on a

website. Areas of high activity tend to have more engagement, and companies

can use this information to understand where to place information they want

users to see. Pattern sequencing can also identify what websites people are likely

to visit next based on their behaviour.

Social media analysis: As social media contains a wealth of data regarding

subscribers and their habits, companies can use sequence pattern discovery to

analyse trends in consumer behaviour, discover content people find engaging,

and learn how people navigate the internet. This can lead to more targeted

marketing and products more suited to people’s lifestyles.

Anomaly detection: Often, outliers in a data set signify something abnormal

is happening within the data. If outliers are identified then investigations can be

made to determine the cause.

A

O\ QOutliers

T
i
m
e

Number of network requests

A Figure 28 Outliers within a data set

Anomaly detection in manufacturing

When medication is manufactured, each

stage is carefully monitored to ensure the

product is within the accepted limits and

therefore suitable for use. If the product

is not within the limits then an outlier is

detected—this could indicate an issue

with the machinery, or contamination.

The current batch of the manufacturing

process is not released to the public,

keeping consumers safe.

These are four types of bias that can

occur when data mining.

Selection bias: When choosing

the training data you do not select a

sample accurately representing the

population.

Confirmation bias: The data

mining technique has been used

to confirm a preconceived theory

rather than being allowed to

discover theories freely.

Measurement bias: Inaccurate

data collection measurements

have been used to gather the data

leading to incorrect results in the

final product.

Overfitting bias: The results from

complex models and have been

forced to fit too tightly into the

generalization.

To what extent is bias inevitable

when using data mining tools?

What could you do to counteract

this bias?

A Figure 29 Anexample of a manufacturing process

228

A3 Databases

Many tools help individuals and

companies make decisions using

data within databases. They all

work in different ways to produce

results.

How important are tools that

produce information from data

mining in the production or

acquisition of knowledge?

With data mining tools, machines

can analyse data finding patterns

that were previously unknown.

They can be used to analyse data

to maximize sales, find fraud,

understand human behaviour, and

predict human behaviour. They are

able to do this faster than humans

and, in some cases, without the

users understanding how the

decisions have been made.

How have the technological tools

within data mining extended

human capacity to make

observations and judgements

about each other and phenomena

in the natural world?

One of the key requirements for

a distributed database is a stable

network that is fit for purpose. See

section A2.1.2 for more on this.

Distributed database A database

that has been segmented, with

the segments housed in different

locations.

Anomaly detection can also be used to uncover problems.

Finance: Like sequential pattern recognition, if someone is spending money in

one location within their usual pattern of spending but at the same time a large

amount of money is removed from the account in another location, this is an

outlier and would be flagged as possible fraud. Another outlier could be if there

is suddenly a large number of people placing money in the same stock on the

stock market, outside their normal pattern of investment.

Cybersecurity: Data usually travels around the network normally. Data flow

is generally steady and adheres to the given protocols. However, a significant

increase in data movement or a sudden change in the protocols being used

would show as an outlier. This could indicate a potential data breach or the

presence of malware.

Applications of data mining

Marketing: Successful marketing campaigns understand their target market

and what they are looking for. When companies understand the target market

responses to media campaigns, they can tailor adverts for them. Data mining

helps to understand the market, what they respond to and what they ignore.

Sales: One of the key uses of a data warehouse is to understand trends in sales.

What products are selling well and in which location? What products are not

selling in certain locations? Using this data, companies can make sure the correct

products get to the correct place when required.

Fraud detection: Data mining uses technigues to map links between data to

look for information. If there is no link to be found then it is an indicator to the

company to further investigate the data to look for possible fraud.

Human resources (HR): HR departments have lots of data about employees

including training records, performance and, if appropriate, why they left the

company. Mining this data can help companies put together better packages for

people entering the company to encourage them to stay.

Customer service: Companies rely on their reputation but, unfortunately, things

can go wrong. Data mining can be used to find common solutions to problems

and use these to populate answers on websites and chat bots to help resolve

queries quickly.

A3.4.4 Describe the features of distributed

databases

Databases are often used to house data used to support businesses across

the globe. Traditionally, companies operated in one geographical area

with minimal data. Now, companies operate worldwide with an increasing

reliance on data. Transferring data from one location to another can be

inefficient as the more data you have to transfer, the slower the transactions

become. Therefore, distributed databases are used. A distributed database

is a database that is not limited to one single system. The system is split over

different sites. The distributed databases can be housed on multiple computers,

sometimes housed on physical machines or sometimes housed on the cloud.

The key thing for distributed databases is that they need to look and feel like

one single database.

There are two types of distributed databases: homogenous and heterogenous.

Homogeneous database: A database in which all different sites use the same

database schema, house the same data, and use the same operating system and

database management system. The databases in each location are the same and

are therefore slightly easier to manage.

Heterogeneous database: A database in which the sites may use different

schemas. The operating systems and database management systems used may

also be different. This can lead to challenges with queries and transactions, and

often an intermediate translation system may need to be used.

Databases can be separated using fragmentation or replication.

Fragmentation: The database is split into smaller parts and the fragments are

stored at different sites. The fragments can be brought back together to recreate

the whole.

Replication: The entire database is stored at each site. This means that all sites

have copies of all data. This enables the availability of all data at all sites. However,

it does come with a processing overhead as concurrency control has to be very

carefully managed in a distributed database.

A3.4 Alternative databases and data warehouses

Consider a large hotel chain with many different hotels located all over the globe. Different users of the system

need different data.

* The hotel group management are the team who make strategic decis

The hotel group management would be interested in knowing which

ions based on data across the globe.

locations have a growth market and

which locations are not experiencing growth, as well as profit or loss across the whole chain.

* The management and employees of a single hotel will only care about that one specific hotel, the rooms that

are occupied, upcoming bookings, and any events that are going to occur.

Distributed databases can be useful

in this situation. Each individual hotel

could have its own section of the

overall company database, for data

relating to bookings and events at

that specific hotel. In this case, a

fragmented database is most likely to

be used, where each hotel manages

its own fragment of the database.

Additional uses for a distributed

database include military control

systems, corporate management

systems, air traffic control systems and

manufacturing control systems.

A Figure 30 Alarge hotel chain may use a fragmented database

A3 Databases

TOK

Distributed databases are used to store information around the world.

This includes hotel chains storing information about employees and customers,

and pharmaceutical companies storing information about ilinesses and

treatments. With both these examples, data is stored on different servers in

different countries by many different parts of the business.

Who owns the knowledge on distributed databases? Who has legislative

power over the knowledge?

Features of distributed databases

Concurrency control

Using distributed databases requires the data to be consistent across all sections

of the databases. Concurrency control mechanisms ensure the databases do not

violate ACID properties. There are two types of concurrency control mechanisms

used to achieve this in a distributed database.

Pessimistic concurrency control (PCC): PCC assumes that all transactions will
try to access the same resource at the same time. To overcome this before any

operation is performed on the data, the resource is locked.

Optimistic concurrency control (OCC): OCC assumes that no transactions will

access the resource at the same time. OCC does not lock the data but instead

checks for conflicts at run time.

Data consistency

A data consistency model is required to guarantee data is consistent across all

sections of the database in the system. Without consideration of consistency, the

data will be unreliable across the distributed database and therefore the database

will be unable to provide reliable data. There are three models of consistently in a

distributed database.

Strong consistency: This ensures that data is updated across all sections of the

database immediately. After each write update, the operation is reflected in all

sections of the database, ensuring any subsequent read operation has access to

the correct data. This is the strictest version of consistency and requires a lot of

processing.

Eventual consistency: This allows for temporary inconsistencies in a distributed

database. This model determines that given a long period of time without any

updates, the data in the database will eventually reach the same state. This model

does not guarantee that the read operation reflects the latest write operation.

Eventual consistency does sacrifice accuracy but also has lower processing

overheads.

Causal consistency: If there is a strong causal connection between two data

points, then causal consistency guarantees the state is preserved across all

sections of the database. If one operation depends on another, priority will be

given to updating the state. All non-causal operations will be updated using the

eventual consistency model.

A3.4 Alternative databases and data warehouses

Data partitioning

This involves separating databases into smaller, more manageable sections of

a database. Data partitioning improves query performance as the data set is

smaller, the storage requirements are smaller, and scalability is improved as you

can add subsequent partitions to the database. There are many ways to partition

a database, but the four most commeon are outlined here.

List partitioning: Dividing the data based on specific values within a primary key

column. For example, dividing by |Ds.

Hash partitioning: Dividing the data based on a hash function applied to a key

column. This is usually used when random distribution of values is required or

there is no clear partitioning options for the data.

Range partitioning: Dividing the data based on values in a key column.

For example, date ranges or ranges within a specific number range.

Round-robin partitioning: Dividing the data equally across all partitions using

a round robin algorithm. This is used when there are no obvious partitioning

options available.

Data security

Security is essential in all database systems but especially for distributed database

systems. There are several ways to improve security within a distributed database.

Authentication: Using usernames and passwords to allow users access to the

database system. A further measure is to use two-factor authentication when

users have to enter a username and password and then confirm their login

attempt using an additional device.

Data encryption: Data entered into the database system is automatically

encrypted when the data is entered into the database and decrypted when read.

Usually this is a built-in capacity of the database.

Validated input: A security measure ensures the data matches the validation

rules of the database, as if the data does not match the validation rules, errors

may occur in the database.

Distribution transparency

Transparency in the distributed databases refers to separating databases across

different sections but masking the implementation from the user so the database

seems to be one cohesive system. Different transparencies that are useful to know

when discussing distributed databases include the following.

Access transparency: Ensuring that operations function the same at both local

and remote resources. The distribution of the different resources is hidden from

the user but the user should not be able to tell.

Location transparency: Enabling access to resources no matter where they

are in the network. This means that any movement of files is reflected across the

whole system, ensuring the files are always available.

231

232

A3 Databases

As with all databases, distributed

databases are subject to anomalies

and mistakes if not managed

correctly. If the database does

not follow the ACID properties

data access and updates may

cause issues. Databases designers

work hard to ensure this does not

happen but distributed databases

are more susceptible to these

issues than other databases.

With this in mind, to what extent

is certainty possible when dealing

with data that has been produced

from distributed databases?

Concurrency transparency: Allowing multiple transactions to make use of

resources without affecting each other. As concurrent user use is essential in a

distributed database system, being able to access and use data concurrently

is necessary.

Replication transparency: Enabling the existence of different data sets across

the database systems. This will improve reliability because if anything happens to

one section of the distributed database other sections can be used to restore

the data. However, users should be unable to see that the file systems exist in

other places.

Failure transparency: Faults do occur on distributed systems, as there are

multiple parts and therefore many parts faults can occur. When components fail,

failure transparency enables a backup system to take over without the users being

aware of the fault.

Fault tolerance

As distributed database systems are connected as a single system, faults can occur.

However, because there is built-in redundancy and data duplication across the

system, the system can tolerate faults and still function. Fault tolerance is the ability of

the system to function properly even when there is a fault within the database system.

Fault tolerance is required to provide the following features in a distributed database.

Availability: The system needs to be ready for use at all times.

Reliability: The system can work without failure.

Safety: The data within the system is protected from unauthorized access.

Maintainability: How easy it is to repair faults.

Global query processing

As the data is spread across different database sections across a network when

developing a query, the query needs to be optimized on a local and global level.

This works by the query being entered into the database that is then evaluated

atalocal level. The schema at the local level determines the data that can be

added from the local segment of the database and what needs to come from a

global level. The query is then run at a global level and the query is run where the

different fragments are within the database. The global optimizer then brings all

the data together and processes the results. The local query and global queries

are brought together and shared with the user.

Replication

This is the process of storing data at more than one site across the distributed

database. This improves the availability of data even if there is a problem at one

site within the database. There are different types of replication.

Full replication: The whole database is copied to every site within the

distributed system. The advantages to this are that data is available at all sites and

global queries can be processed at each site. Disadvantages to full replication

are concurrency is challenging and updating is slow.

Partial replication: Important fragments of the database are replicated at each

site but there is local data at each site. This model has the advantages of both full

replication and no replication.

A3.4 Alternative databases and data warehouses

No replication: Each fragment of the database is only stored at one site.

The advantages of this include fewer concurrency issues, as there is no data

replication, but this comes at a cost—queries are very slow.

Replication can be completed in one of four ways.

Master-slave replication: One database is the master server. This receives all

transaction data, which is passed out to the rest of the database sections.

Multi-master replication: All servers are masters. Any transactions carried out

on a server are replicated to all connected servers.

Peer-to-peer replication: Each server can act as both a master and a slave. Data

is shared between each server.

Single source replication: A single database is used to store all transactions.

This database is then replicated to other databases.

Advantages and disadvantages of distributed databases

Advantages

* Faster processing, because the data and processing power are distributed

across a netwark, so performing requests and actions on the data is more

efficient.

* Expansion of the database is easier as you can add more sites to the database

to house the data.

* The database is easier to share as the database is separated into different

locations. It is also easier to provide local autonomy to each section of the

database as you can fragment the data across the network.

* Inadistributed database the data is more reliable. This is because the data is

spread over different systems. If one section of the system develops a fault,

different areas of the system can be used as a backup.

Disadvantages

* The system can very quickly become complex and, therefare, challenging

to manage.

* The ACID properties are important in a distributed database to ensure the

consistency of data across the database network.

+ Translation is needed if not all databases are using the same system, which

can lead to additional processing.

* Security is a challenge with many different nodes on a distributed database.

Role of ACID in transactions

When implementing ACID transactions in a distributed system, the data is

separated across multiple partitions, adding a layer of complexity to completing

transactions that meet the ACID properties across the distribution. Thisis

overcome through the transactions being completed in two phases: the execute

phase and the commit phase.

In the execute phase, a query is added to the system and the data is identified in

the closest data partitions. A time stamp is placed in the transaction log to show

the point when the transaction began. This can help with updating partitions.

A lock is placed on the data in the partitions and the query completed.

TOK

There is no expiration date on data

storage. Digital archives allow

data to be stored—theoretically—

forever. Digitalization of archives

mean the world has access to

more information than ever before.

Without regulation, data that is

held about you could be saved

forever.

The European Union has a law

called the general data protection

regulation (GDPR) that explains

what companies can and cannot

do with your data, and what your

rights are with regard to your data,

including how long the data can be

kept for. Many other countries have

similar laws.

In pairs or in small groups, spend

some time looking at the GDPR

or equivalent legislation in your

country, then answer the following

guestions.

e Whatdoes the law state about

how long data can be kept?

e Should data within databases

have an expiry date?

* What consequences may there

be to a person if all data every

collected about them was

kept?

233

A3 Databases

If the query is successful, the commit phase is entered. As well as the commit

process being completed, the transaction time is added to the log. Once this stage

is reached, the update is passed to all partitions within the distributed database.

In distributed database systems, one server becomes a coordinator. The coordinator

keeps track of participating servers known as workers. The role of the coordinator is

to ensure all transactions are completed consistently using ACID properties. The role

of the workers is to ensure the transactions happen correctly and report the outcome

of their operation to the coordinator. In a distributed database, an atomic commitis

required before a transaction is committed. For an atomic commit to be completed,

the following requirements should be met.

¢ All participant servers must reach the same conclusion.

* Ifany participant decides to commit then all other participants must have

voted to commit.

+ Ifall participants vote yes, all participants must commit.

* Ifany participant votes no, rollback must occur on all participants.

By following the atomic commit, distributed databases maintain integrity.

Practice questions

16. Describe an OLAP cube.

17. Explain the difference between clustering and classification.

18. Describe two applications of data mining.

19. Explain why a spatial database is a suitable database for storing

information about virus outbreaks.

20. Explain why the atomic commit is necessary in distributed

databases.

2% Linking questions

[2 marks]

|6 marks]

[4 marks]

[3 marks]

[3 marks]

1. What processes are needed to store data in database structures so that

they can be used in machine learning (A4)?

2. How does database programming in SQL differ from programming

computationally in a high-level language (B2)?

3. Towhat extentis the effectiveness of the distributed database

determined by the network that connects the various tables (A2)?

4. How could machine learning be applied to databases (A4)?

How do programming languages interact with databases to store,

retrieve and manipulate data (B2)?

End-of-topic questions

End-of-topic questions

Topic review
1. Using your knowledge from this topic, A3, answer the guiding

question as fully as possible:

What are the principles, structures and operations that form the

basis of database systems? [6 marks]

Exam-style questions
2. Describe one anomaly that could occur in an unnormalized

database. [2 marks]

Describe two features of data in a data warehouse. [4 marks]

4. Explain one tool that could be used to support decision-making

in a data warehouse. [3 marks]

5. Consider the following database which stores data regarding

customers and their purchases at an online store.

User_ID | Name Contact ltem_ID | ltem_Name Manufacturer_ID | Location

G943 Grahame | Grahame@mail.com | 49493 Dinner set 4930 [taly

49402 Cutlery 3023 France

49403 Fruit bowl 4940 Italy

L0493 Lizzie Lizzie@gmail.com 49493 Dinner set 4930 [taly

40933 Salt and pepper | 5055 Austria

shaker

a. Construct an SQL statement to display all customers

who have visited ltaly. [3 marks]

b. Using the data in the view, normalize the database to third

normal form. [5 marks]

6. Explain why a database may utilize views when displaying data

to users. [3 marks]

7. Describe the role of ACID properties when updating a record

in a database. [4 marks]

8. Explain why spatial databases are used to store data with

geographical information. [3 marks]

9. Identify the purpose of the MAX aggregate function. [2 marks]

10. Outline two forms of data security in a distributed database. [4 marks]

11. Explain how associative rule discovery can be used to encourage

consumers to buy more items. [5 marks]

235

Machine learning

What principles and approaches should be

considered to ensure machine learning models

produce accurate results ethically?

Machine learning models are becoming central to accessing information,

communication, and—increasingly—decision making. Making these

models must include providing meaningful explanations of how models

reach their conclusions and include human-in-the-loop approaches.

As computer scientists, you must deliberately, carefully and consciously

consider the process of creating, tuning and evaluating the machine

learning models you design and construct. What is the best way to do this?

.¥: % Bl Machine learning fundamentals

Syllabus understandings

A4.1.1 Describe the types of machine learning and their applications in the

real world

A4.1.2 Describe the hardware requirements for various scenarios where

machine learning is deployed

Machine learning is a subfield of artificial intelligence which focuses on the

development of algorithms and statistical models that enable computers to

perform specific tasks without using explicit instructions. Machine learning is

commonly used to make predictions, classify, categorize and identify patterns

in data. By training on data sets, machine learning models can learn from past

experiences and improve their accuracy over time.

A4.1.1 Describe the types of machine

learning and their applications in the

real world

Different approaches for machine learning algorithms

A machine learning algorithm is a set of rules and statistical techniques that

allows computers to learn patterns and make decisions from data without being

explicitly programmed. These algorithms adjust their output by learning from

previous outcomes and optimizing their output over time based on input data.

Imagine you are teaching a robot how to play your favourite game. You explain

the rules and show it how to play a few rounds. At first it might make mistakes,

but as it plays more, it improves.

That is roughly how machine learning

works. Itis like a set of instructions

fora computer program to learn

from experience. It is fed numerous

examples and it figures out patterns

and relationships in the data. The

more data it sees, the smarter it gets,

AV AVAV AWV

just like your robot improving with Deep learning Reinforcement learning Supervised learning
practice.

Instead of just following a fixed set of

rules, machine learning algorithms

can adapt and adjust their behaviour

based on what they have learned.

It is like they are constantly tweaking

their strategy to get the best possible

results.

Transfer learning Unsupervised learning

A Figure 1 The five types of machine learning

237

238

A4 Machine learning

Classification Categorizing data

into predefined groups or classes.

Deep learning

Deep learning (DL) is a subset of machine learning where artificial neural

networks—algorithms inspired by the human brain—learn from large amounts of

data. Deep learning architectures such as deep neural networks, convolutional

neural networks (CNNs), and recurrent neural networks (RNNs) have been

applied to fields including computer vision, speech recognition, natural

language processing, and audio recognition. The “deep” in “deep learning”

refers to the number of layers in the neural networks, with each layer representing

higher-level features defined in terms of lower-level ones.

Reinforcement learning

Reinforcement learning (RL) is an area of machine learning concerned with how

intelligent agents ought to take actions in an environment to maximize the notion

of cumulative reward. The term cumulative reward in the context of reinforcement

learning refers to the total sum of rewards an agent receives over the course of an

episode or throughout its interaction within an environment. The agent learns to

achieve a goal in an uncertain, potentially complex environment. In reinforcement

learning, the agent decides its actions based on its past experiences

(exploitation) and new choices (exploration), which is ideal for problems

including robotic controls, game playing, and decision-making in finance.

Supervised learning

Supervised learning (SL) is a type of machine learning algorithm that uses a known

data set (called a training data set) which includes input data and response values

(labels) to learn a function that can be used to predict the output associated with

new data. Supervised learning is further categorized into classification tasks and

regression tasks. In classification, the outputs are categories, while in regression,

the outputs are continuous values.

Transfer learning

Transfer learning (TL) is a machine learning method where a model developed for

a particular task is reused as the starting point for a model on a second task. Itis

a popular approach in deep learning where pre-trained models are used as the

starting point on computer vision and natural language processing tasks, given

the vast compute and time resources required to develop neural network models

on these problems and the enormous jumps in skill that they provide on related

problems.

Unsupervised learning

Unsupervised learning (UL) is a type of machine learning algorithm used to draw

inferences from data sets consisting of input data without labelled responses.

The most common unsupervised learning method is cluster analysis, which is

used for exploratory data analysis to find hidden patterns or grouping in data.

The algorithms, therefore, explore the data to find any kind of structure or pattern,

without prior training on data. Other approaches in unsupervised learning include

dimensionality reduction, density estimation, and market basket analysis.

Labelled data refers to data sets where each instance is tagged with one or more

labels that identify certain features or classifications of the data.

A4.1 Machine learning fundamentals

Real-world applications of machine learning

Real-world applications of machine learning may include market basket analysis,

medical imaging diagnostics, natural language processing, object detection and

classification, robotics navigation, and sentiment analysis.

Market basket analysis

Market basket analysis identifies associations and patterns between item

purchases. By analysing transaction data, algorithms such as Apriori or L

FP-Growth (which are unsupervised learning algorithms) can predict which

products are likely to be purchased together. This analysis is invaluable for

cross-selling strategies in retail.

The learning paradigm which best fits this problem is unsupervised learning.

Why unsupervised learning?

In market basket analysis, the goal is to uncover relationships between items in A Figure2 Market basketanalysis

a data set where no specific outcomes (like class labels or continuous targets)

are provided. The analysis seeks to find which items frequently co-occur in

transactions without prior knowledge of any relationships. Unsupervised learning

algorithms such as Apriori and FP-Growth are designed to identify frequent

itemsets in transactional data. These algorithms work by exploring combinations

of items that appear together more frequently than would be expected by

chance. This pattern discovery is central to unsupervised learning, where the

focus is on identifying structure from unlabelled data. The core of market basket

analysis is to generate association rules, which have implications in the form

of X=Y, meaning “"Ximplies Y", where X and Y are itemsets. For instance, ifa

customer buys X, they are likely to buy Y. This type of analysis does not require

a training phase with known outputs, which is typical of supervised learning.

Instead, it focuses on deriving rules from the inherent properties of the data.

Are you more likely to shop online or in person? If you regularly shop online or

often use the same supermarket, you probably have a loyalty card or a customer

account. Supermarket loyalty cards may give you discounts on the products you

buy most often. Customer accounts can save you time by remembering your

details, so you do not have to complete the same information every time you buy

an item.

These services are also useful for the business. They help the business to track

how quickly products sell, to adjust prices. They can also help companies to

understand the demographics of people using their business.

* TJowhatextentis big data changing what it means to know your

customers?

* What are the moral implications of possessing large amounts of

information about consumer behaviour?

239

A4 Machine learning

A Figure 3 Animage of a teenager’s brain

Notice the red parts: these areas of the brain

are active while the teenager thinks about

food

A Figure4 Natural language processing

Medical imaging diagnostics

In medical imaging, machine learning models, particularly deep learning models

such as convolutional neural networks (CNNs), are trained on large data sets of

imaging data to identify and diagnose conditions from MRIs, X-rays or CT scans.

Transfer learning is often employed here to leverage pre-trained models on

similar tasks to improve performance even with smaller data sets.

The learning paradigms which best fit this problem are supervised learning, deep

learning and transfer learning.

Why supervised learning?

Medical imaging diagnostics typically involves classifying images (such as MRIs,

X-rays or CT scans) into diagnostic categories or detecting the presence of specific

medical conditions. Supervised learning is ideal because it requires a labelled

data set where each image is tagged with a diagnosis or finding, which the model

learns to predict. In supervised learning, models are trained on a data set where

the input images (features) and their corresponding diagnoses (labels) are known.

The goal is for the model to learn the relationship between the image data and the

output labels so it can accurately predict the diagnosis for new, unseen images.

Why deep learning?

Deep learning, particularly using CNNs, is highly effective for image recognition

tasks because these networks can automatically detect intricate patterns and

features in images without the need for manual feature extraction. CNNs, which

are a class of deep neural networks, are designed to process pixel data and learn

hierarchies of features by building complex patterns on top of simpler ones. This

ability makes them exceptionally good at interpreting medical images, where the

diagnosis may depend on subtle visual cues within the images.

Why transfer learning?

In the medical imaging field, acquiring large, labelled data sets can be

challenging due to privacy issues, rarity of certain conditions, and the need

for expert annotation. Transfer learning addresses this by allowing a model

developed for one task to be repurposed for a second related task. Transfer

learning typically involves taking a model that has been pre-trained on a large

data set (often a general image recognition task with vast amounts of data) and

fine-tuning it to perform a specific medical diagnostic task. This method leverages

the learned features (like edges, textures and patterns common across general

images) that are relevant to medical images, enhancing learning efficiency and

improving performance even with smaller, specialized data sets.

Natural language processing

Natural language processing (NLP) involves processing and understanding

human language using models. Techniques such as neural networks, particularly

transformers, are used for tasks such as translation, sentiment analysis and

chatbots. Transfer learning is especially prominent in NLP, where models such as

bidirectional encoder representations from transformers (BERT) are pre-trained

on large collections of text and then fine-tuned for specific tasks. The learning

paradigms which best fit this problem are deep learning, supervised learning

and transfer learning.

A4.1 Machine learning fundamentals

Why deep learning?

NLP tasks involve understanding complex language structures and semantics,

which require models capable of handling and interpreting vast arrays of

sequential and contextual data. Deep learning models, especially those with

deep architectures such as recurrent neural networks (RNNs) and transformers,

are well suited for this because they can process sequences of data (words,

sentences) and capture long-range dependencies within the text. Neural

networks, particularly transformers, are structured to manage and learn from

sequence data effectively. Transformers, for instance, use mechanisms such as

attention to weigh the importance of different words irrespective of their position

in the text, making them extremely effective for a range of NLP tasks such as

language translation, text summarization and question answering.

Why supervised learning?

Many NLP tasks, such as sentiment analysis, text classification and machine

translation, rely on labelled data sets where inputs (text) are paired with outputs

(sentiment labels, categories, translated text). Supervised learning is especially

effective because it involves training models on these labelled data sets so

that the model learns to predict the correct output based on the input text.

In supervised learning for NLP, a model is presented with text data and the

corresponding target outputs. The model's task is to learn the mapping from the

input text to the output during training so that when new, unseen text is provided,

the model can predict the appropriate output based on learned patterns.

Why transfer learning?

Transfer learning has become a cornerstone of modern NLP due to the

expansive size of language data and the complexity of language-based tasks.

It allows for leveraging models pre-trained on vast amounts of general language

data, which can then be fine-tuned on smaller, task-specific data sets. In NLP,

transfer learning uses models such as BERT, which are pre-trained on large

collections of text in a self-supervised manner using tasks like masked language

modelling. This pre-training helps the model understand general language

contexts and structures. The model can then be fine-tuned with smaller amounts

of labelled data specific to a particular task (for example, sentiment analysis for

movie reviews), significantly improving performance and reducing the need

forlarge, labelled data sets in every specific task.

Summary

* Deep learning allows for the handling of complex, hierarchical language

data effectively.

* Supervised learning ensures that models are accurately trained on specific

linguistic tasks using labelled data.

* Transfer learning maximizes the utility of large-scale pre-training for

performance boosts across various NLP tasks, making sophisticated NLP

capabilities accessible with relatively minimal task-specific data.

24]

242

A4 Machine learning

Object detection and classification

Object detection and classification involves identifying objects within images and

classifying them into predefined categories. Deep learning models, particularly

CNNs, are commonly used here. These models are trained using labelled images

where the objects have been marked and classified by humans.

A Figure 5 Human and object recognition

The learning paradigms which best fit this problem are supervised learning and

deep learning.

Why supervised learning?

Object detection and classification requires the model to predict specific

outcomes, such as the presence of an object and its category. Supervised

learning is ideal for this because it involves training a model on a data set

where the inputimages and their corresponding outputs (for example, types

of objects and their locations) are clearly labelled. In supervised leaming for

object detection and classification, each training image is annotated with labels

that define what objects are present and where they are located (usually with

bounding boxes, see Figure 5 for example). The model learns to map the raw

image data to these labels, enabling it to predict both the presence and the

position of objects in new, unseen images.

Why deep learning?

Deep learning, especially with CNNs, is suited to image processing tasks. CNNs

are designed to recognize spatial hierarchies in data, which means they can

identify complex patterns in images, such as shapes and textures, that are integral

to understanding what objects are present. CNNs, and more sophisticated

architectures derived from them, such as R-CNN (region-based CNN) or YOLO

(You Only Look Once), are particularly adept at handling the multi-scale and

multi-aspect ratio nature of real-world objects in images. These networks process

images through multiple layers of filters, gaining the ability to recognize features

at various levels of abstraction—from simple edges to complex objects.

A4.1 Machine learning fundamentals

Summary

* Supervised learning ensures that the models are accurately trained to

identify and categorize objects based on clear, predefined labels, making

it possible to measure and optimize model performance against real-world

requirements.

* Deep learning provides the technological foundation for processing and

interpreting image data effectively. By learning from extensive labelled

data sets, these models develop the ability to discern and classify diverse

objects in varied environments and lighting conditions.

Robotics navigation

Robots learn to navigate and manipulate their environment effectively.

Reinforcement learning is pivotal here, as robots learn to make sequences of

decisions, receiving feedback through rewards. Supervised learning can also be

used for specific tasks such as obstacle recognition using sensor data.

A Figure 6 Robotics navigation

The learning paradigms which best fit this problem are reinforcement learning

and supervised learning.

Why reinforcement learning?

Robotics often involves interaction with unpredictable and continually changing

environments. Reinforcement learning is ideal for these scenarios because

it enables robots to learn optimal behaviours through trial and error, using

feedback from their actions in the form of rewards or penalties. In reinforcement

learning, a robot or agent learns to make decisions by performing actions and

receiving rewards (positive or negative) based on the outcomes. This learning

process is guided by a policy which is refined over time to maximize the

cumulative reward. This is particularly useful in navigation tasks where the robot

must learn to avoid obstacles and reach targets efficiently.

In addition, reinforcement learning is well suited for tasks requiring a series of

decisions that depend on both the current state and the sequence of preceding

actions. This sequential decision-making is important for robots that need to plan

paths or strategies over time, considering potential future states and rewards.

243

A4 Machine learning

POSITIVE

"Great service for an affordable
price.

We will definitely be booking again."

NEUTRAL

"Just booked two nights

at this hotel."

NEGATIVE

"Horrible services. The room

was dirty and unpleasant.
Not worth the money."

A Figure 7 Sentiment analysis

Why supervised learning?

While reinforcement learning is excellent for learning from interaction, supervised

learning is effective for more narrowly defined tasks that require recognizing

patterns or classifying data. In robotics, tasks such as object recognition, obstacle

detection and classification of terrain are critical for safe navigation. Supervised

learning involves training a model on a data set where the inputs (sensor

readings, camera images) and the desired outputs (labels indicating obstacles,

safe paths) are predefined. The robot uses this trained model to interpret its

sensors and make immediate decisions about its environment.

Robots are typically equipped with various sensors that provide data for

understanding and interacting with their surroundings. Supervised learning

models can be trained on this data to accurately predict necessary outputs, such

as the presence of an obstacle or the type of surface. This capability is essential

for the robot to perform specific navigation tasks where immediate and accurate

response is based on learned experience.

Summary

* Reinforcement learning helps robots develop strategies for navigation and

manipulation by learning from the consequences of their actions, ideal for

complex environments where predefined rules might not suffice.

* Supervised learning enables robots to quickly and reliably recognize patterns

and make classifications based on training data, which is indispensable for

responding to immediate environmental cues.

Sentiment analysis

This process involves analysing text data from reviews, social media, and so

on, to determine the sentiment expressed (positive, negative, neutral).

Deep leaming, particularly long short-term memory (LSTM) networks or

transformers, can be trained on labelled data sets to recognize and predict

sentiments. Transfer learning allows these models to adapt to specific domains

or types of text quickly.

The learning paradigms which best fit this problem are supervised learning, deep

learning and transfer learning.

Why supervised learning?

Sentiment analysis typically requires the classification of text into predefined

categories (such as positive, negative or neutral). Supervised learning is well

suited for this task because it involves training models on data sets where both

the inputs (text data) and the desired outputs (sentiment labels) are clearly

defined. In supervised leaming for sentiment analysis, a model is trained on a

corpus of text data where each piece of text is annotated with a sentiment label.

The model learns to correlate specific features of the text, such as word choice

and sentence structure, with the sentiment, enabling it to predict the sentiment

of new, unseen text.

A4.1 Machine learning fundamentals

Why deep learning?

Deep learning models, particularly those using LSTM networks and transformers,

are capable of processing sequential data, such as text, where understanding

context and the order of words is important. LSTMs are a type of recurrent

neural network (RNN) that are adept at learning from sequences of data with

long-range dependencies, making them ideal for texts where context spread

across sentences influences sentiment. Transformers, on the other hand,

utilize self-attention mechanisms to weigh the relevance of all parts of the text

simultaneously, which is highly effective for capturing complex contextual

relationships between words in sentences.

Why transfer learning?

Sentiment analysis often needs to be tailored to specific contexts or domains

(such as analysing sentiments in social media versus product reviews) which

might not always have adequate labelled data available for training effective

models from scratch. Transfer learning involves taking a model that has been

pre-trained on a large data set (usually a general language processing task) and

fine-tuning it on a smaller, domain-specific data set. This approach leverages

the learned features from the broader data set, such as basic language

understanding, which can be effectively adapted to more specialized tasks with

relatively minimal additional training. This method significantly reduces the need

forlarge, labelled data sets in each specific domain, making it possible to achieve

high performance in sentiment analysis even with limited domain-specific data.

Summary

* Supervised learning ensures that sentiment analysis models are precisely

trained on how sentiments are expressed in specific data sets, making them

reliable for accurate sentiment prediction.

* Deep learning techniques, particularly LSTMs and transformers, provide

the technical means to understand the nuances and complexities of human

language.

» Transfer learning allows these models to be quickly adapted to new domains

or types of text, enhancing their versatility and applicability across different

contexts.

TOK

* Towhat extent does the process of training machine learning models

reflect the human ways of learning and adapting?

* How can ethical considerations in machine learning model development

influence the reliability and trustworthiness of these models?

* |Inwhat ways does the application of different machine learning

paradigms (such as supervised, unsupervised, reinforcement, deep

learning and transfer learning) enhance our ability to solve complex

real-world problems?

245

A4 Machine learning

|efferson High, a progressive public school, is

experimenting with machine learning to revolutionize

its educational approach. With a diverse student body

exhibiting a wide range of learning styles and abilities,

the school has sought to implement a system that

personalizes learning experiences, thus optimizing

educational outcomes for every student.

The school’s IT department, in collaboration with the

computer science faculty, has initiated a pilot program

utilizing several machine learning models to address

different educational challenges.

Supervised learning for predictive analytics: Early

identification of students who might need additional

help or are at risk of dropping out. Historical data such

as grades, attendance records and test scores are

fed into a supervised learning algorithm. The model

predicts students’ future performance, allowing early

intervention by educators.

Natural language processing (NLP) for language

skills development: Enhancing reading comprehension

and writing proficiency. NLP techniques are used to

analyse students’ written assignments for grammar,

style and content coherence. Feedback is generated

automatically, providing students with immediate

guidance on how to improve their writing skills.

Reinforcement learning for adaptive learning

pathways: Personalized learning experiences based

on individual student responses. An adaptive learning

platform uses reinforcement learning to adjust the

difficulty level of tasks in real-time, ensuring that each

student remains engaged and challenged without

being overwhelmed.

Deep learning for visual learning aids: Creation of

customized educational content, especially in subjects

requiring visual learning like geometry and biology.

Deep learning algorithms analyse students’ interaction

with visual content and adaptively modify it to enhance

understanding and retention of complex concepts.

The integration of machine learning at Jefferson High

has resulted in significant improvements in student

engagement and academic performance. Early

interventions have reduced dropout rates, while

personalized learning pathways have seen an increase

in student proficiency in core academic skills. Teachers

are now able to focus more on facilitating learning

rather than spending extensive time on assessments

and grading.

To ensure ethical use of machine learning, Jefferson

High adheres to several principles.

Transparency: Students and parents are informed

about how data is used and the purpose behind it.

Control and consent: Data collection is conducted

with explicit consent, and students have some control

over their data.

Bias mitigation: Regular audits of machine learning

models are carried out to identify and eliminate

potential biases, ensuring fair treatment of all students.

Jefferson High's case illustrates the power of machine

learning to transform educational environments,

making them more inclusive, efficient, and responsive

to the needs of all students. It serves as a model for

other institutions aiming to integrate technology into

their educational practices responsibly and effectively.

A4.1 Machine learning fundamentals

A4.1.2 Describe the hardware requirements

for various scenarios where machine

learning is deployed
To understand hardware requirements for machine learning, you need to

understand the different scenarios you will be considering.

Table 1 Machine learning scenarios

Scenario Description

Development

and testing

This is the phase where you build and refine your machine learning models. It involves writing code,

experimenting with different algorithms, and testing them to see how well they perform. You usually

start with smaller, manageable data sets and simpler models to ensure everything is working correctly.

Data

processing

and feature

engineering

In this stage, you prepare your data for the models. This includes cleaning the data (removing errors

orirrelevant information), transforming it into a format the algorithm can use effectively, and creating

new data attributes or “features” that can help improve model accuracy. It is about making the data

meaningful and ready for analysis.

Here, you take your prepared data and use it to teach the machine learning model how to make

deployment

and

Model trainin . : . o , .) L
and dee 9 predictions. This process involves adjusting the model’s parameters to improve its predictions based on

learnin P the data it sees. Deep learning is a part of this, using complex models (neural networks) that learn from

g vast amounts of data.

Large-scale Once the model is trained and tested, it is time to use it in real-world applications. This could mean

integrating the model into a company's software to automate tasks or make decisions based on data.

It requires the model to be reliable, fast and scalable, meaning it can handle growing amounts of data

production or users without breaking down.

Edae If the use case requires, this scenario involves placing computation close to where data originates (such

corgnputing as ina smartphone or a car) rather than in a distant data centre. Itis useful for tasks that need immediate

responses, like facial recognition in a smartphone or real-time decision-making in autonomous vehicles.

Hardware configurations for machine learning can vary widely, from standard

laptops to advanced infrastructure, based on the scale of the task, the complexity

of the model, the size of the data set, and the desired speed of processing.

Each type of hardware setup is chosen based on the specific requirements of

the machine learning tasks, balancing factors such as cost, performance and

operational needs.

247

A4 Machine learning

Table 2 Hardware configurations for different machine learning scenarios

Scenario Processing Storage Scalability

Development

and testing

Standard laptops or

desktops with multi-

core CPUs.

SSDs with 256 GB to several TB

capacity to facilitate faster data

access and processing speeds.

Ideal for developing and testing

small to medium-sized models or

for educational purposes.

Data processing

and feature

High-performance

workstations or servers

Large SSDs (1 TB or more) or

multiple HDDs in RAID configuration

for extensive data storage and

Capable of handling larger data sets

and more complex tasks, but less

engineering with powerful CPUs. scalable than cloud-based solutions.
redundancy.

Maodel training Dedicated GPU servers | High-capacity SSDs for rapid data Highly scalable with additional GPUs

and deep with one or more high- | access and storage of large data sets | and clustered environments for

learning end GPUs. and model checkpoints. parallel processing.

Large-scale High-end servers or Enterprise-level storage solutions, Extremely scalable, supports high-
cloud-based solutions . .)

deployment and with scalable CPUs and often distributed file systems or cloud | load, continuous operations and

production GPUs/TPUs. storage with high data throughput. real-time processing on a large scale.

Corr?pact, er_1ergy—_ Smaller SSDs or flash storage Scalable to a large number of devices
. efficient devices with) . y T .

Edge computing | . sufficient for operating systems but limited by individual device
integrated CPUs L e
and GPU and application code. capabilities.

Table 3 Hardware configurations for machine learning

workstations
that require substantial computational resources

but do not yet need a full server setup.

Hardware Use case Configuration

Standard Ideal for beginners, students or developers working Typically equipped with consumer-grade CPUS.' N
) . moderate amount of RAM (8-16 GB), and possibly

laptopsand | onsmall-scale projects orlearning the fundamentals .)
desktops of machine learnin low-end GPUs. These machines can run basic

. 9- maodels and handle small to moderate data sets.

High- Suitable for professional developers and Equipped with high-end CPUs, 32-128 GB of RAM,

9 researchers working on more complex models and one or more mid-range to high-end GPUs.
performance

These systems can handle larger data sets and more

computationally intensive training sessions.

environments where real-time processing is

needed at the edge of the network.

GPU- Necessary for deep learning and large-scale Features multiple high-end GPUs which support

enhanced machine learning tasks that involve complex neural | parallel processing capabilities that significantly

systems networks and massive data sets. reduce training and inference times.

Used in industry and academia for high-demand, These servers might include multlpl_e high-
. performance GPUs or TPUs, extensive RAM (up

Dedicated Al | continuous machine learning tasks, including e
)] ! to 1 TB or more), and specialized hardware such as

Servers real-time data processing and training very ;i o
high-speed networking interfaces and large-scale

large models.
storage systems.

Typically equipped with energy-efficient CPUs (such

For deploying machine learning models directly as ARM-based processors), 1-8 GB of RAM, flash

Edge devices into consumer devices or loT (Internet of Things) storage (a few GBs to tens of GBs), and possibly

GPUs or specialized accelerators such as FPGAs or

ASICs for intensive tasks. Operate on low-voltage

power or batteries.

Computer hardware, memory, and CPU speeds improve incredibly quickly. These configurations are accurate in 2024, but the authors

recognize that they are likely to be out of date very soon.

A4.1 Machine learning fundamentals

Advanced infrastructure components

Machine learning can require advanced infrastructure because of the inherent

high computational demands, the focus on speed and efficiency, scalability, and

specialized operations for training models.

Application-specific integrated circuits

Application-specific integrated circuits (ASICs) are custom-designed circuits

tailored to execute specific tasks efficiently. In machine learning, ASICs are

often designed for high-speed, low-power data processing. They are used in

consumer electronics and embedded systems, including mobile devices where

power efficiency is paramount.

Edge devices

Edge devices refer to hardware that processes data at or near the source of data

generation rather than relying on a central data-processing facility. These devices

often incorporate ASICs or small-scale GPUs. This hardware is ideal for real-time

applications, such as facial recognition or autonomous vehicle navigation, where

low latency is critical.

Field-programmable gate arrays

Field-programmable gate arrays (FPGAs) are semiconductor devices that can

be reconfigured after manufacturing, allowing developers to customize the

hardware post-production to suit specific needs. FPGAs are used in scenarios

where flexibility is required and for accelerating specific workloads, including

machine learning inference and data flow processing.

GPUs

Originally designed for rendering graphics, GPUs are highly effective at handling

the parallel processing tasks that are prevalent in machine learning and deep

learning. They are essential for training deep learning models due to their ability

to perform multiple calculations concurrently, significantly speeding up the

training process.

Tensor processing units

Developed specifically for neural network machine learning, tensor processing

units (TPUs) are Google’s custom ASICs that accelerate tensor calculations TPUs

provide significant acceleration for applications using TensorFlow, Google’s

machine learning framework, especially in large-scale and cloud environments.

Cloud-based platforms

These platforms provide virtualized and scalable resources on-demand, including

CPUs, GPUs and TPUs, allowing users to flexibly scale their machine learning

projects according to varying workloads. Cloud-based solutions are used by

organizations that prefer not to maintain physical infrastructure. They are essential

for handling bursty data loads, experimental projects, or varying computational

demands.

See section Al.1.2 for a deeper

discussion about GPUs.

Tensor A way to represent data

in different dimensions. It can be

thought of as an array of numbers,

like a list or a table, but it can extend

to many dimensions. For example:

* Asingle numberisa

O-dimensional tensor.

* Alistof numbers (aline)is a

T-dimensional tensor.

* Atable of numbers (like a grid)

is a 2-dimensional tensor.

Tensors can go beyond these to

handle even more dimensions of

data, which is useful in machine

learning and deep learning tasks.

249

250

A4 Machine learning

High-performance computing centres

High-performance computing (HPC) centres consist of thousands of processors

working in parallel to perform large-scale computation tasks. They often include

clusters of servers, each equipped with multiple high-performance CPUs and

GPUs. They are ideal for extremely large-scale machine learning tasks, such

as training complex models across vast data sets, or detailed simulations that

require immense computational resources.

TOK

To what extent does the process of training machine learning models

reflect the human ways of learning and adapting?

How can ethical considerations in machine learning model development

influence the reliability and trustworthiness of these models?

In what ways does the application of different machine learning

paradigms (such as supervised, unsupervised, reinforcement, deep

learning and transfer learning) enhance our ability to solve complex real-

world problems?

Practice questions

1. a. Define machine learning.

b. Describe how machine learning differs from traditional

programming.

a. Describe two real-world applications of machine learning.

b. Identify the learning paradigms used in the real-world

applications described in part a.

Distinguish between deep learning and reinforcement learning.

Describe the concept of transfer learning and its significance

in machine learning.

Identify one ethical consideration that must be addressed

when implementing machine learning models.

[1 mark]

[2 marks]

[2 marks]

[2 marks]

[3 marks]

[3 marks]

[1 mark]

>
I -

.V: 3l Data preprocessing

Syllabus understandings

A4.2.1 Describe the significance of data cleaning

A4.2.2 Describe the role of feature selection

A4.2.3 Describe the importance of dimensionality reduction

improving the quality of data and making it suitable for building a model. The

goal is to enhance the performance and accuracy of the machine learning

algorithms.

Data preprocessing is a step in the machine learning workflow aimed at E

Define the problem Gather data

Monitor and

maintain
Data preprocessing

Exploratory data analysis

Deployment (EDA)

Feature engineering and

selection
Parameter tuning

Model evaluation
Choose a model

Train the model Split the data

A Figure 8 The machine learning workflow

A4.2.1 Describe the significance of

data cleaning
Data cleaning standardizes data so itis consistent, error-free, accurate, and

complies with regulatory and legal requirements. When data is first considered

for machine learning (training), it is often disorganized and full of errors. The term

“noisy” or “noise” refers to data with unnecessary and inaccurate data.

251

252

A4 Machine learning

Before data cleaning

001 35 john.doe@domain.com | 54000 | 01-02-2020

002 —25 |jane_smith@domain.com| 58000

003 45 n/a 62000 | 12/15/2019

004 thirty |annetom@domaincom -5000 | 20-10-2019

A Figure 9 |nitial data

Issues in the data include the following.

* Invalid age values (negative number).

« Missing email information (“n/a") and invalid email format.

* Missing or inconsistent date formats in the Last Purchase Date column.

Inconsistent entry in age (“thirty”).

After data cleaning

Negative income value, which is not plausible.

Missing data in the Last Purchase Date column for customer 002.

001 35 |john.doe@domain.com |54000 |2020-01-02

002 25 |jane_smith@domain.com | 58000 | Data Not Available

003 45 | Data Not Available 62000 |2019-12-15

004 30 |annetom@domain.com |[50000 |2019-10-20

A Figure 10 Cleandata

Cleaning actions taken are as follows.

¢ Negative age corrected, from —25 to 25 (assuming typo).

* Replaced “n/a” with “Data Not Available” for clearer data absence indication.

* Standardized the date format to YYYY-MM-DD.

* Inputted missing date data with a placeholder text to indicate unavailability.

Corrected the email syntax and removed invalid characters.

Normalized the income value by converting negative income to positive.

* Converted textual numeric data (“thirty”) to its numeric form (30).

The impact of data quality on model performance

The impact of data quality on model performance in machine learning cannot be

overstated. Data quality directly influences the accuracy, reliability and robustness

of the predictive models.

A4.2 Data preprocessing

High-quality data that is accurate and complete enables models to make more

precise predictions. Conversely, poor-quality data can lead to inaccurate and

unreliable outcomes because the model learns from flawed or misleading

information. There are other important impacts of data quality on model

performance, but none of them are as important as this:

good data = good predictions

In addition, a model trained on high-quality data is better able to generalize

from the training set to unseen data. This means it can perform well in

real-world scenarios, which is ultimately the goal of most machine learning

projects. Data that is noisy, incomplete or non-representative can lead

the model to overfit to the noise and anomalies in the training set, thereby

performing poarly on new data.

Finally, ensuring data is representative and unbiased prevents models from

perpetuating or amplifying biases. High-quality data must be diverse and

inclusive to avoid ethical issues and comply with legal standards.

Thereis an old proverb in computing: “garbage in, garbage out”. This proverb

helps us to understand that the data we put into a system directly impacts the

data we get out of the system.

A Figure 11 Garbage in, garbage out

Worked example 1

A company wants to develop a machine learning model to screen

job applications. The data set they use to train this model contains

résumés from the past 10 years. This data set consists of résumés from

predominantly male applicants, reflecting the company’s historical gender

imbalance in certain roles.

1. How would this model perform?

2. How could the company improve the model’s performance?

Solution

1. The model would most likely be biased to male candidates, even when a

female candidate might be a much better fit.

2. The company could increase the data set to give more female applicants

and résumés, or change the weighting of different criteria.

253

A4 Machine learning

Managing outliers, duplicates, errors, and irrelevant data

Handling outliers

An outlier is an observation in a data set that is distant from other observations.

Statistically, you can use interquartile range (IQR) scores, Z-scores, or visualization

tools like box plots to identify outliers. Values that fall beyond a defined threshold

can be considered outliers. Once you have identified an outlier, you might do the

following.

¢ Trim the outliers by removing them from the data set entirely.

* Cap the outliers by replacing them with the nearest value that falls within an

acceptable range.

* Transform the outliers by applying transformations like log or square root to

reduce the effect of extreme values.

Removing or consolidating duplicate data

Duplicate data refers to instances within a data set where certain records are

repeated. These repetitions can be exact copies, where every field in a record is

identical to another, or near duplicates.

Techniques for managing duplicate data include the following.

* Using software or database queries to identify and remove duplicate entries

based on specific keys or a combination of fields.

* Manually reviewing in some cases, especially where duplicates are not exact

or the data set is small.

* When duplicates contain partially varying data, consolidating the information

into a single record, often by averaging numerical values or choosing the

most frequent category.

Identifying and correcting incorrect data

Incorrect data has errors or inaccuracies. Techniques to manage incorrect data

include the following.

* Implementing data validation rules based on known ranges, data formats, or

other criteria to identify anomalies that may indicate incorrect data.

* Crossreferencing data by using external or additional data sources to

validate and correct questionable entries.

* Employing machine learning techniques to detect anomalies that could

indicate data inaccuracies.

Filtering irrelevant data

Irrelevant data refers to any information in a data set that does not contribute to or

is unnecessary for the specific analysis or modelling task at hand. Techniques for

filtering include the following.

* Utilizing feature selection techniques like correlation matrices, backward

elimination, and random forest importance to identify and remove irrelevant

or less important features.

* Consulting domain experts to understand which data elements are likely to

be irrelevant to the problem being solved.

A4.2 Data preprocessing

Transforming improperly formatted data

Improperly formatted data refers to information within a data set that does

not adhere to an expected or standardized format required for processing or

analysis. Technigues for managing include the following.

* Applying parsing techniques to reformat data into a usable structure, such as

converting strings to standardized date formats or splitting a full name into

firstand last name.

* Using regular expressions patterns to identify and transform data formats.

* Applying a uniform format across similar data types, such as converting all

currency values to a single currency and format.

Handling missing data

Missing data refers to the absence of data values in a data set where they are

expected. There are three techniques which can be considered to manage

missing data: imputation, deletion, and predictive modelling.

Imputation

* Replace missing values with the mean, median or mode of the column.

* Usethe K-NN algorithm to impute missing values based on the similarity of

entries in parameter space (parameter space is synonymous with feature space).

Deletion

e Remove entire records where any data is missing (listwise deletion).

* Use available data while ignoring any instances where data is missing

(pairwise deletion).

Predictive modelling

* Useregression models to predict missing values based on other data in the

data set.

* Usealgorithms like decision trees or neural networks to predict missing values.

Normalization and standardization

Normalization and standardization are two data preprocessing techniques used

to adjust the scale and distribution of variables in a data set before applying

machine learning algorithms. Both methods aim to transform the data to be more

suitable for modelling, but they do so in slightly different ways.

Normalization

Normalization (also known as min—-max scaling) involves rescaling the features

to a specific range, typically O to 1, or—1to 1. This transformation is beneficial for

algorithms that are sensitive to the scale of input data, such as gradient descent-

based algorithms, and it helps in speeding up their convergence. Normalization

ensures that all features contribute equally to the results and it prevents models

from misinterpreting the data due to the scale of the variables.

255

256

A4 Machine learning

Feature A common term in

machine learning and statistics that

can refer to:

* anindividual attribute (a single

measurable property or

characteristic of something you

are observing; for example, ina

data set about houses, features

could be price, number of

bedrooms, floor area, and so on)

* aninputvariable (used by

machine learning models

to make predictions or

classifications)

* acolumninadataset(ina

tabular data set, each column

usually represents a feature).

b koLl o
A Figure 12 Normalizing sound so that it is not too loud or too quiet

Standardization

Standardization (also known as Z-score normalization) involves rescaling the

features so that they have the properties of a standard normal distribution with a

mean of zero and a standard deviation of one. Standardization is useful for data

with unknown minimum and maximum values or when there are outliers that

would distort min—max scaling. |t maintains useful information about outliers and

makes the algorithm less sensitive to them. Finally, standardization is suitable for

techniques that assume data is normally distributed, such as logistic regression.

Key differences between normalization and standardization

Normalization changes the range of the data to [0, 1] or [-1, 1], while standardization

transforms data to have mean O and standard deviation 1, without bounding values

to a specific range. Normalization can be significantly affected by outliers since

they will compress the majority of the data to a very small interval. Standardization

is less sensitive to outliers because it is based on the mean and standard deviation,

which are inherently influenced by extreme values but to a lesser extent.

A4.2.2 Describe the role of feature selection

Feature selection is a process in machine learning used to identify and retain the

most informative attributes of a data set while removing those that are redundant

orirrelevant. The benefits of feature selection include enhanced model accuracy,

reduced overfitting, faster training and improved interpretability. The process of

feature selection is important because you do not want to remove an attribute

which could be helpful, but you also do not want to keep an attribute which is not

helpful to your model.

The goal of feature selection is not just to remove data but to retain the most

informative attributes. These attributes are those that provide the most utility in

predicting the output variable. The retained features should be those that result

in the highest possible performance of the machine learning model according to

some criteria, such as accuracy, precision or recall.

Think about feature selection for building a predictive model using a data set

of real estate sales. The data set contains various features of properties such as

location, size, price, number of bedrooms, number of bathrooms, age of the

property, proximity to schools, proximity to highways, crime rate and property tax

rate. The goal is to predict the price of a property based on these features.

A4.2 Data preprocessing

Initial data set:

Location: City or neighbourhood of the property.

Size (m?): The floor area of the property.

Price: Selling price of the property.

Bedrooms: Number of bedrooms.

Bathrooms: Number of bathrooms.

Age of property: Number of years since the property was built.

Proximity to schools: Distance to the nearest school.

Proximity to highways: Distance to the nearest highway.

Crime rate: Crime rate in the neighbourhood.

Property tax rate: Annual property tax rate.

Feature selection aims to reduce the number of features to simplify the model

without significantly impacting the accuracy of price predictions.

Feature selection strategies

Filter methods

Filter methods evaluate the relevance of features by their intrinsic properties,

using statistics such as correlation coefficients with the output variable,

Chi-square tests, ANOVA, or mutual information scores. These methods are

usually fast and effective in reducing the feature space before employing any

machine learning algorithms.

Filter methods and predicting the price of a home

When preparing to predict home sale prices, a real estate data set might include

features such as floor area, number of bedrooms, age of the property, proximity

to schools, and postal codes. By applying filter methods such as correlation

coefficients, you can quickly identify which features have the strongest relationships

with home prices. For instance, floor area and number of bedrooms may show high

positive correlations with the sale price, suggesting they are important predictors

and should be retained. In contrast, the postal code, while useful for categorical

analysis, might not show a strong direct correlation with price and could be

considered for removal if it does not significantly change the model’s performance.

Wrapper methods

Wrapper methods use a subset of features and train a model using them.

Based on the model performance, they then decide to add or remove features

from your model. This is done iteratively, such as in forward selection, backward

elimination, or recursive feature elimination (RFE). These methods can be

computationally expensive but often provide better performance as they evaluate

features in the context of the model.

257

258

A4 Machine learning

Wrapper methods and predicting the price of a home

Using a wrapper method such as RFE, you start with all features and iteratively

remove the least important ones based on the performance of a regression

model. The process might start with (floor area, number of bedrooms, age,

proximity to schools, and postal code, and through iterative training and

evaluation, it could determine that age and postal code contribute the least to

predicting sale price. These features would then be eliminated, leaving behind

a model focused on floor area, number of bedrooms and proximity to schools as

the core predictors.

Embedded methods

Embedded methods perform feature selection as part of the model training

process and are specific to certain algorithms that have their own built-in feature

selection methods. For example, Lasso and Elastic Net add a penalty to the

loss function during training that can shrink some feature coefficients to zero,

effectively performing feature selection by keeping only the significant features.

Embedded methods and predicting the price of a home

When employing an algorithm like Lasso regression for predicting home sale

prices, the regularization parameter in Lasso helps to penalize the coefficients of

less important features, effectively reducing them to zero. Thus, during the training

process, Lasso might determine that features such as proximity to schools and

number of bedrooms have non-zero coefficients, indicating significant influence

on sale prices. Simultaneously, it might reduce the coefficients for features such as

age of the home, or certain less impactful location descriptors, to zero, effectively

selecting the most relevant features without separate feature elimination steps.

Removing redundant or irrelevant features

Identifying redundant features

Redundant features are those that provide no additional information because

they are duplicates of other features or are highly correlated with other features.

For instance, if two features are highly correlated, one can be removed without

substantial loss of information. This reduction in redundancy helps to focus the

model’s learning on unique attributes.

Eliminating irrelevant features

Irrelevant features do not contribute to or may decrease the accuracy of the

predictive model because they have no relationship with the output variable.

Removing these features prevents the model from considering noise during the

learning process, which can improve predictive performance and reduce the

likelihood of overfitting.

A4.2.3 Describe the importance of

dimensionality reduction
A dimension in data simply represents a feature, attribute or variable. For example:

* incustomer data, dimensions could be age, income, location, purchase

history, and so on

* amedical image could count each pixel in an image as a dimension

* withintext data, word frequencies in a document form dimensions.

A Figure 13 A representation of dimensionality reduction

Dimensionality reduction strategically reduces the number of features in a data

set. In this process, you identify and retain a set of significant features, derived

from the original features through a transformation process. These significant

features capture the most important information from the original data set. The

goal is to reduce the overall dimensionality, thus simplifying models, speeding

up computations, reducing noise and minimizing the risk of overfitting, while still

preserving as much relevant data variance as possible.

Curse of dimensionality considerations

The “curse of dimensionality” refers to various phenomena that arise when

analysing and organizing data in high-dimensional spaces (often with hundreds

or thousands of dimensions) that do not occur in low-dimensional settings.

Considerations may include overfitting, computational complexity, data sparsity,

distance metrics effectiveness, data visualization, sample size increases and

memory usage. This term, coined by Richard Bellman, encapsulates several

challenges that grow exponentially with the increase in dimensions.

Suppose you are building a machine learning model to predict the sale price of

homes based on a data set with various features (dimensions). These features

might include the number of bedrooms, number of bathrooms, floor area, lot

size, type of flooring, age of the property, proximity to schools, and many other

characteristics.

Scenario: Without the curse of dimensionality

If you only use a few important features, such as number of bedrooms, floor

area, and location, your model can more easily discern patterns that directly

affect home prices. Fewer dimensions allow for simpler model training, faster

computations, and typically require less data to effectively train the model

without overfitting.

A4.2 Data preprocessing

259

A4 Machine learning

Scenario: With the curse of dimensionality

Now, imagine including hundreds of features—extending to less critical ones such

as the brand of appliances, detailed descriptions of each room’s decor, types of

plants in the garden, and the colour of the walls. Determining which features are

actually important becomes more challenging as the dimensionality increases,

potentially obscuring key factors that are more predictive of home prices.

A Figure 14 House sales

Overfitting

In high-dimensional spaces, models often have too many parameters relative to

the number of observations, which leads to overfitting. The model learns not just

the underlying patterns but also the noise in the training data, which harms its

performance on new, unseen data. The model’s ability to generalize decreases as

dimensionality increases, unless significantly more data is provided.

Computational complexity

Many algorithms that involve computations over the feature space see their

complexity increase exponentially with the number of dimensions. This can be

due to the increased number of calculations or the more complex data structures

needed to handle high-dimensional data. Algorithms become slower, requiring

more computational resources, which can make processing impractical for very

large data sets.

Data sparsity

As the dimensionality increases, the volume of the space increases so quickly

that the available data become sparse. This sparsity is problematic because it

becomes difficult to find closely related samples for predictions, as each pointin

the space tends to be far away from all others. Models become less reliable and

may require exponentially more data to achieve statistical significance.

Distance metrics effectiveness

In high dimensions, all points tend to be equidistant from each other. Common

metrics such as Euclidean distance lose meaning, making it hard to distinguish

between near and far points, which impacts clustering, nearest neighbour

classification, and other algorithms relying on distance calculations.

A4.2 Data preprocessing

Techniques that rely on distance measurements become less effective and

sometimes provide misleading results.

Data visualization

Visualizing high-dimensional data is inherently challenging because human

perception is limited to three dimensions. Directly visualizing data without

dimensionality reduction techniques such as PCA or t-SNE is impossible, making

it harder to detect patterns, outliers or clusters visually.

Sample size increases

To adequately cover a high-dimensional space with data, the sample size needed

grows exponentially with the number of dimensions. This phenomenon is related

to the concept of data sparsity. Practical data collection becomes infeasible, as

the amount of data required to maintain the same level of performance grows

exponentially.

Memory usage

Storing and processing high-dimensional data requires significantly more

memory. Each additional dimension can increase the storage requirement

linearly, which becomes problematic with thousands of dimensions. Higher

memory usage necessitates more powerful hardware and can limit the scalability

of data-driven applications.

Example: Predicting home sale prices in a high-dimensional

feature space

Imagine you are a real estate agent using a machine learning model to predict

the sale price of homes. The sale price is based on various attributes of the

home. Initially, you start with a comprehensive data set with basic features such

as number of bedrooms, number of bathrooms, floor area, age of the home, and

location.

Initial scenario

In a lower-dimensional setting, each data point (home) has a number of near

neighbours in the feature space that are similar along these basic dimensions.

This proximity allows the model to make accurate predictions because it can

easily find and learn from comparable examples.

High-dimensional expansion

Now, consider that you decide to vastly expand the number of features in your

data set to include detailed characteristics such as:

* type ofdoor knobs

* brand of kitchen appliances

* wallpaper patterns

* type of window treatments (curtains, blinds, and so on)

* detailed landscaping specifics

* decorative colour schemes in each room

* type of wood in the built-in cabinetry

* history of all maintenance activities.

261

A4 Machine learning

262

Note: Statistical techniques such as

principal component analysis (PCA)

and linear discriminant analysis

(LDA) are beyond the scope of this

course.

In this high-dimensional space, the feature space grows exponentially as you add

more dimensions. Consequently, the volume of the space expands far beyond

the number of data points you have. With so many dimensions, each home

in your data set becomes an isolated point, far from others in this expanded

feature space. Essentially, every home appears unique, with few obvious “near

neighbours”.

The implication here is that it is difficult for your model to find similar homes to

any given one because each is distant from the others in many dimensions of the

feature space.

As homes are far apart in high-dimensional space, the model’s predictions based

on nearby examples become less reliable. The comparisons the model attempts

to make may hinge on irrelevant or noisy features.

To achieve reliable predictions and overcome the sparsity, you would need

exponentially more data points to cover the expanded feature space adequately.

This requirement often is impractical and expensive.

A Figure 15 Which of these data points are most helpful to predict the price of a home?

Dimensionality reduction of variables

Dimensionality reduction is a group of techniques in data analysis and machine

learning that involves reducing the number of variables or features in a data set

while preserving as much of the relevant information as possible. This process

is essential when dealing with high-dimensional data, which can lead to various

problems such as increased computational cost, overfitting, and the curse of

dimensionality.

A4.2 Data preprocessing

How to reduce dimensions

Imagine you are working on a project to predict the most popular lunch meals in

the school cafeteria. You might start by collecting data such as the colour of the

food, the temperature outside, the price, how long the lunch line was, and what

day of the week it is.

Think about what features (or types of information) are most likely to influence

the outcome. For the lunch meals, maybe the type of food and its price are more

important than the colour of the food.

Group similar features together. For instance, if two features tell you almost the

same thing, you might only need one of them. If both the length of the lunch line

and the waiting time tell you how busy the cafeteria is, maybe you just keep one.

Try making predictions with different sets of features to see which combinations

give good results without being too complex.

Purpose of dimensionality reduction

The primary goal of dimensionality reduction is to simplify the data without losing

critical information. Simplification makes the data easier to explore and visualize

and can improve the performance of machine learning algorithms. The key

benefits include the following.

Enhancing data visualization: Making it feasible to plot high-dimensional data

in two or three dimensions.

Improving model performance: Reducing the risk of overfitting by eliminating

noise and less informative details, thereby helping models to generalize better on

new, unseen data.

Reducing computational resources: Decreasing the time and memory

required to store and process data.

Facilitating data analysis: Making pattern recognition and correlation detection

between features more manageable.

Practice questions

6. Describe the role of data preprocessing in the machine

learning workflow. [2 marks]

7. Describe the significance of data cleaning and the impact of

poor-quality data on model performance. [3 marks]

Describe three techniques used in data cleaning. [3 marks]

9. a. Define the concepts of normalization and standardization. [2 marks]

b. Qutline why they are important in data preprocessing. [2 marks]

10. a. Define the concept of feature selection. [T mark]

b. Outline its importance in the context of machine learning. [2 marks]

TOK

* Towhat extent does the quality

of data influence the reliability

and accuracy of knowledge

derived from machine learning

models?

* How do the processes of data

cleaning and feature selection

reflect human methods of

filtering and prioritizing

information?

* |nwhat ways does the concept

of dimensionality reduction

in machine learning illustrate

the challenges and benefits

of simplifying complex

information?

@ Communication skills

Check that your responses

demonstrate a clear understanding

of the data preprocessing steps

and their importance in the

machine learning process.

Provide detailed examples and

explanations to illustrate the

techniques and their impacts on

model performance.

Where relevant, discuss the

ethical and practical implications

of data quality and preprocessing

decisions.

263

.V 9Cl Machine learning approaches

T
H
Y

Syllabus understandings

A4.3.1 Explain how linear regression is used to predict continuous outcomes

A4.3.2 Explain how classification techniques in supervised leaming are used

to predict discrete categorical outcomes

A4.3.3 Explain the role of hyperparameter tuning when evaluating supervised

learning algorithms

A4.3.4 Describe how clustering techniques in unsupervised learning are used

to group data based on similarities in features

A4.3.5 Describe how learning techniques using the association rule are used

to uncover relations between different attributes in large data sets

A4.3.6 Describe how an agent learns to make decisions by interacting with its

environment in reinforcement learning

A4.3.7 Describe the application of genetic algorithms in various real-world

situations

A4.3.8 Outline the structure and function of ANNs and how multi-layer

networks are used to model complex patterns in data sets

A4.3.9 Describe how CNNs are designed to adaptively learn spatial

hierarchies of features in images

A4.3.10 Explain the importance of model selection and comparison in

machine learning

A4.3.1 Explain how linear regression is used

to predict continuous outcomes
Linear regression is a statistical method used to model and analyse the

relationships between a dependent variable and one or more independent

variables.

A continuous outcome refers to a variable that can take on an infinite number of

values within a given range. These values are measurable and can be expressed

on a continuous scale, meaning they are not restricted to discrete or separate

categories, but rather can vary gradually.

The goal is to find a linear equation that best predicts the dependent variable

based on the values of the independent variables.

Linear regression assumes that the relationship between the dependent and

independent variables can be described using a linear equation, which in its

simplest form (single variable) is:

Y=B+BX+€

A4.3 Machine learning approaches

* Yisthe dependent variable.

* Xisthe independent variable.

* f,istheintercept of the line (the value of Y when Xis 0).

* B represents the slope of the line, which indicates how much Y changes fora

one-unit change in X.

* gisthe error term, accounting for the variation in Y not explained by X.

The relationship between the independent (predictor)
and dependent (response) variables

Independent (predictor) variables are the variables that are used to predict or

explain variations in the dependent variable. They are considered “independent”

because their values are presumed not to be influenced by other variables in the

analysis but are thought to influence the dependent variable.

The dependent (response) variable is what the model aims to predict or explain.

It is dependent because its values are assumed to depend on the independent

variables.

The significance of the slope and intercept in the
regression equation

In linear regression, the equation typically takes the form:

Y=B,tBX+t€E

Here, B, (the intercept) and j§, (the slope) are parameters that define the statistical

relationship between the dependent variable Y and the independent variable X.

In linear regression, the equation typically involves two key components: the

intercept and the slope. These elements define how the dependent variable

(what you are trying to predict) is related to the independent variable (what you

are using for the prediction).

The intercept

The intercept is the expected value of the dependent variable when the

independent variable is zero. It is where the regression line crosses the y-axis.

The intercept represents the starting point of the dependent variable before any

effect from the independent variable is considered. For example, it could show

you the basic cost of a product before additional features are added. It helps

position the regression line correctly, ensuring the model aligns well with the

actual data.

Sometimes the intercept does not make practical sense, such as predicting a

physical measurement at zero time or zero distance, but it is still a necessary

part of the model’s structure.

The slope

The slope indicates how much the dependent variable changes for each unit

increase in the independent variable. It describes the steepness and direction

of the regression line.

265

A4 Machine learning

Synthetic data Artificially

generated data that mimics the

characteristics of real-world data but

does not directly copy it. It is often

used for testing, training machine

learning models, and validating

algorithms.

The slope tells you how the dependent variable responds as the independent

variable increases. If the slope is positive, the dependent variable increases

with the independent variable. If the slope is negative, the dependent variable

decreases. The size of the slope shows the extent of the impact that changes in

the independent variable have on the dependent variable. The slope directly

measures how much influence the independent variable has on the dependent

variable, assuming all other factors remain constant.

Example: Predicting salary based on years of experience

A model predicts an employee’s salary based on their years of experience.

Predicting salary based on years of experience
100,000

e Actual salaries =
—— Regression line

90,000 + i
.

[]

80,000 - 5 |

P Slope =2,538.79

= Intercept = 46,715.35
& 70,000 - T
40
w)

60,000 -

50,000 +
[

00 25 50 75 100 125 150 175 200
Years of experience

A Figure 16 Scatter graph predicting salary earned based on experience

In the salary prediction model, the slope and intercept are clearly annotated.

The slope is approximately 2,539 and the intercept is approximately 46,715.

This means that the starting salary (with zero years of experience) is estimated

atabout $46,715, and for each additional year of experience, the salary is

predicted to increase by about $2,539. These values are shown on the graph

with the regression line, providing a visual representation of how salary escalates

with years of experience based on the synthetic data.

The intercept could represent the starting salary of a new employee with

zero years of experience. It reflects the baseline salary that one might expect

when entering the job market, potentially including entry-level wages offered

by companies. The slope indicates how much the salary increases for each

additional year of experience. A positive slope means that more experienced

employees earn more, highlighting the value of experience in the job market.

This model can help understand how career progression impacts earning

potential. It allows employers and employees to project salary increases over time

based on experience, aiding in career planning and compensation negotiations.

A4.3 Machine learning approaches

Example: Predicting house prices based on size

In this regression model, the intercept might represent the starting price of

houses before considering the size based on floor area (m?). For example, the

intercept could indicate the base cost of the smallest types of properties or other

fixed costs associated with house pricing that do not depend on size. The slope

represents how much the price of the house increases with each additional

square metre of area. If the slope is positive, it suggests that larger houses

are more expensive. The slope tells you the additional cost per square metre,

quantifying how property size influences its market value.

Predicting house prices based on floor area

® Actual houée prices

700,000 4 |—— Regression line

600,000 +-

o>
g 500,000 A - i
& Slope =1,603.20

Intercept = 178220.43

400,000 +-

300,000 -

50 100 150 200 250 300 350

Floor area (m?2)

A Figure 17 Scatter graph predicting house prices based on size

For the house price example, the slope and intercept values are clearly annotated.

The slope is approximately 1,603 and the intercept is approximately 178,220.

This means that the starting price of the smallest house (50 square metres) is

predicted to be about $178,220. For each additional square metre of floor area,

the price is expected to increase by about $1,603. These values provide insights

into how changes in house size affect the price.

Assessing how well the model fits the data

The fit of a regression refers to how well a model’s predictions correspond to the

actual observations. It is a measure of the effectiveness of a model in capturing

the underlying patterns or relationships between variables in the data set.

Essentially, it provides an indication of how well the data points fit the regression

line or model.

267

A4 Machine learning

Classification techniques A subset

of algorithms designed to assign

categorical labels to items based on

input data.

Discrete categorical outcomes

the type of variable in statistics and

data analysis that can take on a

limited, fixed number of possible

values, where each value represents

a category or class.

You learned about supervised

learning in section A4.1.

A commonly used measure to assess this fit is the coefficient of determination,

known as r* (R-squared). The formula for r? is:

res

r=1-——-
tot

* SS, . isthe sum of the squares of the model residuals (the differences

between observed and predicted values).

* 55 _ isthe sum of the squares of the differences from the observed values to

the mean of the observed data.

* Anr?value of O indicates that the model explains none of the variability of the

response data around its mean.

¢ Anr?value of 1indicates that the model explains all the variability of the

response data around its mean.

A4.3.2 Explain how classification

techniques in supervised learning are used

to predict discrete categorical outcomes

The K-Nearest Neighbours (K-NN) and decision trees
algorithms

The K-Nearest Neighbours (K-NN) and decision trees algorithms are both used

to categorize new data points based on patterns learned from existing labelled

data, but they operate in fundamentally different ways.

K-Nearest Neighbours

K-NN is a non-parametric, instance-based learning algorithm.

* Non-parametric methods are those that do not assume a fixed form or

a specific distribution model for the underlying data. In other words,

non-parametric means flexible. K-NN does not have a strict rulebook to

follow. It adapts to whatever data you give it.

* Instance-based learning is a category of machine learning algorithms that

base their predictions on specific examples from the training data rather than

deriving general rules.

K-NN classifies new cases based on a similarity measure, a metric used to

determine how alike two data objects are. K-NN is called “lazy learning” because

it does not explicitly learn a model. Instead, it memaorizes the training instances

which are then used as "knowledge” for the prediction phase.

How K-NN works

1. When a new data point needs to be classified, K-NN calculates the distance

from this point to all other points in the training set.

2. ltthen selects the K nearest points, where K is a user-specified number,

based on these distances. The nearest points are also called nearest

neighbours.

3. Classification is performed by a majority vote to its nearest neighbours.

The new data point is assigned the class most common among its K nearest

neighbours.

A4.3 Machine learning approaches

K-NNs are simple and effective, make no assumptions about the data (making

it versatile, working with any number of classes), and are easy to implement for

multi-class problems. K-NNs can be computationally expensive because they

need to calculate the distance for each instance and sort all the instances during

the classification phase. They are generally not suitable for large data sets or

data sets with high dimensionality without dimension reduction. Finally, they are

sensitive to noisy data, missing values, and outliers.

Worked example 2

Classifying fruits using K-NN

You have a data set with information about different fruits. These are classified either as Apple or Banana.

Each fruit in our data set is described by two features: weight (grams) and colour code (numeric).

Table 4 The training data set

Fruit Weight (grams) Colour code Label

Fruit] 150 1 Apple

Fruit2 170 1 Apple

Fruit3 130 2 Banana

Fruit4 180 2 Banana

You receive a new fruit with the following features: Weight is 160 grams and the colour code is 1.

Classify the new fruit based on your model. Use K = 3.

Solution

Step 1: Apply K-NN with K = 3.

Decide whether this new fruit is an apple or a banana

based on the three nearest neighbours in the data set.

a. Distance calculation: Calculate the Euclidian distance

from the new fruit to each fruit in our data set. The

Euclidean distance between two points (x,, y,) and

(x,, y,) is given by the formula:

V0=)2+, =y,

Let the weight values be x and the colour codes be y.

Using the Euclidian distance formula, the distance

from the new fruit (160, 1) to Fruit1 (150, 1) is

A (160-150)2 + (1-12 =+ 100-0=10.

Repeat the calculation for all the other fruits in the

data set.

This gives:

Distance to Fruitl = 10

Distance to Fruit2 =10

Distance to Fruit3 = 30.41

Distance to Fruit4 = 20.62

b. Nearest neighbours: The three closest fruits are Fruit1,

Fruit2, and Fruit4 based on the calculated distances

(Fruitl, Fruit2, Fruit4).

Step 2: Majority voting

Consider the three nearest neighbours: are they labelled

as Apples or Bananas? They may not all be the same, but

there will be a majority. Use this majority to decide how to

classify the new fruit.

1. Fruitl: Apple

2. Fruit2: Apple

3. Fruit4: Banana

Since two out of the three nearest neighbours are labelled

as Apple, the new fruit is classified as an Apple.

By examining the majority label among the closest data points (neighbours),

K-NN classifies the new fruit. This simple example demonstrates how K-NN uses

distance measurements and majority voting among nearest neighbours to classify

new data points based on existing labelled data.

269

A4 Machine learning

Decision trees

Decision trees are a flowchart-like tree structure where an internal node

represents a feature (or attribute), the branch represents a decision rule, and each

leaf node represents the outcome. The topmost node in a tree is called the root

node. It breaks down a data set into smaller and smaller subsets while at the same

time an associated decision tree is incrementally developed.

How decision trees work

1. Begin at the root node and split the data on the feature that results in the

most homogeneous child nodes (subsets) based on some splitting criterion

(for example, Gini impurity, entropy).

2. Apply the splitting process recursively to each child until one of the

termination conditions is met (for example, all the instances at a node

belong to the same class, no remaining attributes to split on, or reaching a

maximum depth).

3. Optionally, reduce overfitting by pruning the tree to remove splits that have

little importance.

Decision trees are easy to understand and interpret. In addition, they can

handle both numerical and categorical data and they require relatively little data

preparation (no need for feature scaling, for example).

@ Worked example 3
Features: Weight (grams),

Classifying fruits using decision trees Colour Code, Sweetness Level
. . . # Labels: 0 = Apple, 1 = Banana,

Here is a hypothetical fruit data set. 2 = Orange

The features in this data are: 1

* Weight (grams): numerical 5

* Colour code: numerical (1 = Red, 2 = Yellow, 3 150, 1. 8 # Apple

3 =0Orange)
4 100, 1, 7 # Apple

* Sweetness level: numerical (scale of 1-10).
5 120, 2, 9 # Banana

Labels: 6 130, 2, 10 # Banana

1. Apple 7 110, 3, 6 # Orange

2 8 160, 3, 7 # Orange
3. O range 9 140, 1, 8], # Apple
(Note the use of some synthetic data for the sake of this
example.) 10 iBs, 2, ¢ # Banana

2o Wy g 2 # Labels for the fruits 12

Classify the new fruit based on your model. 13

Solution
B e e e 1. Define the data: Create arrays for features and labels.

. . . ; Train the decision tree: Fit the model to the data.
To create a simple decision tree classifier to learn from this

data you would do the following. 3. Visualize the decision tree: Use plot_treeto

visualize the decisions made by the tree.

270

A4.3 Machine learning approaches

ColourCode<=1.5 Figure 18 shows the decision tree based on your synthetic

Samples =9 fruit data set. The tree uses features such as weight,

Value =[3, 3, 3] colour code, and sweetness level to classify fruits into

& _l SERE categories: apple, banana, and orange. Each node in the

'L l' tree makes decisions based on these features, guiding to

— a classification at the leaves. This visualization illustrates the
- Sweetness Level <= 8.0 o .)

Samples =3 = decision-making process the tree follows to determine the
Value = 3,0, 0] Samples - 6
P Value =10, 3, 3] type of fruit based on the given attributes.
Class = Apple

Class = Banana

|
. V

Samples =3 Samples =3

Value =[0, 0, 3] Value = [0, 3, 0]

Class = Orange Class = Banana

A Figure 18 A decision tree that categorizes fruit based on

weight, colour and sweetness level

Decision trees can be prone to overfitting, especially with complex trees.

If some classes dominate, you can create biased trees. Decisions are also based

on axis-aligned splits, which might not capture the true decision boundaries.

While K-NIN is based on feature similarity, decision trees use a hierarchical

decision-making process. The choice between K-NN and decision trees depends

on the size of the data set, the nature of the problem, and the complexity of the

relationships in the data.

Real-world applications of K-NN

Collaborative filtering (CF) recommendation systems recommend items by

finding similarities between users or items based on past interactions. K-NN can

be utilized in both user-based and item-based collaborative filtering.

User-based CF implements a similarity calculation. K-NN is used to find users

who are similar to the target user based on their ratings or interactions with

items. ltems liked or highly rated by these similar users are recommended to the

target user, assuming that users with similar tastes in the past will have similar

preferences in the future.

Item-based CF analyses similarity among items. K-NN helps in finding items

similar to those that the target user has liked or rated highly. The algorithm

recommends these similar items to the user, based on the idea that a user will

likely enjoy items similar to those they have liked before.

An example of user-based CF with book recommendations

This is an example of user-based collaborative filtering using the K-NN algorithm,

focused on a book recommendation system for an online bookstore. This

example will detail how you can recommend books to users based on the

similarity of their reading patterns to those of other users.

The goal is to provide personalized book recommendations by finding users with

similar reading interests and using their preferences to suggest books.

=1
L

271

272

A4 Machine learning

Step 1: Data collection

For this example, data collected includes:

* userinteractions, where each user's interactions are tracked, including which

books they have read, their ratings for these books (on a scale of 1to 5), and

other actions such as reviews or bookmarks

* book metadata, such as genre, author and publication year, although primary

recommendations are based on user behaviour rather than content.

Step 2: Data preprocessing

Construct a user-book matrix where rows represent users and columns represent

books. Entries in this matrix are the ratings given by users to books. This matrix is

likely sparse, as not all users rate all books.

Step 3: User-based K-NN collaborative filtering

Calculate the similarity between users based on their book rating patterns. Then,

identify the K nearest users (neighbours) to a target user—those who have the

most similar taste in books based on the ratings.

Step 4: Generating recommendations

Choase a user for whom recommendations are to be made. For books that the

target user has not rated, predict potential ratings by averaging the ratings of

these books by the nearest neighbours, weighted by their similarity to the target

user. Finally, create a list of books with the highest predicted ratings that the

target user has not read yet.

Example implementation

Users 1, 2 and 3 have rated books A, B and C.

Table 5 Sample data

Book A Book B Book C

Userl 4 5 -

User2 5 3

User3 - 4 5

Recommendations will be generated for Userl. First, calculate how similar User2

and User3 are to Userl based on their ratings for Books A and B. Next, consider

both Users 2 and 3 since K = 2. Predict Userl s rating for Book C using the ratings

from Users 2 and 3, weighted by their similarity to Userl.

This user-based collaborative filtering method using K-NN helps the bookstore

offer personalized recommendations that are likely to appeal to the user,

based on similar users’ preferences. This system can significantly enhance

user experience by helping them discover books that align with their tastes,

potentially increasing user engagement and sales.

An example of item-based CF with book recommendations

This approach focuses on finding relationships between items (books in this case)

based on the user ratings, and then recommending items similar to those a user

has liked.

A4.3 Machine learning approaches

The steps for data collection, data preprocessing, K-NN collaborative filtering

and generating recommendations are identical to the example above.

Example implementation

Suppose we have the following user-book matrix (entries are ratings).

Table 6 Sample data

Userl User2 User3 Userd4

Book A 4 5 3

Book B 3 2 5

Book C 5 3 5

Book D - 3 4 4

Calculate similarities and make recommendations

Calculate the similarity between Book A and all other books based on user

ratings. Assume User] rated Book A highly. Calculate the similarity scores for

Book A with Books B, C and D. Identify the books most similar to Book A (let’s say

Books C and D have higher similarity scores). Check if User] has not rated Books

C and D. Recommend Book C and Book D to User] based on their high similarity

to Book A, which Userl liked.

Real-world applications of decision trees

Decision trees can be practically applied in the context of diagnosing medical

conditions based on a patient’s symptoms.

An example of decision trees with medical diagnosis

Imagine a healthcare system where medical practitioners use decision trees to

assist in diagnosing diseases based on symptoms presented by patients. This

can be especially useful in triage systems, primary care settings, or remote areas

where resources are limited.

How decision trees are applied

Step 1: Data collection

For this example, data collected includes:

e patient history, including information such as age, sex, medical history and

lifestyle factors

* recorded symptoms experienced by the patient

* results from laboratory tests, which might include blood work, imaging

studies, and so on.

Step 2: Decision tree model

The decision tree is trained on historical data of patients, including the symptoms

and outcomes diagnosed by medical professionals. Each nade in the tree

represents a symptom or a test result, and branches represent possible values or

outcomes of these tests or symptoms. The leaves of the tree represent potential

diagnoses.

273

274

A4 Machine learning

Application in diagnosis

When a new patient presents with a set of symptoms, the decision tree is used to

navigate through these symptoms and/or test results.

Starting from the root of the tree, decisions are made at each node based on the

patient’s specific symptoms or test results, moving through the branches until

reaching a leaf node which suggests a potential diagnosis.

Benefits of using decision trees in medical diagnosis

Interpretability: One of the significant advantages of decision trees is their ease

of interpretation. Medical professionals can easily understand the diagnostic path

taken by the tree, which aids in trust and transparency.

Speed: Decision trees can quickly process new patient data, providing rapid

diagnostics that are essential in acute medical situations.

Cost-effective: They can reduce the need for unnecessary tests by identifying

probable diagnoses based on symptom presentation alone.

Consistency: Decision trees provide standardized diagnosis procedures that

ensure consistency in patient care, irrespective of the individual healthcare

provider.

Example of using decision trees in medical diagnosis

Suppose a decision tree is developed for diagnosing respiratory illnesses.

It might start with symptoms such as cough and fever as top-level nodes, then

delve deeper based on other symptoms and factors.

A branch might explore the presence of additional symptoms like shortness of

breath or wheezing.

Further branches might differentiate between types of coughs (dry or productive),

fever duration, and other accompanying symptoms or pre-conditions such as

asthma or smoking.

Ultimately, the tree could help distinguish between conditions such as bronchitis,

pneumonia, or common colds, guiding the medical professional on potential

treatment plans or further tests needed.

W

0
~

W
b

W
=

e

e
e

e

e

<

T

V
I

S
R

Y

Synthetic data set

Features: [cough, fever, shortness of breath, wheezing]

cough, fever, shortness of breath, wheezing: 0 = no, 1 = yes

X = np.array([

[, 1, 0, 0], # Common Cold

[1, 1, 0, 1], # Bronchitis
[, 1, 1, 1], # Pneumonia

[0, 1, 1, 0], # Pneumonia

(1, 0, 0, 0], # Common Cold

[1, 1, 1, 0], # Pneumonia

[1, 0, 0, 1], # Bronchitis

(1, 1, 0, 1], # Bronchitis

Labels: 0 = Common Cold, 1 = Bronchitis, 2 = Pneumonia

A4.3 Machine learning approaches

Shortness of breath <= 0.5

Samples =8

Value =2, 3, 3]

Class = Bronchitis

| }
Wheezing <=0.5

Samples =5
Value =2, 3, 0]
Class = Bronchitis

Class = Pneumonia

Samples =3

Value =0, 0, 3]

I
!

Samples = 2

Value =[2, 0, 0]

Class = Common cold

A Figure 19 A decision tree for diagnosing respiratory illnesses

A4.3.3 Explain the role of hyperparameter

tuning when evaluating supervised learning

algorithms
Hyperparameter tuning involves adjusting the settings of an algorithm that

are fixed befare the learning process begins and cannot be learned from the

data. These settings, known as hyperparameters, significantly influence the

performance of machine learning models. Understanding and effectively tuning

these hyperparameters can lead to more accurate, efficient and robust models.

Accuracy, precision, recall and F1 score as

evaluation metrics

Accuracy, precision, recall and the F1 score are metrics used to evaluate the

performance of classification models in machine leaming. Each metric provides

insights into different aspects of model performance.

Accuracy

Accuracy measures the overall correctness of the model and is defined as the

ratio of correctly predicted observations to the total observations.

Worked example 4

A model predicts whether an email is spam (positive class) or not spam (negative class). Out of 100 emails, the

model correctly identifies 90 emails (both spam and not spam).

Work out the accuracy of the model.

Solution
The accuracy is a model is given by the formula:

number of correct predictions
accuracy =

Y total number of predictions

For this model:

20
accuracy = 100 =0.90 or 20%.

Thus, the accuracy is 90%.

275

276

A4 Machine learning

Precision

Precision is the ratio of correctly predicted positive abservations to the total

predicted positives. It measures the accuracy of positive predictions.

Worked example 5

The model from Worked example 4 predicts 50 spam emails, of which 40

are actually spam.

Calculate the precision of the model for predicting spam.

Solution

Precision is calculated by the formula:

true positives (TP) 40 0.80 o 80%

true positives (TP) + false positives (FP) 50 or
precision =

So, the precision of this model for predicting spam is 80%.

Recall (sensitivity)

Recall measures the ability of a model to find all the relevant cases within the

positive class. Itis defined as the ratio of correctly predicted positive observations

(true positives) to all observations that are actually in the positive class.

This includes both the true positives and the observations that were positive

but were incorrectly classified (false negatives).

Worked example 6

There are 60 actual spam emails in a sample, and the model correctly

identifies 40 of them as spam.

Calculate the recall of the model.

Solution

The calculation for the recall of a model is:

true positives (TP) 40
recall = =0.67 or67%

true positives (TP) + false positives (FP) - E

So, the recall of the model is 67% (correct to 2 significant figures).

Note: the calculations for precision and recall are very similar. Make sure you

know the difference and use the correct formula.

F1 Score

The F1 Score is the weighted average of precision and recall. This score takes

both false positives and false negatives into account. It is particularly useful when

the class distribution is uneven. The F1 score is the harmonic mean of precision

and recall.

A4.3 Machine learning approaches

Worked example 7

Using the precision and recall from the previous worked examples,

calculate the F1 score of the model.

Solution

The calculation for the F1 Score uses the formula:

precision X recall
F1 Score =2 x

precision + recall

0.80 x0.67
= =L./3Er 7355
0.80+0.67

These metrics provide a more holistic view of model performance beyond

simple accuracy.

Table 7 Model performance measures

Measure | Usage scenario

Accuracy | Useful when the target classes are well balanced.

Helpful when the cost of a false positive is high (for example, in
Precision . ; . i

! spam filtering, labelling an important email as spam).

Recall Important when the cost of a false negative is high (for example, in

disease screening, failing to identify a sick patient).

Useful when you need a balance between precision and recall,
F1 Score

especially if there is an uneven class distribution.

The role of hyperparameter tuning on model performance

A hyperparameter is a parameter whose value is set before the learning process

begins and cannot be learned from the data during training. Hyperparameter

tuning involves systematically searching for the optimal set of hyperparameters that

governs the learning process of an algorithm. These hyperparameters significantly

influence how well a model can fit the data and generalize to new data.

An example of a hyperparameter in K-NN would be the number of nearest

neighbours to consider when making a prediction. For a decision tree, a

hyperparameter would be the maximum depth of the trees, or the minimum

number of samples required to split an internal node.

Overfitting and underfitting when training algorithms

Overfitting

Overfitting occurs when a model is too closely fit to a limited set of data points

and captures the noise along with the underlying data distribution. As a result,

while the model performs exceptionally well on its training data, it performs

poorly on new, unseen data.

278

A4 Machine learning

Worked example 8

Imagine training a complex decision tree to classify whether animals are

dogs or cats based on a series of features (for example, size, weight, ear

shape).

What are potential problems in the training process which could lead to

inaccurate results?

Solution

If the tree is allowed to grow deep without constraints, it might start making

decisions based on irrelevant features (such as a specific collar colour seen

frequently on the training dogs). Such a model might perform perfectly on the

training set (100% accuracy) because it has essentially memorized the data set,

including noise and outliers, but it will likely perform poorly on new examples

of dogs and cats, especially those that do not fit the specific characteristics of

the training set.

Addressing overfitting requires the following.

Simplify the model by selecting a less complex model or reducing the

number of parameters.

Use regularization technigques which penalize overly complex models.

Include more training data to cover a broader range of the input space.

Use techniques like cross-validation to ensure the model’s ability to

generalize.

Underfitting

Underfitting occurs when a model is too simple to learn the underlying pattern

of the data. Consequently, it performs poorly on the training data, and this poor

performance also extends to new, unseen data.

Worked example 9

Can you train a very simple model to predict whether an animal is a dog or

a cat using only one feature? What are potential problems in the training

process or training data which could lead to inaccurate results?

Solution

For example, consider training a model using only the size of the animal. Such

a model might hypothesize that all large animals are dogs and all small animals

are cats. This overly simplistic approach fails to capture the complexity of the

data (for example, there are small dogs and large cats), resulting in high error

rates on both the training data and new examples.

Addressing underfitting involves the following.

Increase the complexity of the model by adding more parameters or using

more sophisticated learning algorithms.

Reduce or remove regularization, which might be constraining the model

too much.

Feature engineering: adding more relevant features that could help the

model make better predictions.

A4.3 Machine learning approaches

A4.3.4 Describe how clustering techniques

in unsupervised learning are used to group

data based on similarities in features
Clustering is a technique used in data analysis and statistics that involves

grouping a set of objects in such a way that objects in the same group (or cluster)

are more similar to each other than to those in other groups. It is a method of

unsupervised learning, and it's commonly used for statistical data analysis used

in many fields, including machine learning, pattern recognition, image analysis,

information retrieval and bioinformatics.

Clustering techniques in unsupervised learning
group data

In unsupervised learning (unlabelled data), clustering techniques identify distinct

groups or clusters from large data sets, where each group represents data points

with similar characteristics.

K-means clustering

K-means clustering is an algorithm which partitions the data set into k distinct,

non-overlapping clusters. It assigns each data point to the closest cluster centre

(centroid), minimizing the within-cluster sum of squares (variance). K-means

clustering is ideal for quick preliminary analyses, suitable for large data sets.

A centroid is typically calculated as the mean position of all the points in a cluster,

and represents the average location of all data points within that cluster.

. ClusterO

. Cluster 1

. Core points

F
e
a
t
u
r
e
 Y

@

Noise

Feature X

A Figure 20 Example of data classification using centroids and k-means

The basic steps for k-means clustering are as follows.

1. Initialize k centroids randomly.

2. Assign each point to the nearest centroid.

3. Recalculate the centroid of each cluster.

4. Repeatsteps 2 and 3 until the centroids stabilize.

Centroid In the context of

clustering algorithms, the centre

of a cluster.

279

A4 Machine learning

E Hierarchical clustering

Hierarchical clustering builds clusters by either a divisive method (top-down)

or agglomerative method (bottom-up). It creates a tree of clusters called a

dendrogram, offering a visualization of data groupings at different scales.

This type of clustering is useful for data sets where tree-like relationships are

important, such as in taxonomy creation.
A Figure 21 A dendrogram

The basic steps for hierarchical clustering are as follows.

1. Treat each data point as a single cluster.

2. Merge the closest pair of clusters into one.

3. Recalculate distances between clusters.

4. Repeat until all points are merged into a single cluster.

Density-based spatial clustering of applications with noise

Density-based spatial clustering of applications with noise (DBSCAN) clusters

points that are closely packed together, marking as outliers the points that lie

alone in low-density regions. It does not require the number of clusters to be

specified beforehand. This type of clustering is especially effective for complex

geometrical data and is resistant to outliers.

The basic steps for DBSCAN are as follows.

1. Define two parameters, & (eps) and the minimum number of points required

to form a dense region (minPts).

2. Markall points within € distance of a point as neighbours.

3. Create a cluster if a point has at least minPts neighbours.

4. Expand the cluster by adding all density-reachable points.

5. Repeat the process for all unvisited points.

1.0
1.254 6

= o
] .“ o

1.00- 3---{ ¢ o
J"o. g o 0.8

0.75 o“ Wi " }‘:}l" . [.:.-“ H ®ia
o .

0501 #F . > o . 06 g
o an * e P .4 el
L oz - -2 £
pun . . *‘ . - —

£ 0254 & % % Fa —— g
@ 0a%) e % @ i A o LI =

. a0 @ » 04 O

0.00 *e ooy L™ e
"

. e’ ,g&“"
0.25 1 ". s *°, s

S9Ny 02
-

0.50- ¥ 0 gy V0%t
LA L 5 5

0‘75 3 T T T T T T T OAO

1.0 0.5 00 05 1.0 1.5 20

Feature 1

A Figure 22 DBSCAN clustering

280

A4.3 Machine learning approaches

Mean shift clustering

Mean shift clustering aims to discover blobs in a

smooth density of samples. Itis a centroid-based

algorithm, which works by updating candidates

for centroids to be the mean of the points within a

given region. Mean shift clustering works well with

clusters of arbitrary shapes and sizes. It does not

require specifying the number of clusters in advance

(unlike k-means).

The basic steps for mean shift clustering are

as follows.

1. Start with an initial estimate for the centroid

location.

2. Compute the mean of the points within a sliding

window centred at the centroid.

Translate the centroid to the mean location.

4. Repeat until convergence.

Real-world applications

%

3

= tep

O -

o~ e e
[. % ks " s
24 ot £ :.f&..fik"

@ san 2 & . .* ... *a
(NN# x ® '

. b ., " -
2 o'. . .-a. ;{ 2

- ‘:‘. L °. W
0~ =L o

Feature 1

A Figure 23 Mean shift clustering

of clustering

This visualization shows the segmentation of "

customers into distinct groups, each potentially 6

representing a different type of buyer behaviour, E

such as: =

* high spenders with many transactions %'

(possibly premium customers) g

* low spenders with few transactions (possibly é

occasional shoppers)

e customers with high spending but fewer

transactions (possibly bulk buyers) , ! I '

. t ith | ding but high 10 3 2 . customers with lower spending but higher Annual spending (1000$)

transactions (possibly regular, small amount
buyers). A Figure 24 Customer segmentation

Clustering is extensively used across various industries to segment data into

meaningful groups. One of the real-world applications of clustering involves

using purchasing data to segment a customer base. This process, commonly

known as customer segmentation, helps businesses understand their customers

better, tailor marketing strategies, enhance customer service, and optimize

product offerings.

Market segmentation

Market segmentation identifies different groups of customers based on their

purchasing behaviour, demographics and preferences. Clustering algorithms

such as k-means, hierarchical clustering or DBSCAN are used to group customers

who exhibit similar purchasing patterns. Marketers can tailor campaigns that are

specifically designed for each segment, improving the efficiency of marketing

efforts and increasing customer satisfaction.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Cl
us
te
r
la
be
l

Cl
us
te
r

282

A4 Machine learning

Personalized marketing

Personalized marketing develops marketing strategies that cater to the specific

needs and desires of different customer segments. It works by analysing

clustered data to identify the preferences and needs of each group, such as

frequent purchases, preferred product types, and price sensitivity. The goal is to

create personalized promotions, targeted advertisements and custom product

recommendations that resonate with each distinct group, leading to higher

conversion rates and customer loyalty.

Pricing strategy

Another real-world application of clustering is to develop pricing strategies.

The goal is to appeal to various customer segments. Clustering allows

businesses to identify segments that may be more sensitive to price changes

or willing to pay a premium for certain features. Dynamic pricing strategies

can be applied where prices are adjusted based on the purchasing power

and behaviour of each segment, maximizing revenue while maintaining

customer satisfaction.

A4.3.5 Describe how learning techniques

using the association rule are used to

uncover relations between different

attributes in large data sets
Association rule learning is a technigue used to discover interesting relations

between variables in large databases. It establishes “interestingness” by using

specific techniques such as support and confidence, which measure the

strengths of the associations. Association rule learning is used in unsupervised

learning (meaning the data is unlabelled). It focuses on identifying rules that

describe how often items co-occur in a given data set.

While market basket analysis is a common application, association rule learning

has applications in various domains including fraud in financial transactions or

user behaviour analysis on websites.

Table 8 Concepts and terms in association rule learning

Concept/term | Definition

A collection of one or more items.
ltemsets) .)

These are collections of one or more items in the data set.

An indication of how frequently an itemset appears in the

data set.

Support This measure gives the proportion of transactions that

include a particular itemset. It helps in identifying the most

significant relationships in the data set

A4.3 Machine learning approaches

Concept/term | Definition

A measure of the reliability of the inference made by an

association rule.

This measure provides the likelihood of finding a given

association. It is defined as the ratio of the support of the

entire rule to the support of the antecedent (items on the left

side of the rule).

Confidence

A measure of how much more oftenitemsinarule A — B

occur together than expected if they were statistically

independent.

Lift This is the ratio of the observed support to that expected

ifthe two rules were independent. A lift value greater than

one suggests that the presence of one item in a transaction

increases the likelihood that another item will also appear in

the same transaction.

Association rule mining

Association rule mining is a technique used to find patterns, correlations or

associations among sets of items in transactional or relational data sets.

1. After you have received and prepared the data to be analysed, identify

frequent itemsets. Using an algorithm like Apriori will identify itemsets that

appear frequently in the data set. This step involves defining a minimum

support threshold, which is the minimum frequency (as a percentage of the

total) an itemset must have to be considered further.

2. Fromthe frequent itemsets, generate association rules that predict

the occurrence of an item based on the presence of other items in the

transaction. This step requires setting a minimum confidence threshold,

which is the minimum probability with which a rule must hold true.

3. Evaluate the generated rules using metrics such as lift, conviction and

leverage to determine their effectiveness and strength.

The Apriori algorithm

The Apriori algorithm is a popular data mining method used for mining frequent

itemsets and relevant association rules.

1. Set a minimum support and confidence. Start by defining the minimum

thresholds for support and confidence that an itemset and a rule must meet

to be considered significant.

2. Generate candidate itemsets. Start with one-item itemsets (frequent items).

These are single items that meet the minimum support threshold.

3. Determine frequent itemsets. For each potential itemset, calculate its support

by counting how often it appears in the data set. Compare this with the

minimum support.

4. Create higher order itemsets. Once all frequent one-item itemsets are found,

pairs of these frequent itemsets are merged to form two-item itemsets.

This process is repeated to create three-item itemsets, four-item itemsets,

and so on, until no more frequent itemsets can be generated.

283

A4 Machine learning

5. Generate association rules from the frequent itemsets. For each itemset

that meets the minimum support threshold, generate all possible rules.

Calculate the confidence of each rule and compare it to the minimum

confidence threshold.

6. Rule pruning: Rules that do not meet the confidence threshold are pruned

(discarded).

Worked example 10

A supermarket wants to analyse customer buying habits using Apriori in market basket analysis.

What might its findings be using Apriori?

Solution

Using the Apriori algorithm, the supermarket might create .

the following results.

ltemsets such as {bread], {milk}, and {butter} have high =

support individually.

Combining them, they find that the itemset {bread,

milk} also has high support.

Worked example 11

1. Describe the process the police might follow to find

associations between different types of crimes, across

various neighbourhoods.

After running association rule learning techniques, it is

revealed that:

Frequent ltemset: {Vandalism, Theft} with high support.

What are the implications of this for law enforcement?

How might they use this information to improve policing

strategies?

Solution

1. The police might follow to find associations

between different types of crimes, across various

neighbourhoods would follow the steps below.

Step 1: Data preparation

Gather data: collect crime reports from multiple

neighbourhoods over several years. Each report

includes details like the type of crime (for example,

theft, vandalism, assault) and the location. Treat each

neighbourhood’s crime report over a defined period

(for example, a month) as a single transaction. Each

transaction contains items, which in this case are the

types of crimes reported.

From this, they generate rules like {bread} — {milk} if

the confidence is high enough.

Further analysis could reveal that {bread, milk} —

{butter}is a frequent and reliable rule with a high lift,

indicating that customers who buy both bread and

milk are much more likely to buy butter than randomly

selected customers.

A Figure 25 How can the police connect crimes and

respond effectively?

Step 2: Define minimum support and confidence

Seta minimum level of support to identify frequent

sets of crimes that occur together in the same

neighbourhoods. Also seta minimum confidence

level to determine the strength of the association

between the crimes.

Step 3: Generate candidate itemsets

Start with individual crimes as one-item itemsets to

see which crimes occur frequently.

Step 4: Determine frequent itemsets

Calculate the support for each itemset. For example,

find the percentage of neighbourhoods where theft

alone or vandalism alone was reported in a month.

A4.3 Machine learning approaches

Step 5: Create higher order itemsets

Combine frequent one-item itemsets to form two-item

itemsets (e.g., {theft, vandalism}). Continue this process

to identify frequent combinations of different crimes.

Step 6: Generate association rules

From the frequent itemsets, generate rules such as

{vandalism} — {theft}.

Calculate the confidence of each rule to ensure it

meets the threshold, indicating that if vandalism

You could create an association rule where

{Vandalism} — {Theft} with a confidence of 75%

and a lift significantly above 1. This indicates that

theft is much more likely in areas where vandalism

is reported compared to areas where it is not.

This information can be used by police

departments to focus resources and patrols in

neighbourhoods where vandalism has been

reported to prevent potential thefts, allocate

more investigative resources to areas with high

is reported in a neighbourhood, there is a high

likelihood of theft also being repaorted.

Step 7: Rule pruning

rates of these co-occurring crimes to reduce

overall crime rates, and implement community

outreach programs targeting vandalism and

theft prevention.

Discard rules that do not meet the minimum

confidence level.

A4.3.6 Describe how an agent learns

to make decisions by interacting with its

environment in reinforcement learning
In reinforcement learning (RL), an agent refers to the entity or algorithm that is

tasked with making decisions in a specific environment. The agent’s objective

is to learn how to behave or choose actions that maximize some notion of

cumulative reward through interactions with its environment. This learning

process involves a series of steps where the agent observes the state of the

environment, takes actions and receives feedback in the form of rewards or

penalties based on the outcomes of its actions.

Table 9 Examples of some agents

Agent Why is this an agent?

Robotic vacuum

cleaner

A robotic vacuum cleaner is an agent because it autonomously senses its environment using sensors

and performs actions like moving and cleaning. Its actions are driven by the goal of keeping the floor

clean. Receives rewards for positive actions (such as collecting dirt or cleaning efficiently) and learns

to refine its cleaning strategies over time to maximize these rewards.

Autonomous

drone (for

delivery or

surveillance)

Environment: Geographicterrain, weather conditions, obstacles, regulatory constraints.

Objective: Complete delivery or surveillance tasks efficiently and safely.

Actions: Navigate routes, avoid obstacles, optimize delivery schedules.

Feedback: Delivery times, energy consumption, avoidance of accidents.

Game-playing Al
An Al trained to play games like chess, Go, or Atari titles is an RL agent. Its environment is the game

board, and its actions are the moves it selects.

Stock trading bot

A software system designed to autonomously buy and sell stocks in the financial market can function

as an RLagent. The environment for this agent is complex and dynamic, influenced by various factors

like real-time stock prices, news events, economic indicators, and overall market trends. The agent's

actions involve buying or selling specific stocks at particular times. The reward signal in this case could

be the profit earned from these trades. Through continuous interaction with the financial market, the

RL agent learns to identify patterns, analyse trends, and make informed trading decisions with the goal

of maximizing its returns.

285

286

A4 Machine learning

In reinforcement learning, the principle of cumulative reward and the

foundational concepts of agent-environment interaction are critical.

Table 10 Reinforcement learning terms

Term Definition

Agent— An agent interacts with an environment over time through a series of steps. At each step, the agent

environment | performs an action, and the environment responds by presenting a new state and a reward. This

interaction interaction is central to how learning occurs.

States A state represents the current situation of the environment. It is what the agent observes and uses to make

decisions. The set of all possible states is called the state space.

Acti Actions are the set of all possible moves or decisions the agent can make in a given state. The collection of
ctions .) . .

all actions available to the agent is known as the action space.

R d Areward is a feedback from the environment that evaluates the efficacy of the agent’s last action. Rewards
ewards . i . -)

can be positive or negative, providing a scalar signal to the agent to assess its performance.

A policy is a strategy employed by the agent, mapping states to actions. It determines the action that an

Policies agent should take in a given state. In RL, policies can be deterministic, where a state directly corresponds

to an action, or stochastic, where an action is chosen based on a probability distribution.

Also known as the return, cumulative reward is the total amount of reward an agent accumulates over

Cumulative time. The goal in many RL problems is to maximize this cumulative reward. It is often calculated as the sum

reward of rewards collected over steps, potentially discounted by a factor at each step to prioritize immediate

rewards over distant ones.

The exploration versus exploitation trade-off

The exploration versus exploitation trade-off is a concept that addresses how

an agent should balance the decision between exploring new actions and

exploiting known actions to maximize its cumulative reward.

Exploration

Exploration is the process by which an agent tries new actions to discover their

potential rewards. It involves choosing actions with less certainty about their

outcomes to gather more data about the environment. Exploration allows the

agent to improve its understanding of the environment, potentially discovering

more rewarding actions that were previously unknown. Too much exploration

can lead to suboptimal short-term results as the agent might choose inferior

actions in the process of learning.

Exploitation

Exploitation involves choosing actions that the agent already knows to yield

the highest reward based on its current knowledge. The idea is to leverage the

information the agent has accumulated to make the best possible decisionin a

given state. By exploiting known good actions, the agent maximizes its immediate

reward, effectively utilizing its existing knowledge. Solely focusing on exploitation

can lead the agent to potentially miss out on discovering better options. This

could result in a suboptimal policy if better states or actions remain unexplored.

A4.3 Machine learning approaches

Balancing exploration and exploitation

Common strategies include the following.

Epsilon-greedy strategy: An agent exploits the best-known action most of the

time but explores random actions with a small probability (epsilon). This probability

can decay over time as the agent becomes more confident in its knowledge.

Upper confidence bound (UCB): A method which uses statistical confidence

bounds to balance the trade-off, choosing actions that maximize an upper

confidence limit of the expected reward.

Thompson sampling: Maintains a probability distribution of how good each

action might be. Based on these distributions, the agent randomly samples

an expected reward for each action and chooses the action with the highest

sampled reward.

The optimal balance depends on the specific characteristics of the environment

and the learning task. The key challenge in real life is to devise a policy that

adequately balances exploration with exploitation, thus maximizing long-term

rewards by efficiently learning the environment'’s dynamics.

A game-playing agent example

With a game-playing agent, the environment is a virtual world in a platform game A Figure 26 A game-playing agent

featuring various terrains, obstacles (such as gaps and enemies) and rewards (such ~ interacts with its environment in a platform

as coins and power-ups). The agent is a character controlled by the Al in the game. game

Table 11 Key factors for game-playing agents

Agent factor | Description

State Can include the character’s position on the screen, the types of terrain immediately around the character,

the presence of obstacles or enemies nearby, and any collectibles within reach.

Actions The agent can move left, move right, jump, duck, or perform a special action such as attacking or using

an item.

Rewards The agent receives positive rewards for collecting items, defeating enemies or completing levels. It gets

negative rewards for losing health or falling off platforms.

Policy This is the strategy or set of rules that the agent follows to decide its actions based on the current state.

Learning process

The agent begins with limited knowledge, typically operating under a naive

or exploratory policy. It might randomly choose actions when it starts playing.

As the agent takes actions within the game, it observes the new states and the

immediate rewards or penalties associated with its actions. The agent’s goal is

to maximize its total score (cumulative reward) for a game or a series of games.

This score is influenced by both immediate rewards and long-term benefits of

reaching new levels or achieving bonus scores.

Learning and policy update

The agent assesses the results of its actions through the rewards received and

updates its strategy accordingly. This is the agent’s feedback loop. Technigues

like Q-learning or Deep Q-Networks (DQN) are often used, where the agent

updates a value function estimating the expected future rewards for each action

taken in each state.

287

288

A4 Machine learning

Exploration vs exploitation

Exploration is especially important in complex games where the agent must

experiment with different strategies to understand various game mechanics.

The agent might choose suboptimal paths to discover hidden areas or test

different enemy handling strategies.

As the agent learns which actions yield the highest rewards, it begins to prefer

(exploit) those actions more frequently, leveraging its accumulated knowledge

to maximize its score.

Convergence

After sufficient gameplay and learning, the agent develops a robust policy

that effectively balances short-term rewards and long-term game progression

strategies, leading to consistently higher scores and more successful game

completions.

This iterative learning process allows the game-playing agent to continually

improve its ability to navigate the game world, effectively handle challenges,

and optimize its actions for maximum score, embodying the core principles

of reinforcement learning in a dynamic and interactive setting.

An agent might need hundreds of thousands of iterations to win a level in this

example. In order to find all the secrets and earn the highest possible score,

it may require over a million iterations.

A4.3.7 Describe the application of genetic

algorithms in various real-world situations
Genetic algorithms (GAs) are a type of optimization technique. They find

optimal solutions to complex problems through mechanisms inspired by natural

selection, such as inheritance, mutation, selection and crossover.

In Table 12, key terms for genetic algorithms are defined and illustrated in the

context of how a wind farm might be organized.

A Figure 27 A wind farm

A4.3 Machine learning approaches

Table 12 Genetic algorithms terms, illustrated in the context of organizing a wind farm

Term Description Example (Wind farm layout)

A set of potential solutions to the problem.

Population | In genetic algorithms, individuals in the population

are encoded representations of solutions.

Might consist of different configurations of wind

turbines placed within a defined area.

A function that quantifies the optimality of a solution | Could be calculated as a combination of total

fLImnc?tisin (individual) in the population, guiding the selection | energy production minus the costs associated with

process. turbine placement.

The process of choosing individuals from the

Selection population for reproduction based on their fitness. | Selecting configurations with the highest energy

This can be done using methods like roulette wheel | output per cost ratio to form a mating pool.

or tournament selection.

A ti t dt bine th ti - .
A genetic operator used 1o combin€ the genetic Combining the turbine placements from two
information of two parents to generate new

Crossover . .) high-fitness configurations, ensuring no overlap in
offspring. This is an analogue of reproduction and . -

) i turbine locations.
biological crossover.

A ti tor that introd iati b R .
m,?jg;;cgf;fi Otrhea ;:;EC Lr:::lfe\ija”zflggz :fl Randomly changing the position of one or more

Mutation y gtheg P PIING- 1 1urbines within a configuration to explore new layout
This helps maintain genetic diversity within the

population. possibilities.

The process of calculating the fitness of each

Evaluation | individual in the population. This step assesses how

well each solution solves the problem.

Computing the energy production and cost for each

configuration to apply the fitness function.

The criterion to stop the algorithm, which could be | Stopping the algorithm after 200 generations or

Termination | a set number of generations, a time limit, orwhena | when a configuration exceeds a predetermined

satisfactory fitness level is achieved. efficiency threshold.

Application of genetic algorithms to route planning

A real-world application of GAs is in optimization problems, such as route

planning, which includes the travelling salesperson problem (TSP). The TSP

poses the challenge of finding the shortest possible route to visit a list of cities

and return to the origin city, without re-visiting a city.

Representation (Encoding): Each possible route (solution) is typically

represented as a sequence or a permutation of numbers that correspond to the

cities” indices.

Initialization: Start with a randomly generated population of routes.

Evaluation: Calculate the total distance of the route (the fitness function) for each

individual in the population.

Selection: Select individuals to reproduce based on their fitness. Those with A Figure 28 The travelling salesperson

shorter routes (lower total distances) have a higher chance of being selected. problem (TSP) Each node represents a

city What is the most efficient path to visit
Crossover (Recombination): Combine parts of two routes to create a new each city?

route. Techniques like ordered crossover ensure that the offspring are valid

routes (for example, no city is visited twice).

Mutation: Introduce small random changes to an individual's route, which helps

to explore new areas of the solution space and avoid local minima.

289

A4 Machine learning

Replacement: Replace the least fit individuals in the population with new ones.

Termination: Repeat the process until a stopping criterion is met, such as a

maximum number of generations or a satisfactory fitness level.

This method is effective for the TSP because it can efficiently search a very large

solution space and adapt to changes, making it ideal for dynamic or complex

routing problems. Genetic algorithms are used in logistics, scheduling, and network

design problems. They are an excellent approach in solving optimization problems.

Overview of genetic algorithm method applied to the TSP

Population initialization

Start with a population of potential routes, where each route is a different

sequence of cities. These routes can be generated randomly, and the population

size is predefined (for example, 50 different routes).

Fitness function

Each route in the population is evaluated using a fitness function. For the TSP, the

fitness function is typically the inverse of the total distance of the route (shorter

routes have higher fitness).
]

For example, if a route covers 500 km, its fitness score might be ——

(higher fitness = shorter route). 500

Selection

Select a subset of routes from the current population to create new routes for the

next generation.

Selection is based on the fitness of each route: routes with shorter distances

(higher fitness) have a higher chance of being selected.

Common methods of selection include:

* Roulette wheel selection—routes are selected with a probability proportional

to their fitness.

* Tournament selection—several routes are randomly selected, and the one

with the shortest distance is chosen.

Crossover (combining routes)

After selection, pairs of routes are combined to create new routes. Crossover

takes two existing routes (parents) and mixes their city sequences to form new

routes (offspring).

For example, if one parent route visits cities in the order [A, B, C, D, E], and

anothervisits [C, A, E, D, B], a new route could inherit part of the sequence from

each parent while maintaining valid city sequences.

Mutation (altering routes)

To maintain diversity and avoid getting stuck with similar routes, a mutation step

is applied. In the context of TSP, mutation could mean randomly swapping two

cities in a route.

For example, if a route visits cities [A, B, C, D, E], after mutation, it might visit

[A,D,C,B,EL

A4.3 Machine learning approaches

Evaluation

After crossover and mutation, the new set of routes (offspring) is evaluated using

the same fitness function as before. Each route’s fitness is calculated based on its

total distance, and shorter routes are given higher fitness scores.

Termination

The algorithm repeats the steps of selection, crossover, mutation, and evaluation

for several generations. The algorithm stops when a termination condition is met,

such as:

* reaching a fixed number of generations (for example, 100 generations)

* finding a route with a sufficiently short distance

* no significant improvement in route distance over a number of generations.

Final solution

Once the algorithm ends, the best route in the current population (that is, the

route with the shortest total distance) is returned as the solution.

Table 13 gives a detailed breakdown of what each part of the genetic algorithm

does.

Table 13 Significant parts of a genetic algorithm for the TSP

Step Description

Representation Generates a random permutation of city indices, representing a single route or solution where

(Enp::odin) each city is visited exactly once. This function ensures that every possible route is a valid solution by

g considering all cities without repetition.

Initialization Initializes the population by creating multiple routes. Each route is generated by the encodeRoutes

function, resulting in a diverse initial population of potential solutions.

Calculates the fitness of a given route by summing the distances between consecutive cities in the

Evaluation route, plus the distance from the last city back to the first to complete the loop. The fithess is defined as

the inverse of the total distance, making shorter routes have higher fithess values.

Selects individuals (routes) from the current population to breed the next generation. Routes are

Selection chosen based on their fithess scores, with higher chances given to routes with higher fitness. This is

typically implemented using methods like roulette wheel selection or tournament selection.

Crossover Generates a new route by combining parts of two parent routes. The function ensures that the new

(Recombination) | route is valid and contains no duplicate cities.

Introduces random changes to a route, which helps to maintain genetic diversity within the population

Mutation and allows the algorithm to explore a wider range of potential solutions. This is critical for preventing

the algorithm from getting stuck in local optima.

Merges the current population with the newly generated individuals and then selects the best

Replacement individuals to form the new population. This step is essential for keeping the population size constant

and focusing on better solutions over time.

Manages the overall process of the genetic algorithm, including repeatedly applying the evaluation,

Termination selection, crossover, mutation and replacement until a stopping criterion is met (for example, a

maximum number of generations or a satisfactory fitness level).

Sets up the problem context by defining the distance matrix for the cities, specifies the algorithm

parameters like population size and number of generations, and runs the genetic algorithm. After

completion, it finds and prints the best route found along with its fitness.

Main function

and execution

291

292

A4 Machine learning

AA4.3.8 Outline the structure and function

of ANNs and how multi-layer networks are

used to model complex patterns in data sets
An artificial neural network (ANN) is a computational model designed to mimic

the human brain’s interconnected neuron structure to process information.

[t consists of layers of nodes (called perceptrons) which are connected by

pathways that transmit signals to other nodes.

Table 14 Components and terminology of a typical ANN

Component/Term Definition

- . A mathematical function applied to a node’s output to determine whether it should be
Activation function . .))

activated, influencing how the signal should be processed further through the network.

Each node has a bias, which is an additional parameter adjusted along with weights to

Bias optimize the neural network’s performance. The bias in a node acts as an additional input

along with the actual inputs multiplied by their respective weights.

Epoch A term used to describe one complete pass through the entire training data set. This includes

both forward propagation and back propagation.

Hidden layers

One or more layers that process the inputs by performing computations and then transmitting

the results to the next layer. These layers are called “hidden” because they do not directly

interact with the external environment (neither input nor output).

Input layer Receives the initial data for processing

Link (or connection)
The actual pathway through which signals are transmitted from one node to another. Each link

between two nodes in a network has an associated weight.

Node (also called

neuron, or perceptron)

A computational unit that receives inputs, processes them, and produces outputs. Each node

can perform simple calculations on its inputs, which are then passed on to another node.

Output layer The final layer that produces the output of the network

The process by which input data moves through the network, from the input layer, through
Propagation

Pag one or more hidden layers, to the output layer. There are different types of propagation.

The value that influences the strength orimportance of a signal being passed between nodes

Weight in the network. It modifies how much impact one node's output will have on another node’s

input. Weights are adjusted during the training process.

Do not call a link a weight—they are different.

P Figure 29 Elements of an ANN Each nodein

these layers processes the input it receives and

passes the output to the next layer

A4.3 Machine learning approaches

Table 15 Components ofan ANN to simulate interconnected nodes (neurons)

to process and learn from input data, enabling tasks such as classification,

regression and pattern recognition

Component Definition

Data is inputted through the input layer, and each subsequent layer receives data from the previous

layer. Nodes process these inputs using their weights and biases, typically summing the weighted

Forward] inputs and then adding the bias.
propagation . . L . . . L

This sum is passed through an activation function, which determines the output of each node. Activation

functions introduce non-linear properties to the network, allowing it to learn more complex patterns.

The learning phase, where the ANN adjusts its weights and biases. The process involves calculating

the error in the output (difference between the actual output and the predicted output) and then going

Back . back through the network to adjust the weights to decrease this error.
propagation

Adjustments are made according to the gradient of the error with respect to each weight, using

techniques such as gradient descent.

The cycle of forward propagation, calculating loss, back propagation, and updating weights is repeated

Training cycle | across many epochs (an epoch is a full pass through the training data) until the network performs

satisfactorily.

Classification example

Imagine you are using a neural network to decide if a movie is good based on

two features: how much action there is (this will be labelled input 1, or I1) and

how funny it is (this will be labelled input 2, or 12). Note that this is a simplified

model—most models have many more features.

Step 1: Draw and label a diagram to show the inputs. Input node one is a feature

1. Label input nodes with | (upper case i: not Lorone): 11,12, 13... In @ which represents how much

ction th ie h 2. Label hidden nodes with H: H1, H2, H3.... Hn action fie movienas
Hidden nodes often have multiple layers: these would be labelled HTNI

. i] Input node two is a feature
(2h|dddenzl?yer 1, node 1), HIN2 (hidden layer 1 node 2), H2N2 (hidden layer @ which represents how funny

node 2)...
the movie is

3. Label output nodes with O (upper case o: not zero): O1, 02, O3... On A Figure 30 The two input nodes

Step 2: At the input layer, the model is given inputs (11 = 3, 12 = 1.5). Suppose

I1 = 3 represents a moderate level of action, and 12 = 1.5 represents it being

somewhat funny.

The first node (H1) in the hidden layer multiplies the action score (I1) by 0.5 and °v®

the humour score (12) by 0.3. These are the weights for action and humour for this

particular node.

The second node (H2) in the hidden layer does something similar but with A

different numbers (0.4 for action, 0.9 for humour). These are the weights for o @

action and humour for this particular node.

Machine learning models multiply input values (such as the action score and

humour score in this example) by weights (such as 0.5 for action and 0.3 for Input Hidden

humour) to model the relative importance and influence of each input on the layer layer

output decision. H1 is designed to favour action over humour. H2 very heavily A Figure 31 The hidden nodes process

favours humour over action. the inputs by performing computations

293

A4 Machine learning

Table 16 Common activation functions

Step 3: After the hidden nodes have calculated the initial weights, they will

calculate the bias. Adding a bias term allows a node to output non-zero values

even if the inputs are all zero, which could correspond, for example, to a

base level of likability of a movie due to factors not included as inputs (such as

marketing, star actors, and so on). The bias can adjust the threshold at which the

node activates, thereby incorporating a kind of baseline expectation into the

model’s predictions.

Step 4: Activation function. After calculating the weighted sum and bias, this

sum is then passed through an activation function. The activation function defines

how the input signal (the weighted sum of inputs and bias) is transformed before

being passed to the next layer. Some common activation functions are given in

Table 16.

Activation function method | Description

Sigmoid
Transforms the input into a range between 0 and 1, making it useful for probabilities or

binary classifications. It is often used in the output layer of binary classification networks.

Outputs the input directly if it is positive, otherwise it outputs zero. This function is

RelU (rectified linear unit) popular in hidden layers because it introduces non-linearity while keeping computation

simple and reducing the likelihood of vanishing gradients.

Tanh (hyperbolic tangent)
Transforms the input to range between —1 and 1. It is similar to sigmoid but can provide

stronger gradients since outputs are zero-centred.

Linear activation function Does not transform the input it receives; it simply outputs the input as it is.

Step function Outputs 1 ifthe weighted sum is greater than a threshold, O otherwise.

(=)
Input Hidden Output

layer layer layer

A Figure 32 The output node produces a

final decision

Step 5: Passing to the next layer (in the example, it is to the output layer, or

output layer decision). The output layer aggregates inputs from the hidden layers,

possibly applies additional transformations, and produces a final decision (for

example, thumbs up or thumbs down for the movie). Output layers often have a

threshold (often 0.5 for binary classification) to decide the final class based on the

sigmoid output. Ifthe output is greater than 0.5, the movie receives a thumbs up;

if less, a thumbs down.

By the time the input data reaches the output layer, it has been adjusted in a

useful way based on the input scores and the rules each node used. So, the final

score should tell us something valuable—such as whether most people would

enjoy the movie. The network learns the best multipliers and biases (the ways

each student tweaks their scores) during its training phase, where it gets lots of

examples of movies and how much people liked them.

Regression example

A regression task is a type of predictive modelling problem where the objective is

to predict a continuous outcome variable based on one or more input variables.

The continuous outcome variable means that the prediction can take any value

within a range, in contrast to classification tasks where the outcome is categorical

(like yes/no).

The goal is to predict the price of a car based on two features: the age of the car

(in years) and its mileage (in thousands of kilometres).

A4.3 Machine learning approaches

Example setup

Table 17 How a regression example is set up

Features and | Input features (11 and |12) are the age of the car in years (/1) and

output the mileage of the car in thousands of kilometres (12).

The output layer (O1) is the price of the carin USD.

Neural The input layer receives the two features of the car (age and

network mileage). The hidden layer contains a certain number of

model neurons (3 for simplicity) that process the inputs. The output

layer produces the predicted price of the car.

Architecture

overview The input layer has 2 nodes

(corresponding to 2 features).

The hidden layer has 3 nodes.

The output layer has T node.

Activation In this example, the hidden layer uses the RelU activation

functions function for introducing non-linearity, allowing the network to
learn more complex patterns.

The output layer uses a linear activation function, which is

suitable for regression as it allows the output to assume any

real value.

Forward propagation steps

1. Inputto hidden layer: Each node in the hidden layer calculates a weighted

sum of the inputs plus a bias. The sum is then passed through the RelU

activation function.

2. Hidden layer to output layer: The output of each node in the hidden layer is

again multiplied by weights and summed up along with a bias in the output

layer's node.

3. Thesum passes through a linear activation function to produce the

final output.

Example calculation

* Assume simple values:

Inputs |1 (Age) = 5 years and |12 (Mileage) = 50 thousand kilometres.

* Weights and biases: Random initial values.

e Calculations: Inputs are processed through the hidden layer with RelU.

* The outputs from the hidden layer are combined in the output layer to

predict the price.

This neural network example, with just one hidden layer, illustrates the basic

principles of ANNs in a regression context, showing how layers, neurons,

weights, biases and activation functions come together to process inputs and

make predictions. The ability to learn complex patterns from data makes ANNs

particularly useful for predicting outcomes like car prices based on their features.

295

A4 Machine learning

Basic example related to pattern recognition

In this example, the goal is to train a neural network to distinguish between

hand-drawn images of circles and squares. This is a binary classification task, a

common type of pattern recognition problem in machine learning.

The input features (I) are pixel values of the images. Each image is converted into

a grayscale grid of pixels (e.g., 28 % 28 pixels), where each pixel’s intensity is

represented as a value between O (black) and 255 (white). Alternatively, a scale

between O (black) and 1 (white) can may be used.

Original image Converted grayscale

—
|
—
|
—
~
|
o
|
l
o
|
o
|
o
|
o
/
o
|
o
|
o
|
O
o
|
—
|
—
|
—

—
|
—
|
—
|
O
o
|
l
O
o
|
O
o
|
O
o
|
O
|
O
|
O
|
O
|
O
|
—
|
—
|
—

—
|
—
=
|
—
|
O
|
l
O
|
O
|
O
|
O
/
O
|
0
|
0
|
O
|
—
|
—
|
—

—

=

=
0
0
0
 |
0
0
0
|
0
|
0
|
0
|
—
|
—
|
—

—
|

=

=
O
O
|
O
|
0
(
0
0
|
0
|
0
|
0
|
—
=
|
—
|
—

—

=

—
O
|
O
|
O
|
O
(
O
|
0
|
0
|
0
|
O
|
—
|
—
|
—

A Figure 33 Original image and converted grayscale

The output (O) is class labels for the images, where O might represent a circle and

1 might represent a square.

The neural network model

1. Theinput layer receives the flattened pixel values from the images.

2. The hidden layer contains several nodes (assume 16 for simplicity) that

process the inputs.

3. The output layer produces a binary output indicating the class (circle or

square).

Architecture overview

The input layer consists of 784 nodes if using a 28 X 28 pixel image,

corresponding to each pixel in the image. The hidden layer has 16 nodes.

The output layer is simply 1 node, using a sigmoid activation function to output a

probability that the input image is a square.

Activation functions

The hidden layer uses the RelU activation function to output any positive integer,

and zero for anything else. The output layer employs a sigmoid activation function

to produce a probability between O and 1, indicative of class membership (circle

vs square).

A4.3 Machine learning approaches

Training the model

In the last two examples, you saw simple neural networks with forward propagation

only. In this example, you will learn about back propagation. Back propagation is

where the “learning” happens in a neural network. Back propagation is a method

for iteratively adjusting the weights of the network to minimize the difference

between the predicted output and the actual output. The process occurs after

the network has attempted to make predictions, a stage known as forward

propagation, where data moves forward from the input to the output layer.

Table 18 Key steps in back propagation

Calculating After the forward pass (forward propagation), the network assesses its accuracy by calculating the loss,

error which measures the difference between the network's prediction and the actual target values. The loss

provides a quantifiable measure of how well the network is performing. A common loss function for

classification tasks is binary cross-entropy, which is particularly effective for binary outcomes.

Running Back propagation begins by taking the derivative (how much one quantity changes in response to a

back change in another quantity) of the loss function with respect to each weight in the network, which shows

propagation how much a change in each weight affects the overall error.

This step informs the network in which direction and how much to adjust the weights to reduce the error.

The errors are propagated backward through the network, from the output layer to the input layer,

updating the weights along the way. This backward movement gives the technique its name.

Weight With the errors known, the network updates the weights to minimize the loss. This is typically done using

update via an optimization algorithm like stochastic gradient descent (SGD).

optimization | SGD updates the weights by slightly adjusting them in the opposite direction of the derivative of the loss

algorithm function. The size of the adjustment is controlled by a parameter known as the learning rate. This step

is repeated iteratively, using small batches of data at a time, which helps improve the robustness and

generalization of the network.

lteration and | The process of forward propagation, loss calculation, back propagation, and weight adjustment is

convergence | repeated for multiple iterations, often called epochs, over the entire data set. With each epoch, the weights

are further refined, ideally leading to a decrease in the loss and an improvement in model predictions.

One epoch: Forward propagation steps

Step 1: Input to hidden layer

Each node in the hidden layer calculates a weighted sum of the pixel inputs plus a

bias. The sum is then passed through the RelU activation function, which outputs

the value itself if it is positive, and zero otherwise.

Step 2: Hidden layer to output layer

The outputs from the hidden layer are input to the output layer node. The output

node calculates a weighted sum of these inputs plus a bias and then applies the

sigmoid function. The sigmoid function transforms the sum into a probability

between 0 and 1, indicating the likelihood that the image is a square.

297

298

A4 Machine learning

One epoch: Back propagation steps

Step 3: Calculating the error

After the output layer provides the prediction, the next step is to calculate the

error of the prediction. The error is determined by comparing the predicted

probability (output of the sigmoid function) with the actual label of the image

(O for circle, 1 for square) using the loss function.

A common choice of loss function in binary classification tasks like this is the

binary cross-entropy loss, which is effective at measuring the difference between

the predicted probabilities and the actual binary outcomes.

Step 4: Back propagation of error

The calculated error is then used to find out how much each weight contributed

to the error. This involves calculating the derivatives of the loss function with

respect to each weight in the network.

Think of it like this: after the network makes its guesses and sees how wrong or

right it was, it then figures out how much each part of its thinking (each weight)

led to any mistakes. This step involves looking closely at the errors and tracing

them back through the network to see where adjustments are needed.

This process, where we calculate and follow the errors to make corrections, is

back propagation. It is like the network is learning from its mistakes to do better

next time.

Starting from the output layer, the error is propagated back through the network.

This involves computing the gradient of the loss function with respect to each

weight by applying the chain rule of calculus. The chain rule lets us work out

how each weight in the network needs to change to reduce the error—by

understanding how each part of the network’s calculation contributes to the

final output.

Step 5: Updating the weights and biases

Once the gradients are calculated, the weights and biases are updated to

minimize the loss. This update is typically done using an optimization algorithm

like stochastic gradient descent.

In stochastic gradient descent, weights are updated by subtracting a fraction of

the gradient from the current weights. This fraction is determined by the learning

rate, a small number that controls how much the weights are adjusted during

each iteration.

The combination of forward propagation to make predictions and back

propagation to learn from errors makes up the fundamental training cycle for a

neural network in pattern recognition tasks. This process allows the network to

adjust its internal parameters (weights and biases) based on the feedback from its

performance on known training data, thereby improving its ability to classify new

data accurately.

A4.3 Machine learning approaches

Sketch of a single perceptron

Example 1

Input T(1)---»

Input 2 (12)- - -»

Activa_tion — Qutput (O1)
function

Input... (l...)---»

Input n (In)---» Sum ofthe
products and

bias

A Figure 34 Sketch of a single perceptron

Example 2

Table 19 A perceptron

1 — multiplied by — W1

12 — multiplied by — W2 Sum the Add activation function

T ducts and tothe bias transforms the data output

— multiplied by — procucsen and — from the bias and —

In — multiplied by — Whn

* Inputs(I1, 12, ... In): These represent the data or features fed into the

perceptron. Each input has a corresponding weight within the perceptron.

* Weights (W1, W2, ... Wn): Weights determine the importance of each input

feature. They are multiplied with their corresponding inputs.

* Bias(b): The bias is a constant value added to the weighted sum of inputs.

It helps shift the decision boundary of the perceptron.

* Weighted sum: The inputs are multiplied by their corresponding weights and

summed together with the bias.

e Activation function (f): The activation function defines how the input signal

(the weighted sum of inputs and bias) is transformed before being passed to

the next layer. Common examples include:

* Step function: Outputs 1 if the weighted sum is greater than a threshold,

O otherwise.

* Sigmoid function: Maps the weighted sum between 0 and 1

* Relu: Outputs the weighted sum if it's positive, O otherwise.

* Tanh: Transforms the input to range between -1 and 1. Itis similar to

sigmoid but can provide stronger gradients since outputs are

zero-centred.

A4 Machine learning

* linear activation function: Does not transform the input it receives;

it simply outputs the input as it is.

* Qutput (O): The final result produced by the perceptron. This output can be a

classification (e.g., O or 1) or a continuous value depending on the activation

function.

Points to remember

* Asingle perceptron is the most basic building block of neural networks.

* It can classify only linearly separable data. This means that you can imagine

drawing a straight line to separate the different classes of data points.

* Perceptrons are the foundation for more complex neural network

architectures that can learn non-linear patterns.

Sketch of a multi-layer perceptron (MLP)

Activation

function

Activation

function

Activation

function

Sum ofthe

products and bias

Each node has

a different bias

A Figure 35 Sketch of a multi-layer perceptron

Output

A4.3.9 Describe how CNNs are designed

to adaptively learn spatial hierarchies of

features in images
A convolutional neural network (CNN) is a type of deep learning algorithm

optimized for finding patterns in images and other types of data with grid-like

structures (satellite imagery, audio spectrograms, and certain types of

genomic data).

A4.3 Machine learning approaches

CNN basic architecture

Table 20 Overview of a CNN process

Input layer Takes the raw pixel data of the image. Each pixel is a feature.

Convolutional

layers

Utilize multiple filters to process the input data. A filter, also known as a kernel, is a small matrix used to

detect specific features by performing convolution operations over the input. By applying each filter,

the layer generates feature maps, which are outputs that highlight where and how intensely those

specific features are detected within the input.

Activation

functions

Introduced in each convolutional layer to introduce non-linear properties to the system, enhancing

the network’s ability to learn complex patterns. Commonly used functions include RelU.

Pooling layers
Reduce the spatial size of the representation, which decreases the parameter counts and computation

in the network, effectively summarizing the features detected in prior layers.

Fully connected

layers

After several convolutional and pooling layers, the high-level reasoning in the neural network occurs

here. Each neuron in these layers is connected to all activations in the previous layer.

Output layer
Typically uses a softmax activation function in classification tasks to output probabilities for the different

class labels.

Table 21 CNN terms and concepts

Layer type Definition

Activation Functions applied after each convolution operation to introduce non-linearity into the model, enabling

functions it to learn more complex patterns. Commonly used functions include RelU.

. A mathematical operation used to extract features from input data. It involves taking a kernel (filter) and
Convolution

sliding it over the input data (like an image) to produce a feature map.

Convolutional

layers

Layers that apply a set of learnable filters to the input. Each filter detects specific features at specific

spatial locations.

Fully connected

layers

Layers where every neuron is connected to every neuron in the previous layer. These layers are typically

placed near the end of CNN architectures to perform high-level reasoning from the features extracted

by convolutional and pooling layers.

Input layer
The initial data layer that receives the input features, typically in the form of animage ora

multi-dimensional data array.

Kernel
A small matrix—also known as a filter—used to process data through the operation known

as convolution.

Qutput layer
The final layer that outputs the prediction of the network. The output format is determined by the

specific task (for example, classification, regression).

Pooling layers

Reduce the spatial dimensions (width and height) of the input volume for the next convolution layer.

It helps reduce the computational complexity, and controls overfitting. Common approaches include

max pooling and average poaling.

Example ofa CNN

Step 1: Input

The input layer of a CNN takes an image—in this case, an image of a cat—as

input. This image is typically represented as a matrix of pixel values. For coloured

images, there are three such matrices corresponding to the RGB (red, green,

blue) colour channels. Each pixel in these matrices holds a value ranging from

0to 255, indicating the intensity of the colour at that specific pixel.

A Figure 36 A pixelated cartoon cat

A4 Machine learning

A Figure 37 This might be a filter for the

top-left ear. Of course, these would be

pixel values instead of colours

Step 2: Feature detection and feature map

In the convolutional layers, multiple filters—each a small grid of numerical

weights—move across the entire image of a cat. Each filter is engineered to

identify distinct features by performing a convolution operation. The feature

map is a new image that highlights the specific features detected by the

filter. For example, one filter might focus on detecting the edges of the cat’s

ears by recognizing patterns of sharp contrast between light and dark pixels,

resulting in a feature map that emphasizes these edges. Another filter might

be tuned to capture the texture of the cat’s fur by identifying repeated patterns

of fine lines and shading, producing a feature map that reveals the detailed

texture patterns. These feature maps collectively represent various aspects of

the original image, each highlighting different elements important for further

analysis and classification.

Step 3: Activation

After the feature maps are created by the convolutional layers, an activation

function is applied to each one. One common activation function used is RelLU.

The RelU function takes each value in the feature map and changes any negative

values to zero while keeping all positive values the same. This step highlights the

important features in the image by removing less useful information (anything

less than zero). By doing this, ReLU allows the network to focus more on the

significant features, enhancing its ability to analyse and learn from the data.

Step 4: Pooling

The pooling layer follows the activation function and serves to reduce the spatial

dimensions (height and width, not depth) of each feature map. This reduction

decreases the computational load and enhances the detection of features

irrespective of their position in the input image. Commonly, max pooling is used,

which reduces the size of the feature maps by taking the maximum value from a

set of neurons in a window (for example, a 2 X 2 block) and outputting only that

max value. This emphasizes the most prominent features, reducing the response

to variations and noise.

Step 5: Integration

After several layers of convolution and pooling, the network uses fully connected

layers to integrate all the features extracted by previous layers. This layer views

the output of the previous layers as a single vector (flattening the feature maps

into a one-dimensional vector), allowing it to learn non-linear combinations of

the high-level features. These layers are called fully connected because every

neuron in one layer is connected to every neuron in the next layer. The final fully

connected layer collects all the essential information to make a final decision

about the image.

Step 6: Classification

The last layer in the network is the output layer, which typically uses a softmax

activation function in a classification task. This function converts the outputs of

the network into probability values corresponding to each class (cat or dog).

A4.3 Machine learning approaches

The softmax function exponentiates (applies the exponential function to) each

output and then divides each by the sum of all exponentiated outputs. This

ensures that the output values are between O and 1 and sumto 1, representing

them as probabilities.

Factors that affect how CNNs process input data and
classify images

Number of layers

A network with fewer layers might only learn basic features like edges and simple

textures. For instance, in our example, a shallow network might distinguish basic

shapes but struggle with differentiating features between cat and dog faces.

On the other hand, a network with more layers can learn complex features at

various levels of abstraction, such as fur texture, ear shape and facial expressions.

A deeper network in the cat-dog classifier would better differentiate the subtle

features that distinguish the two animals.

Kernel size and stride

Larger kernels cover a larger area of the input image, thus capturing more global

information at once, such as an entire ear or eye. Smaller kernels focus on local

features, such as fur texture or colour gradients. A large kernel of size 7 X 7 might

help identify the outline of a dog's floppy ear, while a smaller kernel of 3 X 3

might focus on the detailed textures within the ear.

The stride determines the amount of overlap between the fields that the kernel

processes. A stride of 1 means the kernel moves pixel-by-pixel across the image,

leading to a very detailed feature map. A larger stride, like 2, skips pixels, making

the feature map coarser but reducing computational load and memory usage.

Activation function selection

Activation functions introduce non-linearity to the network, enabling it to learn

complex patterns.

RelU is commonly used for its efficiency. It helps the network train faster and

reduces the likelihood of the vanishing gradient problem. RelLU activates a

neuron only if the input is positive, hence it is more biologically plausible than

other activations. In a cat-dog classifier, ReLU could help the network learn to

activate strongly on features specific to either category, ignoring negative values

that represent non-useful information.

Loss function

The loss function guides the training process by quantifying the error between

the predicted outputs and the actual labels.

Cross-entropy loss is popular in classification tasks because it measures the

difference between two probability distributions—predicted probabilities versus

actual distribution (ground truth). If the network incorrectly classifies a catas a

dog with high confidence, the cross-entropy loss would be high, signalling the

network to make significant adjustments in its parameters.

303

A4 Machine learning

A4.3.10 Explain the importance of model

selection and comparison in machine learning
Model selection and comparison significantly influence the accuracy and

efficiency of the predictions or insights derived from the data.

Table 22 Different machine learning algorithms

Algorithm Description

Predicts a continuous output based on the linear relationship between input variables. It is simple

Linear regression and highly interpretable but assumes a linear relationship between inputs and outputs. Typical use

includes economic forecasting and trend analysis.

Logistic regression
Used for binary classification problems. It predicts probabilities of class memberships based on a

logistic function. Logistic regression might be used in email spam detection and disease diagnosis.

Decision trees
Atree-like model that makes decisions based on splitting rules from features. Easy to understand

and interpret. Normally used in customer segmentation and credit risk assessment.

Random forest

An ensemble of decision trees that improves prediction accuracy by reducing overfitting through

averaging multiple trees. Random forests are used for feature selection, classification and regression

tasks in various fields.

Support vector

machines (SVM)

Finds the hyperplane that best separates different classes in the feature space. Good for complex

classification problems with clear margin of separation. Typically used in image classification,

bioinformatics.

K-Nearest

Neighbours (K-NN)

Classifies new cases based on a similarity measure (for example, distance functions) with known

cases. K-NNs are used for recommendation systems and pattern recognition.

Neural networks
Composed of layers of interconnected nodes (neurons), capable of capturing non-linear

relationships through activation functions. Used in speech recognition, image recognition.

Deep learning

models

Involves more complex neural networks with multiple hidden layers that allow for high levels of

abstraction and feature extraction. Deep learning models find application in autonomous driving

and natural language processing.

How different algorithms can yield different results
depending on the data and type of problem

The reason you might get different results from different machine learning

algorithms is because each machine learning algorithm has varied underlying

mechanics. It is important to use the best machine learning for the type of

problem you might have.

Linear models, like linear regression and logistic regression, work well with data

that have a linear relationship between the features and the target. Tree-based

models such as decision trees and random forests are effective for handling

non-linear data with complex patterns but can be prone to overfitting.

Neural networks offer high flexibility and capacity to model extremely complex

relationships in large data sets but require substantial computational resources

and data to train effectively.

The key point to remember is that each algorithm makes different assumptions

about the data (like the distribution of the features or the relationship between

features and labels), which can greatly affect their performance.

A4.3 Machine learning approaches

The reasons for selecting specific machine learning
models over others

There is no perfectly clear path to choosing the right machine learning model.

Think carefully about the following factors, and then make the best choice.

Table 23 Factors to consider when thinking about machine learning algorithms

characteristics

Factor Why to consider it

Nature of the | Classification problems might benefit more from different algorithms (for example, support vector

problem machines, neural networks) than regression problems (for example, linear regression, regression trees).

Complexity of | Simpler models are faster to train and easier to interpret but might not capture complex patterns as

the model effectively as more sophisticated models.

Data The quantity, quality, and type of data available can dictate the choice of model. Forinstance, deep

learning models generally require large amounts of data, whereas smaller data sets might call for models

with fewer parameters, such as K-NN or linear regression.

Performance Different models may optimize different performance metrics. A model that maximizes accuracy might

metrics not minimize false positives.

Computational | Some models, especially those that are data-intensive and computation-heavy, require more powerful

resources hardware, which can be a limiting factor.

The variability in algorithm performance based on the
data’s characteristics

The performance of a machine learning algorithm can vary widely depending

on the characteristics of the data. Some models handle imbalanced data sets

poorly, where the number of instances in different classes is disproportionate.

The presence of outliers, noise, or non-normal distributions can affect model

accuracy. Some models require normalization or standardization of features

to perform well. Finally, algorithms vary in how they handle interdependent or

correlated features. Some, like tree-based models, might inherently manage

these well, while others might need modifications.

Model selection and comparison in machine learning are not just about finding

the best tool for the job but also about understanding the intricacies of the data

and the specific requirements of the problem at hand. This tailored approach

ensures that the chosen model will not only achieve the highest performance but

also align with the operational needs and constraints of the application.

* Towhat extent does the choice of machine learning algorithm influence

the interpretation of data and outcomes in predictive modelling?

* Inwhat ways do the assumptions made by different machine learning

models affect their suitability for solving specific types of problems?

* How does the process of model selection and comparison in machine

learning reflect broader principles of scientific inquiry and

decision-making?

305

A4 Machine learning

Practice questions

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Explain why different machine learning algorithms may yield

varying results when applied to the same data set. [4 marks]

Explain how the nature of the problem (classification or regression)

influences the selection of a machine learning model. [4 marks]

Explain the role of data characteristics, such as the quantity

and quality of the data, in determining the suitability of different

machine learmning models. [4 marks]

Explain how computational resources can impact the selection

of machine learning algorithms, particularly when considering

models like deep learning. [4 marks]

Explain how the variability in data characteristics, such as the

presence of outliers orimbalanced data sets, can affect the

performance of different machine learning algorithms. [4 marks]

Explain how classification technigues in supervised learning

are used to predict discrete categorical outcomes. [4 marks]

Explain the process by which the K-NN algorithm classifies

new data points using a similarity measure. [4 marks]

Explain how decision trees classify data points and why they

may be preferred for certain types of classification problems. [4 marks]

Explain why K-NN is considered a non-parametric,

instance-based learning algorithm. [4 marks]

Explain how decision trees can be applied to medical diagnosis. [2 marks]

Explain how K-NN algorithms can be applied to collaborative

filtering recommendation systems. [2 marks]

Explain the relationship between the independent (predictor)

and dependent (response) variables in linear regression. [3 marks]

Explain how linear regression can be applied to salary prediction. [2 marks]

J\V: .l Fthical considerations

Syllabus understandings

A4.4.1 Discuss the ethical implications of machine learning in real-world

scenarios

A4.4.2 Discuss ethical aspects of the increasing integration of computer

technologies into daily life

Ethical considerations guide decision-making and actions to ensure they align

with moral standards and societal expectations. Before you make a decision or

take an action, you will consider the potential harms and benefits of the decision

or action. Whenever thinking about ethics, you should balance the potential

benefits against the potential drawbacks. Ethics is often about making a choice

which serves the greater good.

A4.4.1 Discuss the ethical implications of

machine learning in real-world scenarios
An ethical implication is a potential positive or negative consequence thata

decision or action may have. These consequences can be far-reaching and affect

various aspects of life, including well-being, justice, faimess, rights and freedom.

Types of ethical issue

Accountability is about determining who is responsible when Al systems make

mistakes. Who should be held accountable: the developers, the users, or the

Al itself? If there is a car accident, who should be held responsible? The car

manufacturer, or the driver? The city who made the roads? The key point is that

clear lines of accountability are essential—especially when systems are making

decisions which impact human lives. Your teacher might use an Al to determine

your final mark in computer science. Who should be accountable for that mark?

Algorithmic fairness raises the topic of how Al algorithms can perpetuate

biases. This can lead to discriminatory outcomes in areas such as hiring, lending,

and criminal justice. Ensuring fairness requires careful design, diverse training

data and ongoing monitoring. For example, if your school uses training data for

maths scores and girls traditionally scored higher than boys, the Al algorithm

might favour girls over boys, despite an individual’s maths ability.

Continuing the theme of bias, an Al system can inherit biases from the data they

are trained on. This can lead to discriminatory outcomes and reinforce societal

inequalities. If a specific group is unfairly treated now, how might that be carried

into training data and an Al system? Mitigating bias requires awareness, diverse

teams and rigorous testing.

The use of Al often involves collecting and analysing personal data. Obtaining

informed consent from individuals about how their data will be used is important

to protect privacy and autonomy. This is especially important in areas such

as finance, health and education. Most of the time, training data should be

thoughtfully sanitized and anonymized prior to being used in an Al system.

307

308

A4 Machine learning

TOK

To what extent should

accountability be prioritized

over innovation in the

development and deployment

of Al technologies?

How can we reconcile the

need for privacy with the

benefits of data collection in

Al systems?

In what ways do biases in

training data reflect broader

societal inequalities, and how

can addressing these biases in

Al development contribute to

social justice?

The environmental impact of training Al systems can be substantial.

The development and deployment of Al systems consume significant energy

and resources, contributing to environmental concerns. Ethical considerations

include minimizing energy consumption and using sustainable practices.

Some estimates project Al training could use over 85 terawatts per hour.

Privacy is a fundamental right. The right to privacy or private life is declared in

the Universal Declaration of Human Rights (Article 12), the European Convention

of Human Rights (Article 8), and the European Charter of Fundamental Rights

(Article 7).

Protecting individual privacy is important because people have this fundamental

right. Some technology companies give away a product for free and use and sell

your private data. As you design Al systems, privacy rights should be considered.

Al systems can be vulnerable to cyberattacks, manipulation and misuse. Ensuring

their security is critical to prevent harm and maintain public trust.

Al can have a profound societal impact. Al has the potential to disrupt

industries, displace jobs, and alter social interactions. Ethical considerations

involve mitigating negative impacts, ensuring equitable access to benefits, and

preparing for workforce transitions.

Understanding how Al systems make decisions can be challenging due to their

complexity. Transparency about algorithms, data sources and decision-making

processes is essential for accountability and building trust.

These ethical issues are interconnected and require careful consideration and

ongoing dialogue between stakeholders, including developers, policymakers,

researchers and the public. The overriding goal is to ensure that Al serves

humanity responsibly and equitably.

The challenges posed by biases in training data

Bias refers to the inclination or prejudice for or against one person or group,

especially in a way considered to be unfair. Biases in training data pose significant

challenges to the development and deployment of fair and equitable Al systems.

These biases can stem from various sources, including societal prejudices,

historical inequalities and data collection methodologies.

Challenges

Biased training data can lead Al systems to replicate and even amplify existing

societal biases. For instance, if historical hiring data reflects gender or racial

discrimination, an Al-powered recruitment tool trained on this data might unfairly

favour certain groups over others.

Biased data can result in discriminatory outcomes in areas such as criminal justice,

lending and healthcare. For example, banks might use an Al system to decide ifa

loan is a good risk. If the bank previously discriminated against people who lived

in a certain neighbourhood, then that discrimination would be in their Al system’s

training data.

Al systems can inadvertently learn and perpetuate harmful stereotypes present in

training data. A language model trained on biased text might generate responses

that reinforce gender or racial stereotypes, perpetuating harmful narratives.

A4.4 Ethical considerations

Training data that lacks diversity can result in Al systems that perform poorly for

underrepresented groups. A medical diagnosis tool trained primarily on data

from one demographic group may be less accurate for individuals from other

groups, leading to potential misdiagnosis and health disparities.

Biases in training data can be subtle and difficult to detect. Even seemingly

neutral data can contain implicit biases that can impact Al system behaviour.

For example, a language model trained on news articles might inadvertently

reflect the biases present in media coverage, perhaps favouring a liberal

perspective over a conservative one.

Examples

A global ecommerce company had to stop using an Al recruitment tool when

it was found to discriminate against female job applicants due to biases in the

historical hiring data used for training.

The COMPAS algorithm used in the US criminal justice system was shown to

have a higher false positive rate for Black defendants compared with White

defendants, unfairly labelling them as higher risk for reoffending.

A group of banks using a credit scoring algorithm which relied on historical

financial data unintentionally discriminated against certain demographic groups,

such as racial minorities or people from lower socioeconomic backgrounds.

This led to unequal access to financial services, including loans and credit, further

exacerbating economic disparities.

The ethical concerns of using machine learning in online
communication

Misinformation and disinformation

Misinformation is false or inaccurate information that is spread unintentionally.

It may be due to mistakes, misunderstandings, or lack of knowledge. There is no

deliberate intention to deceive or mislead others.

Disinformation is false information that is deliberately created and spread to

deceive or mislead others. It is often used to manipulate public opinion, influence

political discourse, or damage reputations. There is a malicious intent to deceive

or harm.

Machine learning algorithms are increasingly used to generate and disseminate

content, including text, images and video. However, they can also be exploited

to create and spread false or misleading information, known as misinformation or

disinformation. This can have serious consequences, such as manipulating public

opinion, influencing elections, or inciting violence.

For example, deep fakes are synthetic media generated using machine learning

algorithms that can make it appear as if someone said or did something they

did not. Deep fakes have been used to spread false information about political

figures and celebrities, potentially damaging their reputations and causing social

unrest. In some cases, criminals have used deepfakes to steal money.

310

A4 Machine learning

Bias and discrimination

Machine learning algorithms can perpetuate and amplify existing biases in data

and society. This can lead to discriminatory outcomes in online communication,

such as biased content recommendations, targeted advertising, or unfair

moderation practices.

Online harassment and hate speech

Machine learning can be used to detect and filter harmful content such as hate

speech and online harassment. However, these algorithms can also be misused

to automate harassment campaigns or silence dissenting opinions. For example,

autonomous agents (bots) powered by machine learning can be programmed to

send abusive messages or spread hateful content, amplifying the impact of online

harassment and creating hostile online environments.

Anonymity and lack of accountability

The anonymity afforded by online platforms can be a double-edged sword.

While it allows for free expression and protects vulnerable individuals, it can also

facilitate harmful behaviour such as cyberbullying, trolling and the spread of

misinformation. Machine learning can be used to identify and track anonymous

users, but this raises concerns about privacy and surveillance.

For example, some platforms use machine learning to identify and ban users who

engage in harmful behaviour, but this can also lead to the wrongful suspension of

accounts and the silencing of legitimate voices.

Privacy concerns

Machine learning algorithms rely on vast amounts of data to function, including

personal information collected from users’ online activity. This raises concerns

about data privacy, surveillance, and the potential for misuse of personal

information. For example, social media platforms use machine learning to analyse

user data for targeted advertising, but this can lead to invasive tracking of online

behaviour and the exploitation of personal information for commercial gain.

Addressing these ethical concerns requires a multi-faceted approach involving

collaboration between tech companies, policymakers, researchers and civil

society organizations.

A4.4.2 Discuss ethical aspects of the

increasing integration of computer

technologies into daily life
Emerging technologies often present entirely new ethical dilemmas that existing

guidelines may not adequately address. For example, the rise of Al raises

questions about accountability, bias and the impact on employment which

require fresh ethical frameworks.

The importance of continually reassessing ethical
guidelines as technology advances

The rapid advancement of technology necessitates the continual reassessment of

ethical guidelines for several compelling reasons.

A4.4 Ethical considerations

Ethical norms and societal values are not static but evolve over time. Guidelines

must be adaptable to reflect changing societal expectations and ensure

technology aligns with contemporary moral standards. For instance, the growing

emphasis on privacy and data protection has prompted the development

of stricter ethical guidelines for data handling practices, such as GDPR in the

European Union.

Even with careful foresight, technological advancements can have unintended

and unforeseen consequences. Regular reassessment of ethical guidelines allows

for course correction when negative impacts become apparent. For example,

the widespread adoption of social media platforms revealed issues related to

cyberbullying and misinformation, necessitating the development of new ethical

guidelines for online conduct.

Ethical guidelines that are outdated or fail to address contemporary concerns can

erode public trust in technology and its developers. By actively reassessing and

updating guidelines, organizations demonstrate their commitment to responsible

innovation and build trust with stakeholders.

Continual reassessment ensures a dynamic balance between fostering

technological innovation and upholding ethical principles. It allows for the

identification of potential risks and the development of safeguards before harm

occurs, ensuring that technology serves humanity responsibly.

Technological advancements often have global implications, requiring ethical

guidelines that consider diverse cultural contexts and international norms.

Regular reassessment ensures that guidelines remain relevant and effective in

addressing global challenges, such as climate change and inequality.

The potential implications of emerging technologies on
society, individual rights, privacy and equity

Emerging technologies such as quantum computing, augmented reality (AR),

virtual reality (VR), and pervasive Al have the potential to revolutionize various

aspects of society, but they also pose significant implications for individual rights,

privacy and equity.

Quantum computing

Quantum computing is a type of computing that uses quantum-mechanical

phenomena, such as superposition and entanglement, to perform operations

on data. Unlike classical computers, which use bits as the smallest unit of data

(O or 1), quantum computers use quantum bits, or qubits, which can represent

and store information in both O and 1 simultaneously. This allows quantum

computers to process vast amounts of data at unprecedented speeds, making

them powerful tools for specific applications that are computationally intensive,

such as cryptography and complex modelling.

The increase of computational power through the use of quantum computing

has potential implications for drug discovery, materials science and financial

modelling. Quantum computing could break current encryption standards,

compromising sensitive data and communication. Economically, quantum

computing could lead to job displacement in industries reliant on cryptography.

Access to quantum computing resources could be concentrated among wealthy

nations and corporations, exacerbating existing inequalities.

A Figure 38 Augmented reality concept

31

312

A4 Machine learning

A Figure 39 Avirtual reality (VR) headset

A Figure 40 Seamlessly embedded Al

Augmented reality (AR)

Augmented reality (AR) is a technology that overlays digital information—

such as images, text or sounds—onto the real world, enhancing the user's

perception of reality. AR is experienced through devices such as smartphones,

tablets and AR glasses, which use cameras and sensors to superimpose virtual

elements in real-time. This technology is widely used in various applications,

including gaming, education and professional training, to provide interactive

and immersive experiences that integrate virtual content with the physical

environment.

The potential of augmented reality is to enhance real-world experiences

with digital overlays, transforming education, healthcare and entertainment.

Possible implications include concerns about constant data collection and

surveillance through AR devices, distraction and accidents in real-world

environments, and being used to manipulate perception and spread

false information.

Virtual reality (VR)

Virtual reality (VR) is a technology that creates a completely immersive digital

environment that replaces the user's real-world surroundings. This environment is

experienced through a VR headset or head-mounted display, which isolates the

user from the external world and presents highly interactive, three-dimensional

virtual scenarios. VR is used extensively in fields such as gaming, training

simulations, education and therapy, providing an intense and engaging way to

simulate realistic scenarios or fantastic experiences.

The potential for VR is immersive experiences for entertainment, training,

therapy and social interaction. Implications include the risk of users becoming

overly immersed in virtual worlds, leading to social isolation. VR has been

known to trigger anxiety, depression or post-traumatic stress disorder in some

individuals. There are also concerns about the creation of misleading or harmful

virtual environments.

Pervasive Al

Pervasive Al refers to the integration of artificial intelligence across various

platforms, devices and environments, making it an intrinsic part of daily life and

business operations. This form of Al is embedded seamlessly into background

technologies, enabling smart automation and data-driven decision-making

without explicit user interaction. This type of Al is often multi-modal, meaning you

can use your voice, text, or a camera to interact with the Al agent. It enhances user

experiences, optimizes processes, and improves efficiency in applications ranging

from smart homes and healthcare to industrial systems and urban planning.

Potential benefits include integration of Al into everyday objects and systems,

improving efficiency, convenience and personalization. Implications include job

displacement, where automation of tasks could lead to significant job losses and

economic disruption. Al algorithms could perpetuate or amplify existing biases

in data, leading to unfair outcomes or discrimination. Pervasive Al could lead to

increased surveillance and erosion of privacy.

A4.4 Ethical considerations

Overall implications

Societal impact includes how these technologies could fundamentally alter

the way people live, work and interact, with both positive and negative

consequences. Balancing the benefits of these technologies with the protection

of individual rights, such as privacy and autonomy, will be crucial. Ensuring

equitable access to and distribution of the benefits of these technologies will be a

major challenge.

Mitigating the risks

Mitigating risk refers to the process of identifying potential risks in a given

scenario and implementing strategies to reduce their likelihood and impact.

For example, when you drive a car, you drive slowly and carefully. Thisis a

method of mitigating (reducing) the risk of an accident.

* Proactive regulation is important for developing ethical guidelines and

regulations to govern the use and development of these technologies.

* Encouraging (and mandating) transparency and explainability will help

ensure that Al algorithms mitigate bias and build trust.

* Educating the public about the potential risks and benefits of these

technologies is important for informed decision-making.

@ Linking questions

1. How can machine learning be applied to optimize the management of

network traffic (A2)?

2. How does database programming in SQL differ from programming

computationally in a high-level language (A3, B2)?

To what extent are developments in machine learning ethical (TOK)?

4. How can larger models be processed using GPUs and cloud processing

(A1)?

5. Can machine learning find and improve network security problems (A2)?

313

314

A4 Machine learning

End-of-topic questions

Topic review
1. Using your knowledge from this topic, A4, answer the guiding

question as fully as possible:

What principles and approaches should be considered to ensure

machine learning models produce accurate results ethically? [6 marks]

Exam-style questions
2. Outline the characteristics of each type of machine learning.

a. Deep learning [2 marks]

b. Reinforcement learning (RL) [2 marks]

c. Supervised learning (SL) [2 marks]

d. Transferlearning (TL) [2 marks]

e. Unsupervised learning (UL) [2 marks]

Outline one real-world application of each type of machine learning.

a. Deep learning [2 marks]

b. Reinforcement learning (RL) [2 marks]

c. Supervised learning (SL) [2 marks]

d. Transfer learning (TL) [2 marks]

e. Unsupervised learning (UL) [2 marks]

a. Describe the principle of reinforcement learning. [4 marks]

b. Describe the application of reinforcement learning in robotics

navigation. [3 marks]

Describe the hardware requirements for of machine learning during:

a. developmentand testing [2 marks]

b. large-scale deployment [2 marks]

c. edge computing. [3 marks]

Describe the use in medical imaging diagnostics of:

a. supervised learning [3 marks]

b. deeplearning [3 marks]

c. transfer learning. [3 marks]

End-of-topic questions

7. Describe the significance of data cleaning in the machine

learning workflow. [4 marks]

8. Describe the techniques in the preprocessing stage for:

a. handling outliers [3 marks]

b. removing duplicate data [3 marks]

c. dealing with missing data. [3 marks]

9. Describe the importance of normalization and standardization

in data preprocessing. [4 marks]

10. a. Describe the role of feature selection. [2 marks]

b. Outline the three different feature selection strategies. [6 marks]

11. a. Define dimensionality reduction. [1 mark]

b. Describe the importance of dimensionality reduction in

machine leaming. [4 marks]

12. Explain how linear regression is used to predict

continuous outcomes. [5 marks]

13. Describe the significance of the slope and intercept in the

regression equation. [4 marks]

14. Discuss how the fit of a regression model is assessed using

measures like r2. [6 marks]

15. Compare linear regression to another machine learning model

used for predicting continuous outcomes. [5 marks]

16. Evaluate the use of linear regression in predicting house prices

based on floor area. [5 marks]

17. Discuss the ethical implications of machine learning in

real-world scenarios. [6 marks]

18. Explain the challenges posed by biases in training data. [5 marks]

19. Describe the ethical concerns of using machine learning in

online communication. [4 marks]

20. Discuss the importance of continually reassessing ethical

guidelines as technology advances. [5 marks]

21. Evaluate the potential implications of emerging technologies such

as quantum computing, augmented reality, virtual reality and

pervasive Al on society. [6 marks]

22. Discuss the ethical considerations that must be addressed when

implementing machine learning models in education,

based on the case of |efferson High (page 246). [4 marks]

315

How can we apply a computational solution to a

real-world problem?

Computer scientists frame problems by applying computational thinking.

Computational thinking encompasses a set of problem-solving skills

including abstraction, algorithmic thinking, decomposition and pz

recognition. This way of thinking is very effective for clearly understanding

and solving th roblems.

Computer science requires careful thinking, careful listening, and careful

on understanding. Once you understand your problem, you can start to

solve it.

Approaches to computational
thinking

Syllabus understandings

B1.1.1 Construct a problem specification

B1.1.2 Describe the fundamental concepts of computational thinking

B1.1.3 Explain how applying computational thinking to fundamental concepts

is used to approach and solve problems in computer science

B1.1.4 Trace flowcharts for a range of programming algorithms

Computational thinking is a framework for thinking about problems and

questions in various disciplines. It is a way of thinking about and examining

problems where solutions can be represented computationally. Computational

thinking helps you analyse how systems with multiple components work

together. At the heart of computational thinking are four key ideas.

* Abstraction

* Algorithmic design

* Decomposition

e Pattern recognition

B1.1.1 Construct a problem specification
A problem specification consists of the following components.

1. The problem statement

2. Constraints and limitations

3. Objectives and goals

4. Input specifications

5. OQutput specifications

6. Evaluation criteria

The problem statement

A problem statement comprehensively and clearly defines a problem to be

solved. Whenever a computer scientist encounters a problem, they ensure they

understand every single word of the problem before thinking about how to

approach the solution.

Problem statements should be concise and specific, and avoid ambiguity. Itis

helpful when problem statements focus on the “what” and “why” of the problem.

Problems statements often come from a client. However, as is the case with the

internal assessment (IA), you can find any problem you want to solve or an area

of computing you want to explore. No matter where a problem originates, the

problem specification must be clear and concise.

317

318

Bl Computational thinking

A Figure 1 Customer waiting time is

specific and measurable

A Figure 2 A budget states a clear

limitation

A poor example of a problem statement

“Our customer service processes are inefficient.”

This statement is far too broad and does not pinpoint the specific problem.

The term “inefficient” could mean many things. For example, long wait times,

lack of knowledge among staff, or poor issue resolution. The problem statement

also lacks a clear “why". Why is inefficiency a significant problem? Does it lead

to customer churn, lost revenue, or damage to the company’s reputation?

A better example of a problem statement

“Customers wait an average of 25 minutes on hold before reaching a customer

service representative, leading to a 15% increase in abandoned calls over the

past quarter.”

This is a good example because it is focused, measurable, and highlights

impact. It clearly identifies the problem as extended hold times, provides

quantifiable metrics (25-minute wait, 15% increase) and links the problem to a

negative consequence for the business (abandoned calls).

Another good example of a problem statement might be, “The limited

address space of IPv4 is hindering the expansion of connected devices within

an organization, leading to network scalability issues and potential security

vulnerabilities as workarounds are used.”

Constraints and limitations

A constraint is a restriction or boundary that impacts the solution. This could

include resource limitations (such as time, budget or materials), technical

constraints (such as software or hardware), or external factors (such as regulations

or dependencies with other systems).

As with the problem statement, constraints must be clear and concise.

A poor example of a constraint and limitation

“We don't have many resources to fix our customer service problem.”

This statement is vague and provides no guidance about what specific

limitations exist. “Resources” is too broad: does it refer to money, people,

time, technology, or something else? The impact is also unclear. How does this

resource shortage affect the project’s potential solutions?

A better example of a constraint and limitation

“The project budget is limited to $10,000, and you cannot exceed this amount

due to funding restrictions.”

This is a strong constraint because it is specific, measurable, and states a clear

limitation. It clearly states the budget is the resource constraint, it provides an

exact dollar figure, and it states that exceeding this budgeted amount is not

an option.

Objectives and goals

Outline the desired cutcomes you want to achieve with the solution and

differentiate between high-level objectives and specific goals.

High-level objectives represent the broad desired results you want to produce

in a particular area of the customer service system. They are directional and

aspirational. Specific goals are quantifiable targets that act as milestones toward

achieving the high-level objective: they must be directly linked to the high-level

objectives. Specific goals are directly measurable and usually time-constrained.

B1.1 Approaches to computational thinking

Worked example 1

A business wants to reduce waiting times for customers

contacting it. Write an objective and goals for

the business.

Solution

A high-level objective might be to “enhance the overall

customer experience by minimizing wait times for support.”

The specific goals must be directly linked to the objective.

These might include decreasing average phone hold time

by 20% within the next quarter and reducing average

response time to email enquiries to under 12 hours within

the next two months. The goals are measurable and time-

constrained, so the business can check if it is meeting

the goals.

Worked example 2

The business in Worked example 1 also wants to

improve customer satisfaction. Write an objective and

goals for it.

Solution

A high-level objective could be to “increase customer

satisfaction with service interactions.”

The specific goals would be to achieve an average

customer satisfaction rating of 4 out of 5 stars on post-

service surveys over the next six months and reduce

the number of “highly dissatisfied” customer ratings

by 30% within the next quarter. Both of these are time-

constrained, quantifiable and measurable.

A Figure 3 Specific goals are measurable and time-constrained

Input specifications

In the specification, describe the format, type and expected characteristics of the

data or information fed into the solution. This ensures compatibility and proper

processing.

Worked example 3

Describe the format, type and characteristics of a customer feedback system.

Solution

The input data is customer feedback, both qualitative and quantitative.

The formats might be open-ended text comments (from surveys, emails, social

media), numerical ratings (1-5 stars, satisfaction scales), and net promoter

score (NPS) responses. NPS rates the likelihood that a customer would

recommend a company, product or service to a friend or colleague.

The expected characteristics of the input would include feedback directly

related to specific interactions or aspects of the customer service experience,

feedback collected as close to the service experience as possible, and,

if possible, the ability to link feedback to a specific customer and their

interaction history.
A Figure 4 Customer satisfaction scale

319

Bl Computational thinking

Worked example 4

The company has decided to create a chatbot which accepts customer

enquiries and requests in natural language format. State the formats and

expected characteristics of the input.

0 Solution

The formats would be text-based input via a chat interface and, if the chatbot

Search online for news stories supports voice interaction, voice-to-text input.

about businesses local to you. Ideally, input would be clear, concise and unambiguous. Of course, this is not

Write an objective and specific the case in the real world, but this should be your goal. In addition, the bot
goals for the business to address should be trained on a data set of frequently asked questions and common

the issue discussed in the news customer needs. Finally, the bot would have a wide variety of answers to

story. Use these worked examples handle diverse phrasing and ways of expressing the same intent (for example,

to guide you. “| have a problem with my bill” may need the same answer as “My invoice

seemswrong”).

Remember that having detailed input specifications helps your solution

design and determines the type of data processing, storage and analysis

the solution requires. Good input specification also guides the collection of

feedback or enquiries to ensure they are useful and support the solution’s

goals. Finally, you can help ensure compatibility, and ensure the solution can

handle real-world data from your customer base.

Output specifications

Define the format, content and presentation of the results generated by the

solution. Be clear about how the solution will deliver the desired outcome.

Example: Customer feedback system

Output formats might include dashboards with visualizations (charts, graphs)

highlighting trends in customer satisfaction ratings, wait times, and so on.

There might also be detailed reports summarizing qualitative feedback and

common themes. Finally, alerts for individual cases of highly negative feedback

requiring immediate follow-up might be part of the output.

A Figure 5 Inputand output

320

B1.1 Approaches to computational thinking

The key metrics would probably include average satisfaction scores, NPS,

wait times, volume of feedback by channel, changes in key metrics over time

(week-over-week, month-over-month) and categorization of qualitative feedback

such as common issues, praise or areas for improvement.

The presentation would need to have a clear, user-friendly interface suitable

for customer service managers and team members and customizable reports

allowing for filtering by date range, channel or topic.

Example: Customer service chatbot

Output formats might include direct responses to customer enquiries in text

format, knowledge base articles or frequently asked questions (FAQs) linked

to relevant topics and escalation to a live agent with a transcript of the chatbot

interaction for seamless transfer.

Content probably includes accurate answers to common questions, step-by-step

guidance for resolving simple issues, and the ability to recognize when a query

is beyond its capabilities and redirect appropriately. The bot must appear

friendly and use natural-sounding language, with an option to display timestamps

for clarity.

Output specifications help ensure there is a high degree of clarity. They ensure

the solution produces results aligned with the desired outcomes for improved

customer service. Outcomes also help define what metrics and presentations you

need to be able to track if the solution is effective. Finally, outcome specifications

guide how the solution will interact with customer service staff.

Evaluation criteria

Define the benchmarks you will use to measure the success of the solution.

Consider factors such as effectiveness, efficiency, accuracy, usability and

maintainability.

Example: Customer feedback system

One of the first and best questions to ask when evaluating a solution is: how

effective is it? In other words, does the solution solve the problem you set out to

solve or answer the question you asked?

In this example, you would look for improved customer satisfaction scores,

positive movement in average ratings, and/or NPS over time. You would also

want to measure reduced negative feedback and measurable decrease in the

volume of highly dissatisfied customers. Finally, the feedback system would start

to identify trends and customer pain points (things that frustrate customers in the

sales process), which would lead to targeted improvements.

321

322

Bl Computational thinking

In terms of efficiency, you would look at time savings and reduced time spent

manually gathering and analysing feedback. Faster issue identification might

include proactive flagging of critical customer concerns, allowing them to be

resolved sooner.

Usability would measure user adoption, meaning that customer service staff

find the dashboards and reports easy to use and integrate into their workflow.

The interface should be intuitive, meaning that users require minimal training to

navigate and extract meaningful insights.

In terms of maintainability, the adaptability of the system can be adjusted to

accommodate new feedback channels or changing customer needs, and the

system reliably safequards feedback data.

Example: Customer service chatbot

To measure effectiveness, you should look at the task completion rate, which

is the percentage of enquiries successfully resolved by the chatbot without

needing human escalation. The customer satisfaction with chatbot interactions

should also be evaluated by analysing positive ratings on post-chat surveys.

Business users of the system would hope to have reduced strain on live agents

and a measurable decrease in the volume of simple, repetitive enquiries

handled by human staff.

The system should have 24/7 availability and the ability to provide support

outside of regular business hours. You would also expect faster resolution times,

so the average time taken to solve basic issues is shorter with the chatbot than

through traditional channels.

Correctness of responses (accuracy) is important. You need to measure

whether the chatbot provides factually accurate information and guidance.

Customers will experience this as a question at the end of the query, asking if

the chat (with the bot) has resolved their issue. Businesses also need to ensure

that their chatbot understands customer intent and can correctly interpret

different phrasings of the same request.

Finally, you would want to evaluate usability. Does the chatbot have a

simple interface, clear prompts, and an intuitive flow that make it easy for

customers to use?

A prablem specification may include a problem statement, constraints and

limitations, objectives and goals, input specifications, output specifications and

evaluation criteria. All of these are of vital importance if you want to solve the

right problem the right way. It does take some extra time to create a problem

specification, but the result is a much clearer solution to a well-understood

problem or question.

B1.1 Approaches to computational thinking

|ana is a software engineer at a large hospital. She was asked to help manage a hospital unit with limited staff,

beds, and specialized equipment. She needed to schedule these resources to accommodate incoming

patients while maximizing efficiency and minimizing conflicts.

She started with abstraction, and identified core elements of the problem: staff (doctors, nurses, technicians with

specific skills), equipment (operating rooms, specialized machines, and so on) and beds (general ward, ICU, and

soon).

At first, she simplified the problem and ignored factors such as staff breaks or equipment maintenance schedules

and she assumed all patients had equal priority.

“

A Figure 6 Scheduling software helps hospitals to use resources efficiently

She then started to apply pattern recognition to this problem. She analysed historical data, looking at past

records for peak times for certain types of patient cases (more trauma at night, elective surgeries in the morning).

She also investigated patterns in the length of stay for different conditions. She analysed incoming patient data

and realised incoming patient scheduling was based on urgency and resource needs. She also recognized a

potential conflict when two patients needed the same specialized machine simultaneously.

|ana started to decompose the problem. She looked for subproblems where she could break down the large

scheduling problem. She saw three subproblems.

1. Staff scheduling: match staff skill sets to predicted patient needs.

2. Equipment scheduling: align equipment availability with surgical procedures or treatment schedules.

3. Bed allocation: prioritize ICU beds for critical cases, track the expected discharge timeline for other patients.

Next, Jana started to consider how to solve this problem. She applied algorithmic design to the problem.

She considered heuristic algorithms, which provide quick, “good enough” solutions. Her heuristic algorithm

could assign staff based on availability and basic skill fit, then adjust as needed. She also considered optimization

algorithms where she could search for the mathematically best solution. This is more computationally demanding

but would provide a more stable and predictable schedule.

As Jana considered the possible algorithm to use, she realized she needed to consider the following.

1. Prioritization: how do you weigh urgency, resource scarcity and potential conflicts?

Flexibility: how does the algorithm adapt to unexpected events (ambulance arrival, equipment malfunction)?

Evaluation: how do you measure the “success” of the schedule (efficiency, patient wait times, resource utilization)?

E
a
l

L

Risk: the cost of poor scheduling may result in harm to a human being. What is the correct ethical approach

to use when developing a solution for the hospital?

This process of computational thinking led to a high-quality effective solution for the hospital and the patients.

323

324

Bl Computational thinking

The single responsibility principle

was first used in the context of

object-oriented programming

(OOP), which you will learn about

in topic B3.

B1.1.2 Describe the fundamental concepts

of computational thinking

Decomposition

Decomposition involves breaking down complex problems into smaller, manageable

components. This makes problem-solving easier by focusing on individual pieces.

The single responsibility principle (SRP) aids this process by ensuring each component

has a single, clear task. While there is no universal algorithm for decomposition, asking

key questions can help identify the fundamental parts of a problem.

Can I divide this problem into smaller, more manageable steps? Are there

natural phases or sequences to follow?

Are there any repeated patterns or elements | can group together?

Identifying repetitive processes often reveals opportunities for modularization.

Which parts of the problem are independent of each other? Does the order

of solving some parts matter or can they be solved in isolation?

What does a picture of the problem look like? Can | sketch diagrams or mind

maps to visually represent the problem and its parts?

If you had to explain this problem to a 5-year-old child, how would you

doit? This is colloquially known as “Explain like I'm five” (ELI5) and forces you to

simplify the problem and focus on the essentials.

Decomposing a bicycle

Using the five questions above, how would you decompose a bicycle?

1. Frame 6. Seating

2. Drivetrain 7. Mechanisms for changing gears

3. Wheels 8. Suspension

4. Steering and control 9. Lightsand reflectors

5. Brakes 10. Fenders

Decomposing a smartphone

You can decompose a smartphone into constituent parts. (This is not an

exhaustive list.)

Touchscreen 9. Ports (for example, USB,

2. Display panel headphone jack)

3. Battery pack 10. Frontcamera

4. Charging circuit 11. Rear camera

6. RAM 13. Accelerometer

7. Storage (for example, internal 14. Gyroscope

storage, microSD card) 15. Proximity sensor

8. Buttons (for example, volume, 16. Ambient light sensor

power) 17. Operating system and software

By breaking down the smartphone into these fundamental components, you can

better understand and manage its complexity.

B1.1 Approaches to computational thinking

Decomposing Al behaviour

Imagine you want to design a non-playing character (NPC) that behaves

realistically within a video game environment. How might you decompose this

problem? You would start by thinking about the basic actions an NPC needs

to complete.

Table 1 A method to decompose NPC actions

Component Example

Sensing Equip the NPC with the ability to perceive the player and the surroundings (sight, hearing).

Decision-making Implement a system for the NPC to evaluate situations and pick actions (for example, a behaviour tree or

a finite state machine).

Actions Develop a set of actions the NPC can take (patrolling, attacking, fleeing, hiding).

Pathfinding Ensure the NPC can navigate the environment to reach its goals.

Table 2 Alternative method to decompose NPC actions

Component

Motivation Goals Determine high-level goals or needs Personality Establish traits that influence

motivating the NPC's behaviour (for example, decision-making (for example, aggressive,

survival, resource gathering, territory defence). cautious, curious).

Perception Sensory input Define types of stimuli the NPC Filtering Process raw sensory data to focus on

reacts to (visual, auditory, proximity). relevant details (for example, recognizing threats,

identifying valuable objects).

Decision-making Behaviour library Create a modular set of

potential behaviours the NPC can choose from

(for example, investigate, pursue, attack,

retreat, hide).

Evaluation module Develop a system (for

example, utility-based Al, rule-based system)

to evaluate behaviours based on motivation,

personality and perceived information, and select

the most appropriate action.

Action execution Animation control Tie specific behaviours to

corresponding animations (for example, play

a "flee” animation when the retreat behaviour

is chosen).

Movement control Use pathfinding and

movement systems to execute chosen actions,

ensuring the NPC's actions are physically

possible in the world.

Pattern recognition

Pattern recognition is the ability to identify recurring similarities, trends or

regularities within data, problems or solutions. Pattern recognition helps you to

solve problems by identifying similar subproblems to solve. Solutions to similar

subproblems can then be generalized or adapted, avoiding the need to reinvent

solutions for each variation.

As with decomposition, there is no single foolproof algorithm to identify patterns.

However, there are some questions you can ask yourself as you search for patterns

What elements or components make up the system? Are there specific parts

that interact in predictable ways?

Are there repeated actions, processes or structures? Do things happenin

the same way or a similar way over time?

How do things change within the system? Are there specific transformations,

increases, decreases or transitions that happen regularly?

325

326

Bl Computational thinking

AL3YS
51870
A Figure 7 Handwritten digits

Worked example 5
Predict the next number in this sequence: 2, 4, 6, 8.

Solution

Applying pattern recognition, you will recognize that each number is 2 greater

than the previous one. This is an increasing pattern with a constant difference.

A computational solution is to represent this pattern with a simple formula:

next_number = current_number + 2

This pattern represents the concept of arithmetic progression, allowing you

to generalize the solution to predict future numbers in any sequence with this

constant difference. No matter how large this sequence becomes, you can

find the next number.

Worked example 6

Build a system that can recognize handwritten digits (0-9) from images.

Solution

Start by considering pattern recognition. Each image can be represented as

a grid of pixels, where each pixel has a brightness value (grayscale). These

pixels become the raw features your solution needs to look for.

Then, look for the characteristic shapes and patterns of each digit. For

example, “0” is often an oval shape, “1” is typically a vertical line, and “8" has

two connected loops.

Develop a computational solution to look for these patterns. For example, any

pattern which has a loop or oval is likely tobea 0, 6, 8 or 9.

Abstraction

Abstraction is the process of filtering out unnecessary details to focus on the

essential elements or properties of a problem or system, representing them

with a simplified model. Abstraction allows you to ignore distractions and create

generalized solutions that can apply to other similar problems.

The challenge with abstraction is deciding what is necessary and what is

unnecessary. Focus on the essential parts of the system. For example, the colour

of a car is not essential but the type of engine is.

Ask yourself these questions as you abstract a problem:

What is the core purpose of the system? What is the ultimate problem it is

trying to solve, or what main outcome does it produce?

What are the essential inputs and outputs? \What minimum information does

the system need to start, and what does it generate at the end?

Which parts of the system are truly necessary? If | remove a component,

does the system still achieve its core purpose, or does it break down?

Can | simplify how components interact? Can | replace multiple steps or

components with a single, higher-level concept?

Are there common functions performed by different parts? Can | group

parts by what they do, regardless of their specific details?

Could I replace specific details with variables? Instead of focusing on

concrete values, can | think of elements in terms of placeholders?

Worked example 7

Make a program to predict the outcome of a football match between your

two favourite teams.

Solution

To create an abstraction of two football teams, ask yourself what are

the essential parts of the teams that are likely to impact who may win.

Consider, for example, the following.

Will the colour of a player’s shoelaces matter? No. We can be confident

that this will not affect the result.

Will a recent injury impact the game? Probably, but it will depend on

the severity of the injury, how many players are injured, and their position(s)

on the team.

Will the team’s past record impact the game? Probably. If team

Ahas beaten team B 127 times in the last 128 games, they are likely to feel

very confident.

Will the age of the players matter? This is harder to say: older players have

maturity and experience but younger players are usually faster and more agile.

On balance, this may not be as important to the outcome.

So, an abstraction could be: “the chance of winning depends on

(serious injuries) — (past record of wins).”

This is a simplification of a complex system. That is the essence of abstraction.

Worked example 8

Create an abstraction to predict the winner of a car race.

Solution

Work out what are the essential factors that will impact the outcome.

Will the colour of the car matter? Probably not.

Will the engine horsepower, tyre condition and aerodynamics of the

car matter? Yes, absolutely.

Will the driver’s favourite snack matter? Unlikely.

Will the driver’s experience, reaction times and ability to handle the car

under pressure impact the race? VYes, definitely.

Will the shape of the clouds matter? No, but the weather conditions are

likely to be a factor.

Will the track layout (sharp turns versus long straights) and track

surface impact the race? Yes, certainly.

Will unexpected things like mechanical failures or pit crew errors

dramatically change the race? Yes, of course.

B1.1 Approaches to computational thinking

327

328

Bl Computational thinking

e Your abstracted model might focus on these essential factors.

Flowcharts Diagrams which

logically and unambiguously

represent the process (flow) of a

program or system.

Car performance on a scale from 1to 10. Assign a composite score based

on things like engine power, aerodynamics and tyre wear.

Driver skill on a scale from 1 to 10. Assign a rating based on the driver's past

record, qualifying times, and any known strengths or weaknesses.

Track suitability on a scale from 1 to 10. Assign a value based on how well

the strengths of the car and driver match the demands of the specific course.

A powerful car might excel on a track with long straights, while a skilled driver

might have a greater advantage on a technical track.

Model mechanical failures. Assign a chance there is a mechanical failure

for each component of the car. The brakes might have 50% chance of

failure, a tyre might have a /5% chance of failure, and the engine might

have a 10% chance of failure.

Remember that abstractions are simplifications. This model gives you a

starting point for focusing on the elements most likely to determine the race

winner. A real prediction model would be much more complex.

Algorithmic design

An algorithm is step-by-step instruction to solve a problem or achieve a desired

outcome. Algorithms provide a logical and unambiguous roadmap for a

computer (or human) to follow. Algorithms must be clear, precise and efficient.

In this part of computational thinking, you need to design an algorithm. This can

bein code, butit does not have to be. Many programmers use flowcharts to

help them think through how the system functions. You will learn more about

flowcharts in the next section.

There are some questions you should ask yourself as you design an algorithm.

What is the exact problem | am trying to solve? Can | state it clearly

and concisely?

What are the inputs? What kind of data will my algorithm need to process?

What are the expected outputs? What should my algorithm produce, and in

what format?

Are there any decision points in the algorithm?

Are there any places where there is a loop (or iteration)?

Can | break the problem into smaller, more manageable steps? Is there a

natural sequence | can divide the process into?

The last question is especially helpful. Can you explain to a friend (who has

limited knowledge of your solution) the step-by-step process of how your

solution will function? This often helps you find missing bits of your algorithm.

You can look at the number pattern from Worked example 5 in a different way.

B1.1 Approaches to computational thinking

Worked example 9
Predict the next number in this sequence: 2, 4, 6, 8.

Solution

An algorithmic design might be as follows.

1. Get current number

2. Add 2 to current number

3. Output the new number Get number

Or perhaps like this. v

1. Getthe current and assign it to a variable named Add two to

NUMBER
that number

2. Add 2 to the variable NUMBER, and store the

answer in a variable NEXT_NUMBER Y

3. Output NEXT_NUMBER Output new

number
Or, using a flowchart, it might look like this.

@ Thinking skills

Computational thinking teaches you to identify the core elements of a

problem and understand their relationships. Focusing on essential features

while filtering out extraneous detail fosters creative solutions. Computational

thinking encourages you to identify the underlying patterns and principles

behind a problem. The process of designing step-by-step solution

procedures reinforces a structured approach to problem-solving. This

logical, systematic way of thinking can be transferred to other disciplines,

allowing you to adapt your approach based on the nature of the problem.

For example, imagine you have multiple subjects to study for an upcoming

exam, but you are unsure how to allocate your time effectively.

Applying computational thinking:

1. Identify core elements List the subjects you need to study, the topics

within each subject, and the available time before the exam.

2. Filter out extraneous detail Focus on the most challenging topics or

those with the most weight in the exam, ignoring minor topics that you

are already confident in.

3. Identify patterns Notice if certain subjects or topics are interrelated

(for example, maths principles that apply to physics).

4. Design step-by-step solution Create a daily study plan that allocates

specific time slots to each subject based on priority. Include breaks and

review sessions.

5. Adapt approach If you find one topic more difficult than anticipated,

adjust your schedule to spend more time on it, shifting easier topics

to later.

How can you apply computational thinking to a problem in your life?

329

330

Bl Computational thinking

You will learn about object-oriented

programming in more detail in

topic B3.

B1.1.3 Explain how applying computational

thinking to fundamental concepts is used to

approach and solve problems in computer

science
Computational thinking is a framework for thinking about problems.

Using abstraction, algorithmic design, decomposition and pattern recognition,

computer scientists can frame problems in such a way that they are computationally

solvable. The habit and practice of computational thinking lends itself to becoming

an excellent problem solver.

Software development

When creating a large-scale customer relationship management (CRM) system,

the project is decomposed into several modules such as lead tracking,

customer management, and communication tools. Developers identify common

software bugs and document these patterns to speed up debugging in future

projects. They then use object-oriented programming (OOP) to abstract

complex operations into objects with methods that can be reused across the

system without repeating code. Algorithmic design includes implementing

functionality for automatic email scheduling, defining the precise steps and

conditions under which emails should be sent to different user segments.

Data analysis

During decomposition, a data analyst breaks down the process of analysing

large sales data sets into specific tasks like data cleaning, normalization and

analysis. In pattern recognition, the analyst looks at trends in seasonal sales data

to predict future demands and optimize stock levels. Abstraction focuses on key

performance indicators (KPls) like monthly sales growth and customer acquisition

cost, while filtering out less relevant data. Finally, in algorithmic design the

analyst will create a data processing pipeline using scripts that systematically

extract, transform and load data (ETL process).

Machine learning

Decomposition involves dividing a machine learning project into data

collection, feature extraction, model training, evaluation and deployment phases.

Pattern recognition includes identifying features in image data that are most

relevant for classifying images into different categories using convolutional neural

networks. Abstraction would represent complex data through a set of features

and labels that serve as the input and output of machine learning models. Finally,

algorithmic design would include designing a neural network architecture,

specifying the number of layers, activation functions, and optimization

algorithms.

Database design

Decomposition structures the database design process into conceptual

design, logical design and physical design stages. Pattern recognition notices

B1.1 Approaches to computational thinking

common queries and structures the database schema to optimize these queries

by indexing or denormalization. Abstraction defines tables and relationships in

a way that represents real-world entities while ignoring irrelevant details. Finally,

algorithmic design develops algorithms for efficient querying, updating and

maintaining database integrity through transaction processes.

Network security

Decomposition analyses network security challenges by categorizing them

into physical security, network infrastructure and application security. Pattern

recognition identifies typical attack patterns like distributed denial of service

(DDoS) or phishing to enhance predictive threat detection. Abstraction

uses generic security models and protocols that provide a framework for

implementing specific security measures without detailing the underlying

complexities. Algorithmic design creates encryption algorithms and protocols

like SSL and TLS to securely encrypt communications over the network.

B1.1.4 Trace flowcharts for a range of

programming algorithms
Flowcharts are used to depict processes, decisions, and flows of control.

Generally, flowcharts flow from top to bottom and left to right.

Table 3 Standard flowchart symbols. Symbols are approved and standardized by

the International Organization for Standardization (ISO) in ISO 5807

Symbol name Symbol Symbol definition and notes

If you have a complicated flowchart, you can use an on-page connector,

which connects a part of flowchart without the need for drawing lines.
Connector

O This forms a shortcut between parts of the diagram shown on different parts

ofthe page.

This symbol indicates a decision with only two possible answers.

Decisi There should be a question in the symbol, which states which one of

ecision two paths a program will take. The question should only be a yes/no

question or a true/false test.

Flowline Shows the process’s order of operation.

Process/Operation data.
Represents a set of operations that changes the value, form or location of

Start/End

(or Terminal)

Indicates the beginning and ending of a program or sub-process.

_
Represents a process of inputting and outputting data.

Input/Qutput

331

Bl Computational thinking

Guess the secret

number game

Start

Y

Randomly choose a secret

number from 1to 10 and

save it in variable named

SECRET_NUMBER

Y

Get guess ;

from user
Should | play video

games?

Is user guess equal No Qutput

Do SECRET_NUMBER? Wrong guess,
| have try again...”

Yes Do not pla
homework? P2y

X Yes
No

End

Play for Output
awhile “You win!”

Y Y

End End

A Figure 8 A simple example of a flowchart. It is helpful to label A Figure 9 A flowchart for a "guess the number” game.

the flowlines from a decision process. Note that the decision In this game, the player continues to guess until they get the

process has only two possible states (outcomes) correct answer

A flowchart can represent the logical process of a computer program. This can

help you trace (or follow) the process. A linear search sequentially checks every

element in an array, starting at the beginning and warking through to the end

of the array.

You will learn more about linear

searches in section B2.4.2.

332

B1.1 Approaches to computational thinking

Linear search array =[2,4,6,8,10,12... 100]

@ TARGET_VALUE = 42

Y

set CURRENT_INDEX = O}

does

array(CURRENT_INDEX) =
TARGET_VALUE?

Output “Found

Yes target number at

CURRENT_INDEX."
No

No

Increment
OQutput Are we at

End “Not found1”/ € Y& endofamay? == CURREEJT] INDEX
/

A Figure 10 Alinear search

Worked example 10
How many iterations are needed for this program to end?

‘ setA=10 |
set B =100

No

B=B-10

A=A+10

Solution

After 1 iteration: A=20,B=90

After 2 iterations: A=30,B =80

After 3 iterations: A=40,B=7/0

After 4 iterations: A=50, B =60

After 5 iterations: A= 60, B = 50; program ends

333

Bl Computational thinking

TOK

Computational thinking is a

powerful, effective way to

understand and solve problems.

But a reliance on computational

thinking is often criticized for

encouraging computer scientists

to think about all the possible

problems they can solve without

putting enough thought into the

ethical, environmental and social

implications of the technology

they are creating.

When you abstract a problem, how

do you decide what to keep and

what to ignore?

What are the implications for a

solution if pattern recognition

cannot account for important

“edge cases”?

Can algorithms be biased?

Practice questions

1. Construct a problem statement for a software system designed

to manage patient scheduling in a hospital. [4 marks]

2. Describe constraints and limitations for a mobile banking application,

considering security, user interface and network reliability. [4 marks]

3. List a set of input specifications for an online customer feedback

system. Include the types of data the system should collect and

the expected data formats. [4 marks]

4. Construct a set of objectives and goals for a web-based

e-commerce platform, differentiating between high-level

objectives and specific measurable goals. [4 marks]

5. Construct evaluation criteria to assess the effectiveness and

efficiency of an Al-based chatbot used for customer service,

ensuring that both user satisfaction and task completion

rates are considered. [4 marks]

@ Self-management skills

Learning to use software to draw flowcharts neatly and accurately is

important. This practical task helps solidify your understanding of flowchart

symbols and your uses in depicting algorithmic processes.

1. lLookfor some flowcharts online and try to follow the logical flow.

2. Use the internet to investigate software that helps you create and trace

flowcharts. Gliffy is one option that is easy to use and web-based. There

are others, including Lucidchart and Microsoft Visio. You can also find the

shapes in Google Slides and Microsoft PowerPoint.

If you do not have regular access to a computer, practice drawing the shapes.

You can buy stencils to help you if you are not good at drawing.

3. Construct a flowchart to illustrate a process. This could be of your

morning routine, or making a cup of tea, or something else. Include as

many details as possible.

4. Aska friend to explain your flowchart. Listen carefully for misunderstandings

or errors.

5. Briefly reflect on how easy or difficult you find flowcharts. If any errors or

misunderstandings were spotted in part 4, make a plan to address them.

@ Linking questions

1. How is pattern recognition used to identify different types of traffic

flowing across a network (A2)7?

2. How are the concepts of computational thinking used in code when

designing algorithms (B2)?

End-of-topic questions

End-of-topic questions

Topicreview
1. Using your knowledge from this topic, B, answer the guiding question

as fully as possible:

How can we apply a computational solution to a real-world problem? [6 marks]

Exam-style questions
2. Describe what a problem statement is and why it is critical in the problem

specification process. [2 marks]

3. Explain the difference between a poor and a strong problem statement,

giving examples of each. [4 marks]

4. a. Define the role of constraints and limitations in a problem

specification. [1 mark]

b. Outline an example of a well-defined constraint. [2 marks]

5. a. Define:

i. high-level objectives

ii. specific goals. [2 marks]

b. Compare high-level objectives and specific goals in the context of

computational problem-solving. [3 marks]

6. Discussthe role of input and output specifications in ensuring the effectiveness

of a computational solution. [3 marks]

7. a. Describe the process of decomposition in computational thinking. [2 marks]

b. Explain how decomposition can be applied to solve a

real-life problem. [2 marks]

8. a. Describe the concept of pattern recognition. [2 marks]

b. Explain the importance of pattern recognition in computational

thinking, using a relevant example. [2 marks]

9. a. Describe how abstraction simplifies problem-solving in

computational thinking. [2 marks]

b. Explain how abstraction can be applied to solve a

real-life problem. [2 marks]

10. Describe the process of algorithmic design, including the steps

typically followed in creating an algorithm. [4 marks]

11. Explain how the four fundamental concepts of computational thinking

(abstraction, algorithmic design, decomposition and pattern recognition)

work together to solve problems in computer science. [4 marks]

335

4

B2

Programming

How can we apply computer programming to

solve problems?

ith problems

and ide

sect of the

book will introd

YA Programming fundamentals

Syllabus understandings

B2.1.1 Construct and trace programs using a range of global and local

variables of various data types

B2.1.2 Construct programs that can extract and manipulate substrings

B2.1.3 Describe how programs use common exception handling techniques

B2.1.4 Construct and use common debugging techniques

B2.1.1 Construct and trace programs using a

range of global and local variables of various

data types
A var’iable is a space in memory used to store data, referenced by a uniq’ue _

identifier. In Java, you need to tell the code what type of data you are storing.

This is not necessary in Python, although it can be done. Variable A space in memory that is

used to store data, referenced by a For example, to store a whole number, you would use this code in Java to assign -H e
unique identifier. avariable:

int myNumber = 5;

In Python, you would use:

myNumber = 5

This tells the program to create a space in memory called myNumber and that the

starting value is 5. The = symbol is used to assign the value. In the Java code, int

tells the program that the variable is an integer.

You need to be aware of several data types when programming. When declaring

a variable of a certain data type, you are telling the variable what it is allowed and

not allowed to store, as well as what operations can be performed on the data.

Primitive data types are the data types that are built into the program and are

used to develop other data types like strings.

To find out more about how data is

stored, refer to subtopic Al.2 Data

representation and computer logic.

Primitive data types have no methods associated with them. Strings are known

as object data types. They have methods associated with them. If you are using

Python, strings are classed as primitive data types but they do have methods

associated with them.

By declaring data types (which is necessary in Java), you tell the compiler what

you want to do with the data and how the stored data will behave. Itis always

better, for human readability, to show the variables you intend to use at the top

of your program.

337

B2 Programming

Table 1 Alist of the data types you need to know about in this course

Data type | Description Assignment in Java Assignment in Python | Example

Avariable whose value | boolean x = false; x: bool = False True, False
Boolean

can be true or false

Asinale ch char ¢ = 'a'; Python does not have a char l.a 4,%,!

Char) single character o data type. Use strings instead.
single ASCllvalue

c: str = 'a’'

) Anumber containinga | float £ = 7.99; f: float = 7.99 1.9283, 234512,
Decimal . ; —-594.39393 decimal point double d = 7.99; .

Integer Awhole number int i = 0; i: int =0 29399, 4, —2992

Strin An alphanumeric String s = "hello"; [s: str = "hello"” Hello, 45 Main
9 collection of characters Street, P@sswOrd!

When you complete a form online,

you may often need to complete

many different fields, such as your

name, your age and your address.

Programmers must decide what

data type to use to store each piece

of data. For names and addresses,

the decision is easy: the data will

be stored as a string. Age is

different. If you use an integer, you

only know the age of the person.

If you use a double, you know the

age of the person and the month

they were born.

When programmers choose the

data type, they also make decisions

about the type and accuracy of the

data that will be stored.

To what extent do you make

assumptions when you choose a

data type?

Python does not require you to declare variables ahead of time. This

is very convenient for programmers but there is a performance cost,

so high-demand servers use Java. According to finance programmer

Peter Lawrey, “|ava is widely used by tier-one banks in the world for low

latency persistence (around a microsecond) and messaging between

microservices for trading systems.”

However, Python is used by many financial traders, such as Agnes Poh,

who works at the Hudson River Trading firm in Singapore. She uses

Python to code quantitative trading programs because its flexibility

enables her to make changes to algorithms quickly.

A Figure1 The Central Business District in Singapore

B2.1 Programming fundamentals

B2.1.2 Construct programs that can extract

and manipulate substrings
Concatenate To join strings

Strings are a data type that have methods associated with them. This enables them together.

to be manipulated using methods associated with the string data type. The methods

associated with strings vary depending on the language you are using. In this course

you are expected to be able to identify and extract substrings from given strings, as

well as be able to alter, concatenate, or replace sections of a string.

Table 2 String methods in Java

Method Purpose Description Example

7 Returns the String testString = "0ld Town";
|dentify

charAt and extract characterata .)
(int index) _ specific place in the System.out.println(testString.charAt(4));

substrings .
string. Output: T

String testString = "0ld Town";

fai Identify Returns True if the
contalins . . 1 1

. and extract | substring is present | System.out.println(testString.
(String sub) . . g P contains("01d"));

substrings | in the string.

Output: True

] Returns the index String testString = "0ld Town";
. |dentify .
indexOf d extract (place) of a given) .) o
(char c) an e% ra character in the System.out.println(testString.indexO0f('w'));

substrings .
string. Output: 6

String testString = "0ld Town";

substring(int |ldentify
beginlndgi , and extract Returns d substring System.out.println(testString.substring(1,
int endIndex) substrings of the string. testString.length()-3));

Output: Id T

Alter and Replaces a String testString = "01ld Town";

replace(String | onjace given substring . . W .
target, String p_ with another §yst?m.out.prlntln(testStrlng.replace(olid",

new) sectionsof | . New"));
strings given character

sequence. Output: New Town

String testString = "The 0ld Town is 01d4d";
Alterand | Replaces the g g !

replaceFirst ;
(Sgring old, replace first instance of a System.out.println(testString.
String new) sections of | substring with a replaceFirst("01ld”, “New"));

strings new substring. .
9 9 Output: The New Town is Old

String testString = "The 0ld Town is 01d4d";
Alterand | Replacesall g g !

replaceAll ;
(Sgring old, replgce mstan(_:es ofan old System.out.println(testString.
String new) sections of | substring with a replaceAll("0ld", "New"));

strings new substring. Output: The New Town is New

String testString = "The 0ld Town";

. . . Adds the given
ConCat (String |Joinstrings string to the end of | System.out.println(testString.concat
new) together (" is a bit dirty"));

the current string.

Output: The Old Town is a bit dirty

339

340

B2 Programming

Table 3 String methods in Python

Output: Old Town is a bit dirty

Method Purpose Description Example

testString = "01ld Town"
. Finds the character

str[int Identify and ; ific index i . .

index] extract substrings ataspeciiicindexin | print (teststring[4])
the string.

Output: T

testString = "01ld Town"
. Finds the index of a

find(st Identify and fic character i
(str c) extract substrings specific characterin | print (testString.find("T"))

the string.
Output: 4

testString = "01d Town"
. Finds the last

rfind(str Identify and inct fth . . L
find) extract substrings instance orthe print(testString.rfind("own"))

substring in a string.
Output: 5

testString = "01ld Town"

slice(int Identify and Retumnsasubstring | sub = slice (3,6)
statt, ‘ak tract substrings | from a given strin
end) ex 9 9 g- print (testString[sub])

Output: To

testString = "01ld Town"
replace (str | Alterandreplace | Replaces one

target, str |sectionsof substring with print(testString.replace("0ld", "New"))

new) strings another.
Output: New Town

testString = "0ld Town"

x = testString.split()

split () Split strings up 2?2:[[5 thestringinto | for i in x:

’ print (i)

Output:

Old

Town

testString = "0ld Town" + " is a bit dirty"

Concatenate Join strings Joins one or more

using + together strings together. print(testString)

Tables 2 and 3 include a selection of string methods that you may find helpful. Many more are available in the Java and

Python APls, which are available online.

B2.1 Programming fundamentals

Application programming interface (API) The set of rules the language
follows to interact with other programs. The APl also lists all methods in the

language, and how they function.

Reading, writing and manipulating strings is an important skill when

developing solutions. Many of the programs you develop will require user

input. Input often involves strings. Being able to use strings within your code

will make the program more meaningful for users.

One use of extracting and manipulating substrings would be to create an

initial password for a person. This could be a substring of their family name

combined with special characters. Try coding the initial password creator.

@ Communication skills

Storing data

Identifying how to break down data and store it enables you to understand

the type of data that will be collected from the users and how the data will be

communicated. Understanding how data is to be communicated is part of the

computational thinking process, specifically decomposition.

What data types would you recommend for the following? Justify the answer

you have given.

* Atelephone number

* Whether a person is vegan

* A password

* The cost of anitem

* The number of glasses of water someone has drank in a day

* Aperson’s middle initial

341

342

B2 Programming

Exception handling There are

many possible points of error in

code. Exception handling enables

us to deal with these appropriately.

B2.1.3 Describe how programs use common

exception handling techniques
When developing code, it is essential that the code functions as expected and is

able to handle potential errors caused by the user. When developing programs,

there are many potential points in which the program could fail.

One of the first points of failure is unexpected input—when a program is

expecting one kind of input but the user enters another. If this is not handled

correctly then this could cause an error. Programmers should build in error

handling to prevent such issues. This could include having a range check to

check that a number falls within a certain value, using drop-down menus to

prevent people from selecting something inappropriate, or using a contains

method to check the entry contains what is required, such as an @ signinan

email address.

Another point of failure could be resource unavailability. Programs can make

use of external resources such as libraries, files, external sensors, or actuators.

If you try to make use of the resource but it is unavailable—for example, the file

does not exist or the library has not been imported correctly—then you will

receive an error message.

The final point of failure is logic errors. Even if you have no syntax errors in

your code, logic errors may exist. Logic errors could include using brackets

incorrectly within calculations, using the same variable name, data being

incorrectly changed, creating an infinite loop, or incorrect use of Boolean

operators. This is why you must test your program very carefully with lots of

different data to ensure your program produces the correct results.

When there is a program error, such as the unexpected input or resource

unavailable errors described above, an exception will occur. An exception is an

unexpected behaviour that happens when the program is running. If exceptions

are not handled correctly, this could cause the program to break. The exceptions

may occur due to non-availability of resources or unexpected data input. In cases

of exception errors, programmers may use the try and catch code blocks in

Java, or try and except in Python.

Examples of these methods are shown below. In these examples, an array

has been created to store common names of pets. The try section of the

program attempts to print out an element that does not exist. Therefore Rather

than causing an error, the catch statement prints a suitable error message.

By surrounding code in try and catch or try and except, we can handle

errors within our code.

B2.1 Programming fundamentals

Try and catchin Java

1. String [] pets = {"Ben", "Leo", "Zeppo"}:

2. try {

3. System.out.println(pets[5]);

4. } catch (Exception e) {

Se System.out.println("An error has occurred");

6. }

Output: An error has occurred

Try and except in Python

1. pets = ["Ben", "Leo", "Zeppo"]

25

3. try:

4. print(pets[5])

5. except IndexError:

6. print("An index out of range error has occurred")

Output: An index out of range error has occurred

Using try and catch and try and except will allow you to handle any errors

that occur, but it will not allow you to run any code after the exception has

occurred. This is when the finally blockis useful. The finally block of code

will run regardless of whether an exception was thrown or not. This enables you

to ensure no further errors can occur. For example, files can be closed within

the finally. This also enables you to display additional messages such as

“The program has ended safely”. An example of code using the finally block is

shown below.

Try, catch and finally in Java

1. String [] pets = {"Ben", "Leo", "Zeppo"}

2.

3. try {

4. System.out.println(pets[5]);

5. } catch (Exception e) {

6. System.out.println("An error has occurred");

7. } finally {

8. System.out.println("The program has ended safely");

9. }

Output: An error has occurred

The program has ended safely

There is a saying in computer

science: “garbage in, garbage

out”. This means that if you put

false information into a system, then

you will receive false information

out of the system.

One way to stop “garbage”

getting into the system is by using

exception handling. Exception

handling can stop unexpected data

from the user, stop incorrect files

being read and ensure the program

does not crash.

You rely on the knowledge

produced by the computer to make

decisions. To what extent does the

reliability of this knowledge rely on

exception handling?

343

B2 Programming

Debugging Using tools to find

errors in your code.

Try, except and finally in Python

pets = ["Ben", "Leo", "Zeppo"]

try:

print(pets[5])

except:

print ("An error has occurred")

finally:

o

B

=
R

1
I

I
%
I

S
T

print ("The program has ended safely")

Output: An error has occurred

The program has ended safely

@ Communication skills

Communicating with the end user

Understanding how to help users and make developed solutions shows

empathy and caring skills. As a developer, it is important to make your

software solutions as user friendly as possible. So when developing

algorithms, think about the end user.

Imagine you wanted to develop a program for teachers that enabled them

to store data about their students. What information would teachers need to

store? What features would the program need?

B2.1.4 Construct and use common

debugging techniques
There are several techniques a programmer can use to debug code. You may

use them when you are programming or when you complete your internal

assessment. Debugging code lets you check that your program works before

moving onto the next stage of testing.

Trace tables

Trace tables are a way to trace the values of the variables to ensure that they are

being changed correctly. Here is an algorithm to count the number of warm days

(days over 20 degrees Celsius).

B2.1 Programming fundamentals

Trace tablesin Java

1. // an array temperature has been initialised to
contain the following items

2., [23.7, 19.9, 23.8, 18.8, 12.5, 24.0]

4. int warmDays = 0;

5. for (int i = 0; i < temperature.length; i++) {

6. if (temperature[i] > 20) {

7o warmDays = warmDays + 1;

8. }

9. }
10. System.out.println("The number of warms days this

month: " + warmDays);

Trace tables in Python

1. temperature = [23.7,19,9,23.8,12.5, 24.0]

2o

3. warmDays = 0

4. for temp in temperature:

5 if temp > 20:

6. warmDays = warmDays + 1

7/

8. print ("the number of warm days this month: ",
warmDays)

The trace table to check this algorithm is working would look something like

Table 4.

Table 4 Example trace table

Iteration Valueat i warmDays count Output

0 23.7 1 -

19.9 1

23.8 2

18.8 2 -

2

3

12.5

24.0 (9

R
N
 R

345

B2 Programming

346

Breakpoint debugging

When programming, a developer may choose to make a breakpoint.

A breakpoint is a point in the code where the algorithm will stop executing.

If a programmer amends an algorithm, they may wish to create a breakpoint to

review the values of the variables at that point to check that the changes have

been effective. This is particularly useful if they wish to check that smaller sections

of the code are working effectively in a large program.

1 for(int j = i+l; j< toSort.length; Jj++) {

2 System.gut.println("ln inner loop and the
counter is " + j);

3 if (toSort[j]<toSort[highestIndex]) {

o4 highestIndex=3j;

5 System.out.println("In if statement and
the highest index is " + highestIndex);

6 }

7 }
8 temp = toSort[highestIndex];

9 toSort[highestIndex]=toSort[i];

10 toSort[i]=temp;

11 3}

12 for (int i = 0;i < toSort.length;i++) {

13 System.out.println(toSort[i]);

14 }

A Figure 2 Breakpoint debugging in Java

Debugging skills allow you to effectively find and correct errors in your code.

Debugging is one of the key tools of producing knowledge in computer

science. When developing algorithms, programmers need to be aware of the

given inputs and expected outputs from the code they develop to check for

accuracy. If the code is not accurate then debugging techniques need to be

applied to fix this.

B2.1 Programming fundamentals

Print statements

Print statements can be used to print messages throughout the code.

This allows programmers to understand what section of a decision they are in,

what iteration of a loop they are in, or the value of a variable at a certain section of

the code. This is essential, as it enables programmers to understand whether the

program is executing in a way they are expecting and whether they need to make

adjustments. An example is shown in Figure 3.

Scanner input = new Scanner(System.in); In inner loop and the counter is 4
i In inner loop and the counter is 5
int[]toSort={4,56,23,2938,29,485,2,394,58, . .
3838,485,9822}; In inner loop and the counter is 6

In if statement and the highest index
int temp; is 6

int highestIndex=0; In %nner loop and the counter TS 7

In inner loop and the counter is 8

for(int j = i+l; j< toSort.length; j++) { In inner loop and the counter is 9

System.out.println("In inner loop and In inner loop and the counter is 10

the counter is " + j); In inner loop and the counter is 11

. . . In outer loop and the counter is 1
if (toSort[j]<toSort[highestIndex]) { . .

In inner loop and the counter is 2

highestIndex=j; In inner loop and the counter is 3

System.out.println("In if statement In :!.nner Loop and the countex TS .
and the highest index is " + In inner loop and the counter is 5

highestIndex); In inner loop and the counter is 6

} In inner loop and the counter is 7

In inner loop and the counter is 8

} In inner loop and the counter is 9

temp = toSort[highestIndex]; In inner loop and the counter is 10

In inner loop and the counter is 11

toSort[highestIndex]=toSort[i]; In outer loop and the counter is 2

toSort[i]=temp; In inner loop and the counter is 3

In inner loop and the counter is 4

} In if statement and the highest index

for (int i = 0;i < toSort.length;i++) { is 4
In inner loop and the counter is 5

System.out.println(toSort[i]); In inner loop and the counter is 6

}

A Figure 3 Print statements in Java

347

B2 Programming

Step-by-step code execution

Step-by-step code execution usually provides the developer the chance to “Step

in”, “Step over”, and stop the code. The integrated development environment

(IDE) highlights the code that is being interpreted at the time. Step-by-step code

execution also shows the values of the variables at any given time so you can see

if they have the expected values. If the values of the variables do not match the

expected values then you should revisit your code.

import java.util.ArrayList; Name Value

import java.util.Iterator; no method

import java.util.Scanner; return value

args String[0] (id=20)

Input Scanner (id=21)
public class main { toSort (id=27)

highestIndex 7

public static void main (String[] args) { i 6

Scanner input = new Scanner(System.in); i 10

int [] toSort =
{4,56,23,2938,29,485,2,394,58,
3838,485,9822};

int temp;

int highestIndex = 0;

for (int i = 0; i < toSort.length - 1;
i++) {

for (int j = i+l; j < toSort.length;

J++) |

if (toSort[j]< toSort[highestIndex])

highestIndex = j;

}

temp = toSort[highestIndex];

348

A Figure 4 Step-by-step code executionin Java

B2.1 Programming fundamentals

@D minking skills
Applying knowledge of testing and evaluation

Using the debugging techniques described will help you to become a more

knowledgeable coder. You use testing and evaluation skills to investigate the

problem to understand where it is going wrong and how you can fix it.

Which debugging techniques would you recommend for the following

situations? Whenever possible, justify your answer.

A program that is in development but is not calculating the correct results.

A program that is in development but keeps skipping over a section of

the code.

A program that is in development but does not accept user input.

A program that is in development but the loop is not functioning

correctly.

Practice questions

1.

4.

Explain how a trace table can be used to identify errors within a

section of code. [3 marks]

Describe the purpose of the final 1y block of code in exception

handling. [2 marks]

Identify the correct data types for:

a. thename ofaplant [1 mark]

b. whethera plantis poisonous [1 mark]

c. the maximum height of a plant. [1 mark]

A school uses the first three characters of a student’s name and the

last three characters of a student’s name along with @567 to develop

aninitial password. Construct an algorithm that takes a student’s name

and outputs their initial password. For example: Input “Boris Laurent”,

Output “Borent@567". [4 marks]

349

YA Data structures

Syllabus understandings

B2.2.1 Compare static and dynamic data structures

B2.2.2 Construct programs that apply arrays and lists

B2.2.3 Explain the concept of a stack as a “last in, first out” (LIFO) data structure

B2.2.4 Explain the concept of a queue as a “first in, first out” (FIFO) data

structure

B2.2.1 Compare static and dynamic

data structures
Imagine you are selling tickets to a school concert. You have a fixed number of

seats and you can only sell one ticket per seat. This is a fixed, unchangeable list,

because if you sold more seats than you had available then you would have a lot

of complaints. However, imagine you were also selling drinks and snacks at the

concert. You do not know how many drinks and snacks you will sell. Therefore,

you would have a variable number of items on your list. The number of items in

this list needs to be changeable. This situation is comparable to the idea of static

and dynamic data structures in programming.

A static data structure is a data structure that has a size which is set at compile

time and which cannot be changed in the runtime environment. Compile time

is the stage before the program is run, when the statements within the language

are converted into binary instructions that the processor understands. Runtime is

when the program is running in memory, which occurs after the compile stage.

For static data structures, when you declare the data structure you must give the

data structure a size. Think about the concert seating analogy. You can declare

the static data structure with a size equal to the number of seats available. When

the program is run, the size of the array will be allocated in memory. An example

of a static data structurein Javaisan array, and in Python itisa tuple.

A dynamic data structure does not require you to set the size when you create the

data structure. When the dynamic data structure is declared, a certain amount of

memory is set aside to allow for elements to be added. If the list grows beyond

this capacity, additional memory is allocated to enable these elements to be

added to the list. When items are removed from a dynamic list, the memory used

is deallocated, freeing up resources. An example of a dynamic data structure in

Javaisan ArrayList, and in Pythonitisa List. In]ava, an ArrayList is given

a data type and can only store data of that type. In Python, a 1ist can store

multiple instances of different data types.

350

B2.2 Data structures

Consider the following when choosing which type of data structures to use.

Flexibility: If you know the number of items you need, a static data structure is

useful. If you have an unknown number of items, then a dynamic data structure

might be more useful.

Memory usage: A dynamic data structure tends to be more efficient with

memory as it only uses the memory it needs, whereas a static data structure has

its memory set at runtime and uses all the space even if nothing is stored in the

element.

Speed: A static data structure tends to be slightly quicker when performing

actions as you can access elements directly using an index. A dynamic data

structure is slightly slower as memory could be fragmented, and this can slow

down the performance.

B2.2.2 Construct programs that apply

arrays and lists
There are two farms of lists that you need to be aware of in this course:

one-dimensional (1D) and two-dimensional (2D).

Each item has an index that you can use to access the data. You can visualize a

one-dimensional list as a line of elements. For example, here is a one-dimensional

list of integers.

Remember that, in programming, the first elementin alistis 0, not 1.

Table 5 One-dimensional list

Index 0 1 2 3 4 5 6 7 8

Data 23 17 | 4839 | 606 | 583 | 484 34 1 1985

A two-dimensional list can also be visualized as a table. For example, here isa

two-dimensional list of integers. Remember, the first element ina listis 0, not 1.

Table 6 Two-dimensional list

Index 0 1 2 3 4 5 6

0 82 1954 5 29 65 9003 1029

1 48 95 594 3920 9202 9583 821

2 598 9333 428 859 3847 4839 382

In this course, you need to be able to add, remove and traverse elements in

one-dimensional and two-dimensional dynamic lists. Starting with

one-dimensional lists, in Java, use ArrayList and in Python, use List.

First, you need to declare the list. The following code is used to initialize a list

of strings.

List A data structure used to store

multiple instances of the same data

type under one variable name. In

Python, you can store multiple data

types in the same list.

Being able to create lists and

manipulate data within lists is an

essential skill for programming.

351

352

B2 Programming

Arraylist Java

1. import java.util.ArrayList;

2.

3. public class Main {

4. public static void main(String[] args) {

5 ArrayList<String>myList=newArrayList<String>();

6.)
Te

List Python

myList = []

To add to the list, use the following code.

Java

myList.add("Angelica");

myList.add("Ansh");

myList.add("Kai");

myList.add("Fabio");

myList.add("Michelle");

myList.add("Hana");

Current list: Angelica, Ansh, Kai, Fabio, Michelle, Hana

Python

myList.append("Angelica")

myList.append("Ansh")

myList.append(“Kai")

myList.append("Fabio")

myList.append("Michelle")

myList.append("Hana")

Current list: Angelica, Ansh, Kai, Fabio, Michelle, Hana

To remove from a list, you have two options: remove by index or remove

by value.

Remove by index in Java (the default)

myList.remove(2);

Current list: Angelica, Ansh, Fabio, Michelle, Hana

Remove by index in Python

del myList[2]

Current list: Angelica, Ansh, Fabio, Michelle, Hana

B2.2 Data structures

Remove by value in Java

myList.remove("Kai");

Current list: Angelica, Ansh, Fabio, Michelle, Hana

Remove by value in Python (the default)

myList.remove("Kai")

Current list: Angelica, Ansh, Fabio, Michelle, Hana

There are two ways to traverse a list. You can use a loop, which utilizes the index

to access each item in the list, or you can use an iterator in Java or an enumerator

in Python, which begins at the start of the list and selects the next item in the list

until there are no more items to access.

Traversing a list using loop and indexes in Java

for (int i = 0; i < myList.size(); i++){

System.out.println(myList.get(i));

}

Output:

Angelica

Ansh

Fabio

Michelle

Hana

O Traversing a list using loop and indexes in Python

for name in myList:

print (name)

Output:

Angelica

Ansh

Fabio

Michelle

Hana

Traversing a list with an iterator in Java

Iterator <String> it = myList.iterator();

while (it.hasNext()) {

System.out.println(it.next());

353

354

B2 Programming

Output:

Angelica

Ansh

Fabio

Michelle

Hana

@ Traversing a list with an enumerator in Python

for index, name in enumerate(myList):

print(index, name)

Output:

0 Angelica

1 Ansh

2 Fabio

3 Michelle

4 Hana

Two-dimensional arrays in Java

In Java, there are two types of two-dimensional lists you need to be aware of:

* fixed size, or static, two-dimensional array

* dynamic two-dimensional array.

The following sections of code will explain to you how to create and use a static

two-dimensional array and a dynamic two-dimensional array.

All code provided will be used to represent the following data set.

(0] (1] (2] [3] [4] (5] (6]
[0] 21 23 24 22 23 24 29

[1] 22 20 19 18 18 17 20

[2] 24 28 29 31 32 31 33

(3] 23 25 21 26 22 20 19

To create a new static two-dimensional structure, you need to tell the structure

what type of data will be held in it and how many rows and columns it has.

int [] [] temperature = new int [4][7];

This code initializes a two-dimensional array of integers that has four rows and

seven columns.

To access a specific element in the array, type the name of the array followed by

the row number and column number.

B2.2 Data structures

temperature [3][2] = 34;

To look at every element of the array, you need to have a double for loop. The

element loops through each column in a row and then moves onto the next row.

Examples of all of this are outlined below. This program calculates the average

temperature in a given month.

Two-dimensional array in Java

1. public static void main(String args[])

2

3 int [][] temperature = new int [4][7];

4. int average = 0;

5. int count = 0;

6.

e for (int i = 0; i < temperature.length; i++) {

8. for (int j = 0; j < temperature[0].
length; j++) {

9. average = average + temperature[i][]];

10. count = count + 1;

11. }

12. }

13. System.out.println("The average temperature
this month is " + average/count);

14. }

A two-dimensional dynamic array structure enables a list that can change

size. The number of rows can change, as can the number of columns. It is still

recommended to tell the ArrayList what kind of data it is holding.

To initialize the two-dimensional ArrayList you use the following code.

ArrayList<ArrayList<Integer>> temperature = new

ArrayList<ArrayList<Integer>>();

To access a specific element of an array you need to type the index of the row and

then the index of the column, as shown in the following code.

temperature.get(i).get(Jj);

This enables you to access each specific element. You can also use this code to

add to the specific element.

temperature.get(2).add(25);

To look at every element of the array, you need to have a double for loop. The

element loops through each column in a row and then moves onto the next row.

355

356

B2 Programming

Examples of all of this are outlined below. This program also calculates the

average temperature in a given month.

Two-dimensional dynamic array in Java

2,

Se

11.

12.

3

14.

15,

16.

17.

18.

19.

20.

21.

223 ¢,

2

24.

25,

26.

27.

28. }

1. public static void main(String args[]){

ArrayList<ArrayList<Integer>> temperature = new
ArrayList<ArrayList<Integer>>();

temperature.add(new ArrayList<Integer>());

temperature.add(new ArrayList<Integer>());

temperature.add(new ArrayList<Integer>());

temperature.add(new ArrayList<Integer>());

temperature.get(0).addAll (new
ArrayList<>(Arrays.asList
(21,23,24,22,23,24,29)));

temperature.get(1l).addAll (new
ArrayList <>(Arrays.asList
(22,20,19,18,18,17,20)));

temperature.get(2).addAll (new
ArrayList <>(Arrays.asList
(24,28,29,31,32,31,33)));

temperature.get(3).addAll (new
ArrayList <>(Arrays.asList
(23,25,21,26,22,20,19)));

temperature.get(1l).add(24);

temperature.get(2).add(25);

int average = 0;

int count = 0;

for (int i = 0; i < temperature.size(); i++) {

for (int j = 0; j < temperature.get(i).
size(); Jj++) {

average = average + temperature.get(i).

get(j);

count = count + 1;

}

System.out.println("The average temperature this
month is " + average/count);

B2.2 Data structures

Two-dimensional lists in Python

A two-dimensional dynamic array structure enables a non-fixed size list of

temperatures. The number of rows can change, as can the number of columns.

In Python, a fixed sized listis a tuple. A tuple acts differently to a list: elements

cannot be changed once added. All lists in Python are automatically dynamic.

To initialize a two-dimensional list in Python you use the following code.

Two-dimensional array in Python

temperature =
[[21,23,24,22,23,24,29],[22,20,19,28,28,17,20],[24,28,
29,31,32,31,331,[23,25,21,26,22,20,19]]

To access a specific element of an array you need to type the index of the row and

then the index of the column, as shown in the following code.

print(str(temperature[2][3]))

This enables you to access each specific element. You can also use this code to

add to the specific element.

temperature[2].append(25)

To look at every element of the array, you need to have a double for loop. The

element loops through each column in a row and then moves onto the next row.

Examples of all of this are outlined below. Again, the program calculates the

average temperature in a given month.

@ Temperature program in Python

1. temperature =
[[21,23,24,22,23,24,29],([22,20,19,28,28,17,20],[24,
28,29,31,32,31,331,123,25,21,26,22,20,19]1

3. temperature[l].append(24)

4. temperature([2].append(25)

6. count = 0

7. average = 0

9. for rows in temperature:

10. print ("")

il o for columns in rows:

12. print(columns, end = " ")

13. count = count + 1

14. average = average + columns

15.

16. print ("The average temperature is", str(average/
count))

357

358

B2 Programming

Last in, first out (LIFO) data
structure A data structure in which

the last item added to the stack or

queue is the first to be removed.

You may also see this called a first

in, last out (FILO) data structure:
the two terms are interchangeable.

push(item)

—_—>

push(item)
——

A two-dimensional list can be used to store a seating plan for a classroom.

Try to code a seating plan program.

B2.2.3 Explain the concept of a stackas a

“last in, first out” (LIFO) data structure
Imagine you have a pile of plates that you cleaning. You can only add and take

away from the top of the pile. You can only clean the top plate on the pile. The

plate at the bottom of the pile is the last item you will use. This is similar to a stack

in a computer system.

A stack is known as a “last in, first out” (LIFO) data structure. A logical view of a

stackis shown in Figure 5: you can see that three items have been added to the

stack. If you want to add another item to the stack you use the push () method

to add to the top. You can use the peek () function to look at, but not remove

from, the top of the stack. Finally, to remove an item from the stack, you use the

pop () method.

Methods that can be applied to a stack are outlined in Table 7.

Table 7 Stack methods

Method Explanation

isEmpty () | Checksto see if the stack contains data.

push () Adds data to the top of the stack.

pop() Removes data from the top of the stack.

peek Allows you to view the data at the top of the stack without

removing the data.

item viewed but item returned

not removed and removed

peek() pop()
EEE—

push(item)
—_—

A Figure 5 Visual representation of a stack

B2.2 Data structures

Whenever the push, pop or peek methods are evoked, the operation is always

O(1) as only the top element of the stack is being accessed at any given time and

the size of the stack is irrelevant. Accessing the first item added to the stack is

an O(n) operation, as you need to remove all items above it to reach that item.

When a stack is created in programming it is of a fixed size. Stacks do not support

dynamic allocation; therefore, if stacks become too big there is not enough

space within memory and you will get a stack overflow error.

Stacks can be used in computer science to solve the following problems.

Recursive problems: Stacks are essential in recursive algorithms. Every time a

recursive call is made the current state is pushed onto the stack. Once the base

case is resolved the push method is used to resolve the calls.

Parsing: A stack is used to ensure that all of the brackets are closed. For example,

in Java if the braces {} are closed, every time an open brace { is read it is pushed

onto the stack and every time a closed brace } is read it is popped from the stack.

An empty stack means the correct number of brackets.

Undo functions: A stack is used to keep a track of the operations completed by

a user of a program. Every operation is pushed onto a stack. Fach time they undo

an action, the last action is popped from the stack and reversed.

Reversing a string: The characters from the string can be pushed onto the stack

separately. When they are popped from the stack they are in reverse order.

e
A quadrat is a frame used in biology to count the number of organisms within

asample area.

Imagine you are using a quadrat to record the number of times you see a

daisy. A stack could be useful as you could push the number of daisies per

quadrat onto the stack. Try coding this program to help students using

quadrats.

B2.2.4 Explain the concept of a queue as a

“first in, first out” (FIFO) data structure
Imagine you are in a busy shop. You find the item you need and join a queue

to pay. Because you join the back of the queue, the people in front of you will

be served before you, in the same order they joined the queue. This is similar

to a gueue in a computer system.

A queue is known as a “first in, first out” (FIFO) data structure. A logical view of a

queue is shown in Figure 7. In the figure you can see that three items have been

added to the queue. If you wanted to add another item to the queue you would

use the enqueue () method to add to the back of the queue. You could use the

front () function to look at, but not remove from, the front of the queue. Finally,

to remove, you use the dequeue () method.

Big O(1) and Big O(n) are

measurements of the efficiency of

the algorithm. This is known as Big

Q efficiency. This will be explained

further in section B2.4.1.

Call When you call an algorithm,

you are making a request for the

program to perform the action

detailed by that algorithm using the

data provided.

A Figure 6 A queue of people

359

360

B2 Programming

enqueue(item)

engueue(item) I I

enqueue(item)
- >

! I front() item viewed but
e

not removed

i I ' dequeue() jtem returned
and removed

A Figure 7 Visual representation of a queue

Table 8 Queue methods

Method Explanation

isEmpty () | Checks to see if the queue contains data.

enqueue () | Adds data to the back of the queue.

dequeue() | Removes the data from the front of the queue.

front() Allows you to view the data at the front of the queue without

removing the data.

To dequeue or access the front element of a queue is an O(1) efficiency. You are

only accessing the first element, which is always at the front. To dequeue the last

element in a queue is O(n) efficiency as you need to dequeue all elements in front

of it. In programming languages, queues can use dynamically allocated memory.

Therefore, if you have an unknown data set size, a queue can be more efficientin

its use of memory than a stack.

Queues can be used in programming to solve the following problems.

Managing playlists in media: When you create a playlist for Spotify or YouTube,

a queue is used to keep a track of what you add to your playlist, and when the

current item you are listening to or watching is finished the dequeue () method

is called to get the next item.

Printer queues: Ifyou send many jobs to the printer, they are added to the print

queue. If your printer is connected to your machine then once each print job has

completed, the dequeue () method is called to get the next one.

Networking: Queues are used to manage traffic in routers and switches. Data

packets are stored in the queue until they can be processed or serialized.

You could use a queue to model aeroplanes entering and leaving an airspace.

Try coding this model. You can assume the planes arrive and leave the queue

in the expected order.

B2.2 Data structures

@ Thinking skills

Identifying suitable data structures

Using data structures allows you to become more knowledgeable. Think

carefully: What does your program need to do? What data structure will support

your algorithm? This is an essential part of the algorithmic thinking process.

Do you agree or disagree with the following data structure decisions?

Alist of animals in the zoo: one-dimensional list.

A seating plan in a classroom: one-dimensional list.

A list of planes waiting to land in an airport: stack.

A line of people waiting to pay in a store: stack.

A representation of a shelfin a convenience store: two-dimensional list.

Jobs waiting to be printed by a network printer: a queue.

Compare your answers with a partner. If you got different answers, discuss the

decision together to work out the correct answer.

TOK

Data structures are used in all

aspects of everyday life. Lists can

be used to identify a shopping list

or a “to-do” list. Two-dimensional

lists are similar to calendars and

planners. If you wash dishes, you

interact with stacks. Any time you

wait in line to pay, perhapsin a

supermarket or buying tickets for a

movie, you are using a queue.

Abstract data types (ADTs) have

set behaviours that determine how

they act.

How can the abstract concepts of

data structures be used to benefit

real-life applications?

Practice questions

5. Outline three differences between a static data structure and a dynamic data structure. [6 marks]

6. A program stores the different transactions that have occurred in a bank in a day. Explain whether a static

or dynamic data type would be suitable for this purpose. [3 marks]

7. A program stores the activities that occur monthly at a gym. Here is an extract from the program.

(0] (1] [2] (3] [4] (5] [6]

[0] | 8-Pilates | 18 -Boxfit | 13— Attack | 9—Pilates | 14— Attack | 8 —Pilates | 8- Pilates

19 - Boxfit 10 - Boxfit

[11 | 10-Boxfit | 9-Pilates | 19-Boxfit | 9-Pilates 9 - Baby 8 —Pilates | 8-Pilates

17 - Attack Yoga

[2] | 8-Pilates 11-Boxfit | 18—Pilates | 12-Boxfit | 18 —Pilates | 8 — Pilates 8 — Pilates

17 -Yoga 19 - Attack | 10 -Boxfit

[3] | 18 —Pilates | 18 -Boxfit | 19— Pilates | 19-Boxfit | 19—Pilates | 8- Pilates 8 — Pilates

a. Constructan algorithm to count how many Pilates classes there are during the month. [5 marks]

b. Construct an algorithm that counts how many evening classes (classes happening at 18 or 19)

there are. [5 marks]

c. Construct an algorithm that returns a list of Boxfit classes including the week and day they occur on.

Assume [0][0]is Monday week 1. [6 marks]

8. Describe a real-world application for a stack and a queue. [4 marks]

361

362

YR Programming constructs

A Figure 8 Cupcake recipe

In computer science, you learn

how to construct algorithms by

developing solutions to problems.

You can extend your knowledge

by developing those algorithms.

By carefully testing the algorithms,

you can learn how they work, how

to make them efficient, and how

to incorporate them into different

programs. This cycle of designing,

developing and testing algorithms

is one of the key methods of

producing knowledge in computer

science.

To what extent does the

interpretation of the stages of the

algorithm impact the knowledge

produced by the algorithm?

Syllabus understandings

B2.3.1 Construct programs that implement the correct sequence of code

instructions to meet program objectives

B2.3.2 Construct programs utilizing appropriate selection structures

B2.3.3 Construct programs that utilize looping structures to perform

repeated actions

B2.3.4 Construct functions and modularization

B2.3.1 Construct programs that implement

the correct sequence of code instructions to
meet program objectives
When cooking, you often follow a recipe. If you follow the instructions in the

correct order then you will make the food you expect. However, if you do not

follow the instructions in the correct order, you may end up with something

inedible. This is similar to developing algorithms. You need to carefully place the

instructions in the correct order to get the correct functionality.

Placing the instructions in the correct order enables you to avoid errors such as

infinite loops, deadlocks or incorrect inputs.

Infinite loops occur when the end condition of a loop is never met. For example,

you do not increment a counter, or the base case is below the end condition so it

is never met.

Deadlocks occur when two processes need access to the same resource at the

same time. A non-programming example of a deadlock would be in a kitchen

where one person has use of the cooker and another the counter top. If the

person using the stove cannot free up the stove without using the counter top

to place their item but the person using the counter top cannot move without

having the stove free, neither can move and they are in a deadlock. Clear

sequencing of instructions enables resources to be used at different times so that

the deadlock can be avoided.

Incorrect inputs can break a program. It is important to consider this when you

ask the user for inputs and to implement methods to prevent incorrect inputs

breaking the program.

B2.3 Programming constructs

@ Thinking skills

Applying knowledge to real-world problems

Inquiring into real-world problems helps you to stay curious and think about

computational processes in the real world. Identifying the different stages of

real-world processes and the order they need to be completed enables you

to start the pattern recognition process.

Consider the following process. What patterns are occurring? What actions

need to occur to complete the task?

Without using code, write an algorithm to complete the task.

An escape room company has an overview of how they help customers to

“escape”. When the customers arrive, they are given 10 minutes to read

through the instructions and the story of the room. Once they enter the room,

they are left alone for 15 minutes. If they have not activated any triggers in

15 minutes, two clues are supplied. After 15 minutes, if there are no new

triggers within 10 minutes, help is provided. At any given time, if the user

requests help, they are given a clue. If the customers are particularly bad (for

example, they have not activated a trigger in 10 minutes after two clues) a

trigger is automatically activated.

B2.3.2 Construct programs utilizing _
appropriate selection structures Selection Making decisions within
You make decisions every day, even if you are not consciously thinking about the code, usually completed with an

them. The games you play on your computer make decisions about what comes if statement.

next based on the current performance in the game. If you fail a level and you

have enough lives then the program will allow you to start again. If you do not

then your game is over. This is known as selection in computer games.

There are two types of selection statements within programming you can

make use of. You canuse if, if ... else and else statements or you can use

case statements. The most common selection statement in any programming

language is an if statement. These if statements can be used with variables to

help us control the flow through the program.

An if statement always follows the same structure. A Figure 9 Computer games make
decisions based on performance

If (condition) Action that will occur if the condition evaluates to True

Optional else if Action that will occur if the condition evaluates to True To understand what is happening

(condition) when these statements are being

Optional else Catch-all action evaluated, review subtopic

Al.2 Data representation and
A simple program saying what to do in your free time depending on your age computer logic.

is shown in the example that follows. The different options shown depending

on age are controlled by if statements. For example, if you are under 5, the

option displayed will be go to a soft play centre. If you are over 5 and under

12, the option to go to the park will be displayed. If you are 12 to 18 then the

option to spend time with friends will be displayed. If you are over 18 then it will Making decisions in code allows
recommend you go for dinner. The program is going to assume that over 100 is you to develop interesting

an invalid age. programs.

364

B2 Programming

TOK

There are several well-known examples of bias being accidentally built into

algorithms. Bias occurs due to the data used to train the system or the way the

program has been developed by programmers. You will learn more about this

in topic A4 Machine leamning.

Gender bias

In 2018, Amazon scrapped a hiring tool because it favoured male candidates.

The hiring algorithm used historical data to develop the system. Since women

traditionally held fewer STEM jobs, the data included a historical bias towards

men. This resulted in female candidates being less likely to be offered roles

they were equally or better qualified for than male candidates.

Racial bias

Many facial recognition systems are less effective with darker skin tones.

This has often been because the algorithms have been trained exclusively with

images of White people. Ifimages of people of colour are not included in the

training data, the algorithm does not know how to process this kind of data.

Is it possible for algorithms to be bias free, or is the bias of the programmer

inevitable in the production of algorithms?

Selection statements in Java

1. Scanner input = new Scanner(System.in);

B

3. System.out.println("what is your age? ");

4. int myAge = input.nextInt();

Bc

6. if (myAge <= 5) {

e System.out.println("I recommend you go to the
soft play centre");

8. 1}

9. else if (myAge > 5 && myAge <= 12) {

10. System.out.println("I recommend a trip to the

park”);

11. }

12. else if (myAge > 12 && myAge <= 18) {

13. System.out.println("I recommend meeting up with
friends");

14. }

15. else {

16. System.out.println("I recommend going to the
movies");

17. }

B2.3 Programming constructs

@ Selection statements in Python

1. myRge = int(input("What is your age? "))

2.

3. if (myAge <= 5):

4. print("I recommend the soft play centre")

S

6. elif(myAge > 5 and myAge <= 12):

e print ("I recommend a trip to the park")

9. elif (myAge > 12 and myAge <= 18):

10. print ("I recommend meeting up with friends")

11.

12. else:

13. print ("I recommend going to the movies")

You may have noticed the use of && in Java and and in Python. These allow you

to add more than one variable to the condition, for example, if it is sunny and

itis warm. Use the notation || in Java and or in Python for “or”; for example, if it

is sunny or it is warm. Use the notation ! for “not” in both Java and Python; for

example, ifit is not raining. Examples of conditions using these operators are

shown in Table 9.

Table 9 Selected operators

Operator Description Example

Checks for equality. variable x = 100

== Alsoworks forstringsin | x == 100

Python. Output: True

Checks for greater than. variable x = 100

> Alsoworks forstringsin | x > 150

Python. Output: False

Checks for less than. variable x = 100

< Alsoworks forstringsin | x <« 150

Python. Output: True

Checks for greater than variable x = 100

>= orequal to. Alsoworks | x >= 100

for strings in Python. Output: True

Checks for less than or variable x = 100

<= equal to. Alsoworksfor | x <= 50

strings in Python. Output: False

(S
You can make a text-based

adventure game with if

statements.

Give the user a question and two

or three options. For example:

“You walk into a banquet hall and

you are faced with a talking wall.

What do you do? Run the other

way, talk back in a polite fashion,

or challenge the wall to a riddle?”

Use the user’s answerand if

statements to determine what

happens next. Try coding a text-

based adventure game.

365

B2 Programming

TOK

366

Qutliers in data sets are exceptions

to normal data.

If you are developing a program

about animals, you may want to

store their height. The largest horse

in the world was 2.13 m tall. You

might not include this statistic when

deciding the upper boundary for

the height of a horse.

If you are developing a program

about average salaries, you

might choose to exclude data

about multi-millionaires as their

information would skew your data.

However, there are animals and

people that do belong in these

categories, and there could be

reasons to include their datain

your program.

When abstracting the information

to develop selection statements,

you must decide what data to keep

and what data to ignore. What

are the consequences of ignoring

outliers in your data set?

Repetition Repeating sections of

code, usually completed with a for

loop orawhile loop.

Operator Description Example

iabl = 100
Checks for not equal to. variable x

1= Alsoworks forstringsin | x 1= 5

Python. Output: True

variable x = "chicken"

Used to test lity of
.equals() sedtotestequality o x.equals("“chicken")

strings in Java.

Return: true

variable x = "chicken" Used to test if one string

is less than (<0), equal

to (0) or greater than

(>0) another in Java.

.compareTo() x.compareTo("fox");

Return: =0

B2.3.3 Construct programs that utilize

looping structures to perform repeated

actions
Repetition allows you to repeat sections of code as many times as required.

There are two types of loops you need to be aware of when programming:

while loops and for loops.

while loops

Awhile loop repeats sections of code until a condition has been met. Real-life

examples of while loops include playing music until the playlist ends or the

user presses stop, a car moving forward while the driver has their foot on the

accelerator (gas) pedal, orin gaming, continuing the level while you have lives left.

In programming, awhile loop is used when a condition needs to be met but

you do not know how many times the code needs to be repeated for that to

happen. For example, a while loop allows you up to five attempts to entera

password correctly.

This program will run until the user enters the number 100. Note that you need

an if statement inside the loop to determine whether the end condition is met

or not.

B2.3 Programming constructs

While loop in Java

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Scanner input = new Scanner(System.in);

System.out.println("Enter a number");

int guess = input.nextInt();

boolean end = false;

while(!end) {

if(guess !=100) {

System.out.println("you have not answered

correctly");

System.out.println("Enter a number");

guess = input.nextInt();

}

else {

end = true;

}

While loop in Python

1.

2.

3.

4.

5.

6.

7.

8.

9.

guess = int(input("enter a number"))

end = False

while (end!=True):

if (guess != 100):

print("you have not answered correctly")

guess = int(input(“enter a number"))

else:

end = True

You can use awhile loop to make a simple guessing game of “higher or lower?”

The game works like this.

User One enters a number.

User Two guesses a number, trying to find the same number as User One.

If they guess a higher number, print a message to tell them their number was

too high.

If they guess a lower number, print a message to tell them their number was

too low.

If they guess correctly, print “You have guessed correctly, well done!”.

Allow User Two five attempts to guess User One's number. If they do not

guess the right number, print a message to say they did not guess correctly.

367

B2 Programming

@ Communication skills

Using programming to raise

awareness

In your CAS activities, develop

a game to help to engage your

audience with your project

and ideas. Simple games using

repetition and selection statements

are most effective. Games do not

have to be complex to be engaging.

Write an idea for a game using your

coding knowledge that will help

young students (4-5 years old)

understand when it is safe to cross

the road.

Guessing gamein Java

e

2,

3.

4.

5.

6.

7.

8.

9.

10.

11.

12,

13.

14.

15

16.

17.

18.

19.

20.

21.

22,

23.

24.

25,

26.

27.

28.

29.

30.

31.

32.

HEN

34.

35.

36.

37.

38.

public static void main(String args[])

{

Scanner input = new Scanner (System.in);

boolean end = false;

boolean win = false;

int number of lives = 5;

System.out.println("User One - What is the price
of the item");

int price = input.nextInt();

while (end == false) {

System.out.println("User Two - please enter
your guess");

int guess = input.nextInt();

if(guess == price) {

win = true;

end = true;

}

else if (guess < price) {

System.out.println("The guess is too low");

number of lives = number of lives - 1;

}

else {

System.out.println("The guess is too high");

number of lives = number of lives - 1;

}

if (number of lives == 0) {

end = true;

}

}

if (win == true) {

System.out.println("Congratulations - You
Win!");

}

else {

System.out.println("Sorry you did not win this
time");

}

B2.3 Programming constructs

Guessing game in Python

1. end False

2. win False

3. number of lives = 5

4.

5. price=input("UserOnepleaseenterthepriceoftheitem")

6.

7. while (end == False):

8. guess = input("User Two - Please enter your guess")

9.

10. if (guess == price):

11. win = True

12. end = True

13 elif (guess > price):

14. print (guess, "is too high")

15. number of lives = number of lives - 1

16. elif (guess < price):

17 o print (guess, "is too low")

18. number of lives = number of lives - 1

19.

20. if (number of lives == 0):

21. end = True

22.

23. if (win == True):

24. print("Congratulations you win!!")

25. else:

26. print("Sorry you did not win this time")

250 a

for loops

A for loop repeats the section of code for a set number of times. It could be

used if something needs to be completed a set number of times. If you needed

to make 20 pancakes, then you would repeat the cooking process 20 times.

If you needed to calculate and display a times table, you may want to repeat the

process 10 times.

To understand where loops can be

used to control in the real world,

refer to subtopic A1.3 Operating

systems and control systems.

369

B2 Programming

ForloopinJava For loop in Python

for(int 1 = 0; 1 < 11; i++){ for i in range (0, 11):

System.out.println(i + " * print (1i*10)
10 = " + i*10);

Output:
}

0*10=0
Output:

1*10=10
0*10=0

2*10=20
1*10=10

3*10=30
2*10=20

4*10=40
3*10=30

5*10=50
4*10=40

6*10=60
5*10=50

7*10=70
6*10=60

8*10=80
7*10=70

9*10=90
8*10=80

10 *10=100
9*10=90

10*10=100

Programmers use for loops to search, manipulate and display items within

a list.

Forloopin Java

1. String [] team = new String []{"Heather", "Toni",
"Francesca", "Ben", "Syed", "Wes", "Toni", "Ife",
"Chidi", "Taro"};

4. int count 0;

6. for(int i = 0; i < team.length; i++) {

Ta

8. if (team[i].equals("Toni")){

9. count = count + 1;

10. }

11. }

12. System.out.println("“The number of Tonis in the list
is: " + count);

Qutput: The number of Tonis in the list is: 2

This program searches through the list using a linear search and counts the

number of Tonis in the list.

370

B2.3 Programming constructs

For loop in Python

1. team = ["Heather", "Toni", "“Francesca", "Ben",

2

3. count = 0

4.

5. for name in team:

6. if name == "Toni":

e count = count + 1

8.

9. print ("The number of Tonis in the list is: ", count)

Output: The number of Tonis in the listis: 2

©
This program searches through the list using a linear search and counts the .

number of Tonis in the list. Repeating code within your

programs allows you to develop

more effective solutions.

You can make a pick up sticks game with loops. Usually, two users take turns

removing 1, 2 or 3 sticks from a pile of 21 sticks. The loser is the person who

runs out of sticks to pick. Try coding this.

B2.3.4 Construct functions and

modularization

When you start programming, you make simple programs that are easy to

read. As you become more competent, your programs will become more _

complex, containing many lines of code that become difficult to follow even

with comments and meaningful names. This is when modularization becomes

useful. For example, you could move a sequence of lines of code that calculate a

bonus into a function or module called calculate function.

Modularization The process

of separating lines of code that

perform a task into different

functions or modules. The same

There are several advantages to using modules. module can be used in many

Code is easier to read: Separating code into functions enables programmers to different programs.

see immediately where the code is being used and how the code is functioning.

Code is easier to test: Functions and modules can be tested independently

of the whole program, enabling them to be tested prior to the whole program

being complete.

Code is easier to reuse: Functions and modules that perform tasks can

be imported into other programs, which saves time and effort when coding new

programs.

Code is easier to update: When the code is separated into functions and

modules, updating the code is easier. As all of the code is contained within the

function, any changes only need to happen within the function.

371

372

B2 Programming

Here is an example of a function that returns the volume of a rectangle. The user

inputs the height, width and depth of the rectangle. The function identifies the

inputs by their parameters. The calculation is carried out and the resulting value,

the volume of the rectangle, is sent back to the section of code that made the

original call.

public static int rectangleVolume (int w, int h, int d){

// code not shown

}

def rectangleVolume(w, h, d):

code not shown

A note about parameters

The function or method signature identifies the expected parameters. These are

the values the function needs in order to function correctly.

The expected parameters are those inside the () brackets. When you call

this method or function from another class or from another method, you must

include three values, in this case, integers. If you do not, then the function will not

perform as expected.

The actual parameters are the real values we send into the method or function

whenitis called. These can either be values or variables holding the correct values.

int volume = rectangleVolume(width, height, depth); //

the variables representing the values

or

int volume = rectangleVolume (10, 20, 10):

volume = rectangleVolume(width, height, depth) # when the

variables represent the values

or

volume = rectangleVolume(10,20,10)

B2.3 Programming constructs

public static void main(String[] args) {

Scanner input = new Scanner(System.in); The program collects user

System.out.println("Please enter the width"); input and stores the data

in three variables.
int width = input.nextInt();

System.out.println("Please enter the height");

int height = input.nextInt();

System.out.println("Please enter the depth");

int depth = input.nextInt();

System.out.println(rectangleVolume(width, height, depth));

}

Integer will be | Name of the method. | The method expects .

returned. || three integers to work.
| i |

[1 1
public static int rectangleVolume(int w, int h, int d) {

int volume = 0; Thisis a local

e B variable. It only exists
return volume; S o

~ within the function.

}

A Figure 10 |ava parameters

Name of the method. The method expecls these

_ _ parameters so it can work.

! |
def rectanglevVolume(w, h, d);

Local variable only exists in
volume = w * h * d; this function.

return volume; [

7 : P ™

Value returned to method Datais collected from

from which it was called. user and stored in three
separate variables.

width = int(input("please enter the width")) -
I ™)

height = int(input("please enter the height")) Datais sent to the

depth = int(input("please enter the depth")) method for the value to
be calculated and then

print(rectanglevolume(width, height, depth)) } printed.
- -

A Figure 11 Python parameters

373

B2 Programming

As outlined in Figures 10 and 11, local variables can only be accessed and used

within the function where they are declared. Global variables are variables

declared outside of a function. They can be accessed throughout the whole code.

Libraries are useful modules we can import into our code. Although they are not

in the syllabus directly, they are useful to know. Libraries are pre-written, pre-

tested pieces of code. You do not need to know how they work, only that they

can save you time when developing a solution. To use a library, you normally

need to import it before you can make use of any methods.

Figures 12 and 13 are examples of code that utilize the random library. The

program will use a pseudorandom number to select a student from a list. A

random library exists in both Java and Python.

import java.util.Random; l [e

public class main {

public static void main(String args[]{

String [] myStudents = new String [] {"Angelina",

"Patrick"”, "Riley", "Leo", "Keani", "Dane", "Arham",

"Niko"};
»

Create instance of library
Random r = new Random() ;I ready for use.

-

int choice = r.nextInt(myStudents.length-1); =

Make use of the library

System.out.printIn("The chosen student is: " + method nextint.

myStudents[choice]);

}

}

A Figure 12 Random library in Java

import randoml {Import library for use.]

myStudents = [“Angelica", "Patrick", "Riley", "Leo",
"Keani", "Dane", "Arham", "Niko"]

print("The chosen student is: ",
random.choice(myStudents))

[Make use of library

L method.

A Figure 13 Random library in Python

374

B2.3 Programming constructs

There are many libraries available for both Java and Python. Check the API

documentation provided by Oracle and Python to see what is available for use.

Table 10 gives a summary of some useful libraries.

Table 10 A summary of some useful libraries

@ Javalibrary Description

Scanner Enables you to collect data from the console and read

files.

Random Enables you to generate pseudorandom numbers.

time Enables you to make use of dates.

math Enables you to make use of mathematical functions.

(@) Python library | Description

Random Enables you to generate pseudorandom numbers.

0s Enables you to access the operating system.

datetime Enables you to make use of dates.

math Enables you to make use of mathematical functions.

(N
In the game “Snake eyes”, the user rolls two dice until each die shows the

number one—this is called “snake eyes”. The person that rolls “snake eyes”

with the fewest throws wins. Try implementing a version of this in code.

Be careful not to give your programs the same name as a library. For example, do

not call a file “random”, because your computer will try to run that program rather

than search the library.

Practice questions

9. Explainthe difference between “and” and “or” in an

if statement.

10. Outline two advantages of using a library.

11. A programmer is developing a program that will calculate the

area of a circle using a function or method. Construct the code

to calculate the area of the circle.

12. A programmer is developing a “Who am I?" game. The user s

given five clues and they must guess who the celebrity is.

The game ends when the celebrity’s name is guessed.

Construct an algorithm for this game.

[3 marks]

[4 marks]

[4 marks]

[5 marks]

Libraries make use of

encapsulation. You can find out

more about this in topic B3

Object-oriented programming.

Specific knowledge often belongs

to a small group of users.

In Tanzania, farmers operate a

unique rotational farming system

using ridges and pits to prevent the

destruction of arable land.

Pacific island communities

use unigue marine resource

management techniques

to protect the ecosystem of

theirislands.

Research scientists have

specialized knowledge about the

development of medications to aid

specific illnesses, which are often

kept secret until they are ready for

market. When the new medications

are available for sale, their formulas

are kept secret, with only a few

people knowing how they function.

Does the knowledge of producing

code—for example, code in

libraries or code you produce—

only belong in the programming

community?

375

YW Programming algorithms

Syllabus understandings

B2.4.1 Describe the efficiency of specific algorithms by calculating their Big O

notation to analyse their scalability

B2.4.2 Construct and trace algorithms to implement a linear search and a

binary search for data retrieval

B2.4.3 Construct and trace algorithms to implement bubble sort and

selection sort, evaluating their time and space complexities

. B2.4.4 Explain the fundamental concept of recursion and its applications in

programming T
H
Y

B2.4.5 Construct and trace recursive algorithms in a programming language

B2.4.1 Describe the efficiency of specific

algorithms by calculating their Big O

notation to analyse their scalability
Programming is both about developing solutions and then evaluating solutions

for their efficiency. One way we can determine the efficiency of algorithms is

by analysing their Big O efficiency. This is a way to determine how well the

program would function if it were bigger.
Big O efficiency Measures the

upper bound of an algorithm’s Big O notation and its effect on an algorithm is summarized in Figure 14.
efficiency, focusing on the worst-

case scenario. It is one way to

theoretically measure the efficiency

of an algorithm in terms of number

of operations required to complete

a task.

Bad

Okay

N
u
m
b
e
r
 o
f
o
p
e
r
a
t
i
o
n
s

To understand why it is important to

consider algorithm efficiency think

about the complex algorithms in

subtopic A4.3 Machine learning Size of data set

approaches.

Good

A Figure 14 Big O efficiency for different algorithms

376

B2.4 Programming algorithms

Big O values, descriptions and examples of them are shown in Table 11.

Table 11 Big O values, descriptions and examples

Big O Notation | Description Examples

The number of operations required The _pop() and push() methods fora stack.
] Adding to the end of a dynamic data structure.

Constant o() to complete the task will be the same i)
.) Accessing an element of a data structure using

regardless of the input size. -
an index.

The size of the data reduces by half each A binary search tree is a typical example of

iteration of the operation. When the input logarithmic Big O complexity as the search
Logarithmic | O(log n) . pera vnentneinp 9 9 P ty .

size decreases each iteration it is said to values decrease by half each iteration of

have logarithmic time. the algorithm.

Linear time complexity is when the time An_ example of this would be using 3 fo_r Iogp

Linear O(n) complexity increases linearly with the fo iterate through a data structure. The time it
e of the inout takes increases directly in line with the number

size orthe input. of elements in the data structure.

A quicksort traverses the array to find the pivot

Log linear is slower than logarithmic. The point, divides the array and swaps elements

Log Linear | O(nlogn) | size of the data does not decrease by half until sorted. Each iteration does not deal with

each iteration but it does decrease. the full array and does not lose half each time,

but the size does decrease.

Quadratic algorithms have loops within . L .
_) . Common guadratic complexity is present in

loops. This means that for each iteration . . .
. . the following sorting algorithms: bubble sort,

. of the outer loop a full iteration of the)) ’
Quadratic | O(n"2) . . ; selection sort and insertion sort.

inner loop must be carried out. Adding to .
- In these sorts, a double loop is present and

the data set exponentially increases the .)
- therefore the complexities are quadratic.

complexity.

Cubic algorithms have three nested loops.

Foreach outerloop iteration the inner loop Cubic complexity will only occur when you have
Cubic O(n"3) must be fully iterated but for each iteration plexity Y Y

) three nested loops.
of the first inner loop the second loop must

be fully iterated.

Identifying the number of different pairings of

students in a class. Assume the class has 20

students (constant 20) and the students have to

Exponential complexity is one of the worst | be in pairs (exponent 2). Possible pairings = 400

Exponential | O(c™n) complexities. The exponential complexity is | different combinations. If the students were then

constant to the power of the exponent. put into trios (exponent 3), possible pairings =

8,000 different combinations.

Real-world examples include brute force

algorithms; calculating the Fibonacci sequence.

Factorial algorithms increase factorially

each time a new element is added to

Eg?fig;t:IffhtéZfi;f;:jr:?pls;r::g’;:)\;asmed The travelling salesman problem (determining

Factorial O(n!) P the most efficient way to visit each item on a
of an array, if you have three elements

you have six permutations; four

elements, 24 permutations. The same as

factorial growth.

route) is a factorial problem.

377

B2 Programming

Calculating Big O complexity

To calculate Big O complexity, consider how the number of operations of the

algorithm changes with the size of the input. Follow these steps.

1 Countthe number of operations. Identify the main operations of the algorithm

and use these as a base for your calculation as you scale up the data set.

2 Ignore anything that is constant or outside the method. For example, printing

the result of the method (this only happens once) or assigning a variable (for

example, minIndex = 0, which happens outside of the method). These

do not change once the method begins.

3 Change the input size and count the number of operations. If the number

has not changed, the complexity is O(1). If it has changed proportionally

(linearly), the complexity is O(n). If it has changed quadratically, the

complexity is O(n"2).

Worked example 1

Work out the Big O for this function.

L public static void main(String[] args) {

2

39 System.out.println(functionPercent(25,100));

4.

5. }

T public static double functionPercent(double X, double Y) {

7

8. double result = X/Y * 100;

9. return result;

10.

11 }

def calculatePercent(X, Y):

percent = X/Y * 100

return percent

U
'
I
v
h
l
.
n
-
l
l
\
.
i
l
—
'
o

print (calculatePercent(25,100))

Solution

Examine the function and follow these steps.

Step 1: Count the number of operations in the algorithm

Divide x by y 1

Multiply by 100 1

Total = 2

Step 2: Consider the number of times the algorithm will run. This algorithm will only run when called as there are no

loops. This means that each operation will only be counted once.

Step 3: Asthe number of steps in this algorithm never changes no matter how many times the method is run, the

number of steps is constant. If the number of steps is constant, the algorithm has O(1) complexity.

378

B2.4 Programming algorithms

Worked example 2

Work out the Big O for this function.

1. public static void main(String[]args){

2

3. int [] values = {2,5, 12, 56,

4. System.out.println(findMax(values));

5. }
G public static int findMax(int [] values) {

7.

8. int Highest = values[0];

9. for (int i = 0; i < values.length; i++) {

10.

11. if (values[i]>Highest)

2 . Highest = values[i];

g }

14. }

G return Highest;

16.

17. }

@
$;> values = [2,5,12,56,345,2,453,6,86,765,234,123,1]

2.

3 def findMax():

4. highest = values[0]

5.

6. for x in values:

s if x > highest:

8. highest = x

9.

10. return highest

Ml

L2 print (findMax())

Solution

Step 1: Count the number of operations in the algorithm

Assignment of i

Comparison of i

Incrementation of i

Comparison of current value and highest

Reassignment

Total = b

—

—

=

=

—

379

B2 Programming

Step 2: Consider the number of times the algorithm will run. This algorithm has a loop, so it will run the same number of

times each loop. You must count the number of operations each time the loop is completed. If the loop executes 1 time

there are 5 operations. If the loop executes 25 times, the number of operations is 125.

Step 3: The number of operations increases in direct proportion to the number of iterations or loop executions:

1 execution = 5 operations

25 executions = 125 operations

500 executions = 2500 operations.

This is a linear complexity: the number of executions is always multiplied by the same number to give the number of

operations. This has complexity O(n).

@D mhinking skills
Applying knowledge of Big O

Using Big O to calculate the scalability of algorithms allows you to become

more knowledgeable and considerate about the solutions you produce. It will

allow you to effectively evaluate the products you produce, encouraging you

to consider how to make improvements.

For two of the programs you have previously developed, calculate the Big O

efficiency of the algorithms you have used.

B2.4.2 Construct and trace algorithms to

implement a linear search and binary search

for data retrieval
Searching for data within a data set is an essential tool in programming. When

you place items into a data set, you need to be able to find them again. Searches

380

are used all the time in programs. You search music software to find artists you

Search To find data within a data want to listen to. You search a streaming service to find a list of television shows

siruciure. or movies you want to watch. In programming, you can search for one or more

items on a list, to find and use the related information.

You saw in the previous section of this chapter that the efficiency of your search

algorithm matters when you have large data sets. Now compare two different

search algorithms: the linear search algorithm and the binary search

algorithm.

The linear search algorithm

The linear search algorithm looks at each item in the data set to find information.

Consider a list of songs contained in a playlist, as in Table 12. To look for the song

“Little Red Lies”, start at the beginning, look at each item in the list and—when

you find the song—make a note of where you find it.

B2.4 Programming algorithms

Table 12 Playlist

Index (0] (1] (2] (3] (4] (5]

Song | The Old | Down Super Little Red | Geescht | Watching

Bridge | bythe Searchin” | Lies Over You

Fountain

1 Setthe found index to -1 (this means the song has not yet been found).

2 Start at the beginning on the list index O.

3 Ifsong name in this element matches the search song “Little Red Lies”

set the index to the current index

else

move onto next index.

The code for this linear search is shown below.

Linear search in Java

1. Scanner input = new Scanner(System.in);

2. String [] playlist = new String [] {"The 01d

7. String searchTerm = input.nextLine();

9. for(int i = 0; i < playlist.length; i++) {

Bridge", "Down by the Fountain", "Super Searchin'",
"Little Red Lies", "Geescht", "Watching Over
You"};

3.

4.

5. int foundIndex = -1;

6. System.out.println("What song are you looking for?");

10.

il if (playlist[i].equals(searchTerm)) {

12 foundIndex = i;

13. }

14. }

15. if (foundIndex != -1) {

16. System.out.println("The song was found at " +

foundIndex);

17. }

18. else {

19. System.out.println("The song was not found.");

20. }

When dealing with data sets,

searching is an essential skill.

381

382

B2 Programming

Linear search in Python

1. playlist = {"The 01d Bridge", "Down by the
Fountain", "Super Searchin'", "Little Red Lies",
"Geescht", "Watching Over You"}

3. foundIndex -1

4. searchTerm input ("What song are you looking for?

6. for name in playlist:

7 if (name == searchTerm):

8. foundIndex = name.index

9.

10. if (foundIndex != -1):

il o, print("The song was found at " + str(foundIndex))

12. else:

13. print("The song was not found")

When you are playing a game, it is often useful to know if you have an item in

an inventory. Develop a program that stores an inventory of items and allows

the user to search for the item. Display an error message if the user searches

for an item they do not have in their inventory.

If you add maore elements to the array, the number of operations will increase

linearly with the number of elements added. The efficiency of this algorithm is

described as O(n), which means it better for smaller data sets.

The binary search algorithm

For a binary search, the data set must be sorted. The root is the top of the data

set. Everything lower (in value) than the root is placed to the left of the root.

Everything higher (in value) than the root is placed to the right of the root.

Consider the following data set:

Louisa, Niall, Ben, Ahmed, Zhen, Mikhail, Amy, Joel, Stephan, Luis, Eilidh

Louisa will become the root and then each of the items will be added in the

order as described above. The resultant tree can be represented logically as

shown in Figure 15.

B2.4 Programming algorithms

Louisa

Ben Niall

Ahmed Mikhail Zhen

Amy Luis Stephan

Joel

Eilidh

A Figure 15 Binary tree diagram

To find if “Amy” exists in the data set you could follow the algorithm shown below.

1 Setthe found variable to false (as in the beginning the term has not been

found).

2 Setthe rootto the first root in the tree (Louisa) and make the comparison.

3 Ifcurrent node (Louisa) is equal to the search term (Amy)

set found to true

else if current node (Louisa) is < Amy alphabetically

set first node on the left to current node

else

set first node on the right to the current node.

4 Repeat until the end of the data set is reached or data is found.

Binary search in Java

1. publicint binarySearch(int searchArray|[], int search)

2. {

3o int left = 0, right =searchArray.length - 1;

4. while (left <= right) {

B int mid = left + (right - left) / 2;

6. // Check if the search term is present at the
midpoint

T if (searchArray[mid] == search)

8. return mid;

383

384

B2 Programming

20

10.

11.

12.

13.

14.

15,

16.

17.

18.

19.

Al

22,

23.

24,

25,

26.

27.

31.

// If search is greater than the midpoint,
ignore left half

if (searchArray[mid] < search)

left = mid + 1;

// If search is smaller than the midpoint,
ignore right half

else

right = mid - 1;

}

// if not found return

return -1;

}

//Main method

. public static void main(String args[])

{

main binarySearch = new main();

int searchArray]] { 10, 11, 12, 15, 20,25, 45,

84, 129, 139, 483, 586, 685 };

int search = 139;

int result = binarySearch.
binarySearch(searchArray, search);

if (result == -1)

System.out.println("The number is not in the
Array");

28.

29.

30.

else

System.out.println("The number is in the array
at index: " + result);

Binary search in Python

def binarySearch (searchArray, left, right,
searchTerm) :

while left < right:

midPoint = left + (right - left) // 2

#check if searchTerm is present at the midPoint

if searchArray[midPoint] == searchTerm:

return midPoint

#1f searchTerm is greater than midPoint, ignore
the left half

elif searchArray[midPoint] < searchTerm:

left = midPoint + 1

B2.4 Programming algorithms

10. #1f searchTerm is smaller than midPoint, ignore
the right half

11. else:

L2 right = midPoint -1

13.

14. # if the searchTerm is not found return -1

15. return -1

16.

17. searchArray = [10, 11, 12, 15, 20, 25, 45, 84, 129,
139, 483, 586, 685]

18. searchTerm = 139

19.

20. result = binarySearch(searchArray, 0,
len(searchArray)-1, searchTerm)

21.

22. if result != -1:

23. print("Element is present at index " +
str(result))

24. else:

25. print("Element is not present in the array")

If you add more elements to the data set, the number of operations does not

increase linearly. You lose half of the data set each time you make a comparison.

So, the efficiency of this algorithm is O(log n). Binary searches are more efficient

for larger data sets. You can find the data quicker as the data is already sorted

(indexed). To search a large set of data—for example, all the items in a store—it is

quicker to use a binary search as you halve the number of items to view with every

comparison made. This makes it quicker to find the data.

B2.4.3 Construct and trace algorithms to

implement bubble sort and selection sort,

evaluating their time and space complexities
In a game, the leaderboard must have the leader at the top and the rest of

the competitors in order after the leader. When a new person has a score

good enough to be added to the leaderboard, they need to be added to the

leaderboard in the correct space. This is known as sorting.

You need to be able to search for data and then put it in the correct order.

There are many sorting algorithms available for programmers to use, from the

highly efficient quick sort, with an efficiency of O(n log n), and merge sort, also

with an efficiency of O(n log n), to the very inefficient logo sort O(n * n!) or

gnome sort O(n"2).

The two sorts you need to be aware of for this course are bubble sort O(n"2)

and selection sort O(n"2).

Sort To place data in the correct

order in a data structure.

Bubble sort A sort that compares

pairs of elements and, if they are

in the wrong order, swaps them.

Although simple to implement this

algorithm is inefficient on large

data sets.

Selection sort A sort that utilizes

indexing to sort data into the

correct order. The starting value is

compared to all other values, ifa

higher value is found the highest

index is changed. At the end of the

pass the value is moved into the

correct space.

385

386

B2 Programming

The bubble sort algorithm

The bubble sort algorithm uses pairs to check if the next element in the list is

larger than the current element (assuming you are sorting lowest to highest).

If the items are in the wrong order then they swap.

This is demonstrated below.

Unsorted array

| 10 | 8 | 3499 | 3 | 39 | 1 |

Start of Pass One: Swap One

T R T
Swap Two

3 [39 [1]
Swap Three

| 10 | s 39 | 1 |

Swap Four

e T
Swap Five

o [s [5 1 » e
End of Pass One: 349 is in the correct spot

[
y

w

2 [+¥
]
o

—

=

s}

w

O8
]

Xs
]

[
y

10 | 8 | 3 | 39

Start of Pass Two: Swap One
s
y
 z

Swap Three

0
o

(V
S

‘

w0 [1 [3 [s |
End of Pass Two: 39 is in the correct spot

[s
e]

w

8 | 3 | 10 | 1

Start of Pass Three: Swap One

=

o

[
y

B2.4 Programming algorithms

Swap Two

I

‘

H

Swap Three

3 | 8

End of Pass Three: 10is in the correct spot

3 | 8 | 1

Start of Pass Four: Swap One

|

Swap Two

|

End of Pass Four: 8 isin the correct spot

3 | 1

Start of Pass Five: Swap One

End of Pass Five: 3 is in the correct spot
|

End of outer loop: all elements in the array are sorted

This is the algorithm for the bubble sort.

Bubble sort in Java

1. int [] toSort = {4, 56, 23, 2938, 29, 485, 2, 394,
58, 3838, 485, 9822};

2. int temp;

4. for (int i = 0; i < toSort.length-1; i++) {

e for (int j = 0; j < toSort.length - i - 1; j++)

{

6.

T if(toSort[j] > toSort[j+1]) {

8. temp = toSort[]j];

9. toSort[j] = toSort[j+1];

10. toSort[j+1] = temp;

11. }

12. }

387

B2 Programming

> 13. }

14. for (int i = 0; i < toSort.length; i++) {

15 - System.out.println(toSort[i]);

16. }

Bubble sort in Python

1. toSort = [4, 56, 23, 2938, 29, 485, 2, 394, 58,
3838, 485, 9822]

3. for i in range(0, len(toSort)):

4. for j in range(0, len(toSort)- i -1):

3 if toSort[]j] > toSort[j+1]:

6. temp = toSort[]]

s toSort[j] = toSort[j+1]

8. toSort[j+1] = temp

9.

10. print(toSort)

Advantages of bubble sort Disadvantages of bubble sort

* [Easytoimplement. * Veryinefficient for large data sets

e The elements are swapped due to the number of swaps.

in place: no extra memory

requirements are necessary.

* Minimal additional space required.

The selection sort algorithm

The selection sort algorithm uses a variable to track the index of the highest value

element (sorting lowest to highest). At the end of the pass, the highest value is

moved into the correct space.

This is demonstrated below.

Unsorted array

Highest Value = 10 // initial variable value

Highest Index = 0 // initial index value

10 | 8 | 349 3 39 1

Pass One: Search for the highest value to place in last element of array

Highest Value = 349

Highest Index =2

Last element and highest index :2 swapped and values reset

B2.4 Programming algorithms

Pass Two

Highest Value = 39

Highest Index =4

Last element: 1 and highest index swapped and values reset

10 8 1 3

Pass Three

Highest Value =10

Highest Index =0

Last Element: 2 and highest index swapped and values reset

3 8 1

Pass Four

Highest Value = 8

Highest Index =2

Last Element: 3 and highest index swapped and values reset

3 1

Pass Five

Highest Value =3

Highest Index =0

Last Element: 4 and highest index swapped and values reset

Outer loop ends and all elements are in the correct space

Here is the algorithm for the selection sort.

Selection sort in Java

1. int [] toSort = {4, 56, 23, 2938, 29, 485, 2, 394,
58, 3838, 485, 9822};

2. int temp;

3.

4. for (int i = 0; i < toSort.length - 1; i++) {

5. int highestIndex = i;

6. for (int j = i+l; j< toSort.length; j++) {

7o if (toSort[j]< toSort[highestIndex]) {

8. highestIndex = j;

9. } e

389

B2 Programming

@ | .. }

Tl ¢ temp = toSort[highestIndex];

12 . toSort[highestIndex] = toSort[i];

13. toSort[i] = temp;

14. }

15. for (int i = 0; i < toSort.length; i++) {

16. System.out.println(toSort[i]) + " ");

17. }

Selection sort in Python

1. toSort = [4, 56, 23, 2938, 29, 485, 2, 394, 58,
3838, 485, 9822]

2,

3. for i in range(0, len(toSort)-1):

4. highestIndex = i

3 for j in range(i + 1, len(toSort)):

6. if (toSort[j]<toSort[highestIndex]):

7] highestIndex = j

8.

9. temp = toSort[highestIndex]

10. toSort[highestIndex] = toSort[i]

Tl . toSort[i] = temp

12.

13. print(toSort)

Advantages of selection sort Disadvantages of selection sort

* Works well on small data sets. * Inefficient for large data sets.

* No additional storage needed as

elements swap in place.

* The number of swaps required is

minimized, compared with the

bubble sort.

390

B2.4 Programming algorithms

Worked example 3

A local café is open seven days per week. It is considering closing for one or two days each week to save costs. How

can it find out which days make the most money? Write a program to help the café work out which days to close.

Solution

Use a selection sort to sort the days into order of lowest sales to highest sales.

1. Create two lists, one containing the value of sales each day (named dailySales) and one containing the days of

the week (named days).

2. Use the selection sort to sort the values in order from lowest to highest.

3. Usethemin_index to complete the swap in both the dailySales list and the days list.

4. Use a for loop to print out the data in the correct order making it easier for the owner to compare days.

Java

il public static void main(String[] args) {

2.

8 int [] dailySales = {324, 123, 100, 210, 378, 435, 345};

4. String [] day = {"Sunday"”, "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"};

S

6. for (int i = 0; i < dailySales.length - 1; i++) {

7.

8. int min_index = i;

9.

10. for (int j = i+l; j<dailySales.length; j++) {

1L if (dailySales[j]< dailySales[min_index]) {

12. min_index = j;

13. }

14. }

15.

16. int temp = dailySales[min_index];

17 dailySales[min_index] = dailySales[i];

18. dailySales[i] = temp;

19.

20. String dTemp = day[min_index];

21. day[min_index] = day[i];

247 o day[i] = dTemp;

23. }

24.

25 o for(int i = 0; i < dailySales.length; i++) {

391

B2 Programming

'E, 26.

392

27.

28.

1.

e

35

4.

10.

11.

System.out.println("Day: " + day[i] + ", Sales: " + dailySales[i]);

}

}

Python

dailySales = [324

day = ["Sunday",
"Saturday"]

r 123, 100, 210, 378, 435, 345]

"Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

for i in range(0, len(dailySales)-1):

min_index = i

for j in range(i + 1, len(dailySales)):

if (dailySales[j]<dailySales[min_index]):

min_index j

dailySales[i], dailySales[min_index] = dailySales[min_index], dailySales[i]

12. for index in range (0,

13. print("Day: , day[index] , ", Value:

len(dailySales)):

, dailySales[index])

Develop a leaderboard. When someone completes a level their score gets

added to the leaderboard. The leaderboard is then sorted to show all scores

in descending order.

Sorts are particularly useful when developing programs that use leaderboards

and require the ranking of data.

Other useful algorithms

Here is a selection of other algorithms that you may find useful.

Summing

This will add all the values together in a list. Useful for if you are trying to total

together sales, or add together the value of items.

B2.4 Programming algorithms

Summingin Java

1.

28

3.

int [] data = new int [] {1, 20, 39, 4, 12, 20, 4,

34, 2, 29, 20, 5, 66};

int sum = 0;

for (int i = 0; i < data.length; i++) {

4. sum = sum + data[i];

5. }

6. System.out.println("The sum of all values is " + sum);

Summing in Python

1. data=1[1, 20, 39, 4, 12, 20, 4, 34, 2, 29, 20, 5, 66]

2. sum = 0

3. for i in range (0, len(data)):

4. sum = sum + data[i]

SR

"
6. print("The sum of all values is ", sum)

Alternatively:

1. data=[1, 20, 39, 4, 12, 20, 4, 34, 2, 29, 20, 5, 66]

2. sum = sum(data)

"
3. print("The sum of all values is ", sum)

Averaging

This will enable you to find the average of the values in a list.

Averaging in Java

1. int [] data = new int [] {1, 20, 39, 4, 12, 20, 4,
34, 2, 29, 20, 5, 66};

2. int sum = 0;

3. for (int i = 0; i < data.length; i++) {

4. sum = sum + data[i];

5. }

6. System.out.println("The average of all values is
+ sum/data.length);

393

B2 Programming

Averaging in Python

1. data = [1, 20, 39, 4, 12, 20, 4, 34, 2, 29, 20, 5, 66]

2. sum = 0

3. for i in range (0, len(data)):

4. sum = sum + data[i]

S

6. print("The average of all values is ", sum/
len(data))

Alternatively:

1. data = [1, 20, 39, 4, 12, 20, 4, 34, 2, 29, 20, 5, 66]

2. sum = sum(data)

3. print("The average of all values is ", sum/
len(data))

Count occurrences

Use this to count the number of times something features in a list. For example,

you may want to count the number of people under 18 in a list or count the

number of cars in a transporter.

Count occurrencesin Java

1. int [] data = new int [] {1, 20, 39, 4, 12, 20, 4,

34, 2, 29, 20, 5, 66};

2. int count = 0;

3. int searchValue = 20;

4.

5. for (int i = 0; i < data.length; i++) {

6. if (data[i] == searchValue) {

7o count = count + 1;

8. }

9. }
10. System.out.println("The number of times the value

" + searchValue + " appears is: " + count);

394

B2.4 Programming algorithms

@ Count occurrences in Python

1. data=[1, 20, 39, 4, 12, 20, 4, 34, 2, 29, 20, 5, 66]

2. count = 0

3. searchTerm = 20

4. for i in range(0, len(data)):

B if (data[i] == searchTerm):

6. count = count + 1

7o

8. print("The number of times ", searchTerm, " appears
is " , count)

Finding the maximum or minimum

Use this to find the maximum or minimum value in a list. For example, you may

want to find the worst test score or the oldest person. The code below returns the

value and the index (in case you want to access the value directly).

Find the minimum in Java

1. int [] data = new int [] {1, 20, 39, 4, 12, 20, 4,
34, 2, 29, 20, 5, 66};

2. int maximumValue data[0];

3. int maximumIndex = 0;

5. for (int i = 0; i < data.length; i++) {

6. if (data[i] > maximumValue) {

e maximumValue = data[i];

8. maximumIndex = i;

9. }
10. }

11. System.out.println("The maximum value is " +
maximumValue + " and appears at: " + maximumIndex);

Find the minimum in Python

1. data = [1, 20, 39, 4, 12, 20, 4, 34, 2, 29, 20, 5, 66]

2. maximumValue data[0]

0 3. maximumIndex

4. for i in range(0, len(data)):

B if (data[i] > maximumValue):

6. maximumValue = data[i]

¥/ maximumIndex = i

8.

9. print("The maximum value is", maximumvValue, "and is
at index " , maximumIndex)

395

396

B2 Programming

Recursion An algorithm that calls

itself with updated parameters until

the base case is met.

Alternatively:

1. data = [1, 20, 39, 4, 12, 20, 4, 34, 2, 29, 20, 5, 66]

2. maximumValue = max(data)

3. print("The maximum value is", maximumValue)

B2.4.4 Explain the fundamental concept of

recursion and its applications in programming
Imagine you have arrived in a strange city and you need to find your way to a

specific address. You might ask someone how to get to the address, follow their

instructions, and then ask someone else, continuing this process until you reach

your destination. This could be represented in an algorithm like this:

direction (current location)

1 ifatthe address end the algorithm

2 else

2.1 Ask for directions

2.2 Follow the remembered directions

2.3 Call direction (updated location)

Recursive algorithms

A recursive algorithm is an algorithm that calls itself with updated parameters

until the base case is reached.

A classic example of a recursive algorithm is the Fibonacci sequence.

TOK

Inductive reasoning requires the observer

to make a specific observation and then

apply this to make general observations.

For example:

“| saw puffins on a rocky cliff.”

“My friends also saw puffins on rocky cliffs.”

“All puffins live on rocky cliffs.”

Recursion starts with a base case and then

derives all additional values from this.

_ _ A Figure 16 Inductive reasoning
To what extent is recursion based on involves generalizations derived

inductive reasoning? from observations. For example,

drawing conclusions about all

puffins (a species of seabird)

from a sample

B2.4 Programming algorithms

Fibonacciin Java

1. public static int fibonacci (int number) {

2. if ((number == 0) || (number == 1)){

Ee return number;

4. }

5. else {

6. return fibonacci (number - 1) + fibonacci

(number - 2);

7. }

8. }

Fibonacci in Python

1. def fibonacci (num):

Ze if (num == 0) or (num == 1):

3. return num

4. else:

e return fibonacci (num - 1) + fibonacci (num - 2)

6.

7. print (fibonacci(10))

If the number passed into the method or function is not 0 or 1 (the base case), the

method is called again with the parameter updated.

Reasons why you would use a Reasons why you would not use a

recursive algorithm recursive algorithm

* Recursive algorithms allowyouto |* They contain a memory overhead

break down large, complicated as a stack is required to store the

problems into smaller, more recursive calls.

manageable tasks. * Ifyou do not have a good base

* Arecursive solution, when case you may get into an infinite

appropriate, is often simpler and recursive loop which would create

more elegant than an iterative a stack overflow and crash the

solution. computer.

Another famous recursive algorithm is the Towers Of Hanoi, invented by French

mathematician Edouard Lucas. Although toy versions only have 7 or 8 discs,

there is a myth that if someone solved a version of the puzzle with 64 discs, the

world would end. That's unlikely, but if you moved 1 disc per second, this would

take 585 billion years.

397

398

B2 Programming

One of the key algorithms to know that uses recursion is the recursive version of

a binary search. As you can see, instead of being in a while loop, the algorithm

makes use of recursive calls until the search term is found or there are no more

elements to search:

Binary search in Java

12,

13

14.

15,

16.

7 -

18.

19. }

22. {

23.

24.

25,

26.

27.

1. public int binarySearch (int [] searchArray, int
left, int right, int searchTerm) {

if (left > right) {

return -1;

}

int midPoint = (left + right)/ 2;

// If the element is present at the midPoint

if (searchArray[midPoint] == searchTerm) {

return midPoint;

}

// If element is smaller than mid, then ignore
right subarray

else if (searchArray|[midPoint |>searchTerm) {

return binarySearch(searchArray, left, midPoint
- 1, searchTerm);

}

// Else the element is greater than mid, then
ignore left subarray

else {

return binarySearch(searchArray, midPoint + 1,
right, searchTerm);

}

20. //Main method

21. public static void main(String args[])

main binarySearch = new main();

int searchArray[] = { 10, 11, 12, 15, 20, 25, 45,
84, 129, 139, 483, 586, 685 };

int search = 11;

int result = binarySearch.
binarySearch(searchArray, 0, searchArray.length-1,
search) ;

if (result == -1)

B2.4 Programming algorithms

28. System.out.println("The number is not in the
Array");

29, else

30. System.out.println("The number is in the array
at index: " + result);

31. }

Binary search in Python

1. def binarySearchIternative (searchArray, left,
right, searchTerm):

258 while left < right:

e midPoint = left + (right - left) // 2

4.

B #check if searchTerm is present at the midPoint

6. if searchArray[midPoint] == searchTerm:

T return midPoint

8. #1f searchTerm is greater than midPoint, ignore
the left half

9. elif searchArray[midPoint] < searchTerm:

10. left = midPoint + 1

11. #1f searchTerm is smaller than midPoint, ignore
the right half

12. else:

13. right = midPoint - 1

14.

15. # if the searchTerm is not found return -1

16. return -1

17.

18. def binarySearch(searchArray, left, right,
searchTerm) :

19. if (left > right):

20. return -1

21.

22. midPoint = left + (right - left) // 2

23.

24. #check if searchTerm is present at the midPoint

25, if searchArray[midPoint] == searchTerm:

399

0 0)

B2 Programming

Quicksort A sort that uses a pivot

point and orders values compared

to the pivot point, one side higher

and one side lower. The pivot point

is then changed and the process

repeated until the data is sorted.

26. return midPoint

27. #1f searchTerm is greater than midPoint, ignore
the left half

28. elif searchArray[midPoint] > searchTerm:

29. return binarySearch(searchArray, left, midPoint
- 1, searchTerm)

S0 #1f searchTerm is smaller than midPoint, ignore
the right half

31. else:

32. return binarySearch(searchArray, midPoint + 1,
right, searchTerm)

33.

34. searchArray = [l10, 11, 12, 15, 20, 25, 45, 84, 129,
139, 483, 586, 685]

35. searchTerm = 11

36. result = binarySearch(searchArray, 0,
len(searchArray)-1, searchTerm)

37.

38. if result != -1:

39. print ("Element is present at index " +

str(result))

40. else:

41. print("Element is not present in the array")

Quicksort

Bubble sort and selection sort both have the same Big O efficiency. Recursion

enables us to investigate another type of sorting algorithm: quicksort.

Quicksort makes use of a pivot point in the array. This can be any element in the

array but commonly makes use of the last element.

Here is an outline of how the algorithm functions:

1

2

Choose an array element to be the pivot element.

Order the rest of the array so lower values are to the left of the pivot and

higher values to the right.

Swap the pivot element with the first element of the higher values so it is

between the two.

Repeat the operation until all elements are sorted (this is completed

recursively).

B2.4 Programming algorithms

This is demonstrated below.

Unsorted array

Pivot point set to 1 as the last element in the array

10 8 349 3 39 1

Pass One: Search for the highest value to place in last element of array

All elements in the array are higher than T so must be on the right side of 1.

Therefore swap 1 and 10

1is in the correct spot; the pivot point is set as 10

8 349 3 39 10

Pass Two: Value 349 must be to the right of 10 and 3 to the left, so 349 and 3

swap

10 remains the pivot point

8 3 349 39 10

Pass Three: 10 must be between 3 and 349, so these elements are swapped

349 is now in the correct place

8 3 10 39 [349 |

Pass Four: As 1and 349 are in the correct place, choose 10 as the pivot point

8 and 3 are to the correct side of 10, as is 39, therefore 10 and 39 are in the

correct spot

8 3

Pass Five: As 1, 10, 39 and 349 are in the correct spot, 3 is chosen as the new

pivot point

8 should be to the right of the pivot, so these elements are swapped and the

array is in order

Although in the worst case this algorithm is still O(n2), there are several things

that can be put in place to bring the average to O(n log n). Algorithms exist that

help to point towards the best pivot point, which makes the sort more efficient.

B2 Programming

The algorithm is outlined below.

Java

1.

2.

Se

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

2

24.

25,

26.

27.

28.

public class QuicksortMethod {

public int partition(int array[], int low, int

high) {

int pivot = array[high];

int 1 = (low - 1);

for (int j = low; j < high; j++) {

if (array[]j] <= pivot) {

it++;

int temp = array[i];

array[i] = array[]];

array[]] temp;

int temp = array[i + 1];

array[i + 1] = array[high];

array[high] = temp;

return (i + 1);

}

public void quickSort(int array[], int low, int

high) {

if (low < high) {

int pi = partition(array, low, high);

quickSort(array, low, pi - 1);

quickSort(array, pi + 1, high);

}

B2.4 Programming algorithms

@ Python

1 def quicksort(arr):

7 if len(arr) <= 1:

Ja return arr

4. else:

5 pivot = arr[0]

6. 1?55 = [x for x in arr[l:] if x <=
pivot]

7l o greater = [x for x in arr[l:] if x >
pivot]

8. return quicksort(less) + [pivot] +
quicksort(greater)

9.

10. # Example usage:

17 arr = [10, 5, 2, 3, 7, 9, 1, 8]

12. sorted_arr = quicksort(arr)

135a print(sorted_arr)

Advantages of a quicksort

» Efficient for large data sets.

e Verylittle memory overhead required.

Disadvantages of a quicksort

* The worst case is still O(n2) if a poor pivot point is chosen.

* The sort does not work well for small data sets.

The rest of the array is ordered so that values lower than the pivot element are

on the left and higher values are on the right. The pivot element is swapped with

the first element of the higher values and this process is repeated until the array

is sorted.

403

404

B2 Programming

B2.4.5 Construct and trace recursive

algorithms in a programming language
Consider the following algorithm for working out factorial numbers.

public int factorial (int n) {

if (n <= 1) {

return 1

}

else {

return n * factorial(n — 1)

}

}

If you were to run this program with the initial parameter of 4, you could trace it in

a trace table (see Table 13).

Table 13 Factorial numbers trace table

Value of n Return call Return value Explanation

4 * factorial (3) 24

Asyou are not at base

case, you enter the else

and substitute n for 4.

3 * factorial (2)

Your first call is placed

on the stack and this

one evaluated. You are

still not at base case, so

push() thiscallonto

the stack and enter the

else statement.

2 * factorial(1)

This is still not base case,

sopush () thiscall onto

the stack and enter the

else statement.

You now know

factorial 1is 1,

so use this to

evaluate the

previous call.

You have reached base

case, so the number 1 is

returned. You must now

pop () your items off

the stack.

Another simple recursive algorithm is counting the sum of all natural numbers for a

given number; for example:

Input: 7, Output: 28 because 1+2+3+4+5+6+7=28.

B2.4 Programming algorithms

This is a good problem for recursion as it requires smaller and smaller problems

to be put together to find a solution. This can be represented as an algorithm

as follows.

Recursion in Java

1. public int natural (int n) {

2. if (n <= 1){

e return 1;

4. }

5. else {

6. return n + natural(n - 1);

7 }

8. 1}

Recursion in Python

1. def natural (num):

2. if (num <= 1):

3. return 1

4. else:

5 return n + natural(num - 1)

You can use Table 14 to test your calculations for the number 7.

Table 14 Sum of all natural numbers trace table

Value of n | Return call Return value (after base case has been

met)

7 7 + natural(6) | (7+21)=28

6 6 + natural(5) | (6+15)=21

5 5+ natural(4) | (5+10)=15

4 4 +natural(3) | (4+6)=10

3 3 +natural(2) |(3+3)=6

2 2 +natural(1) [(2+1)=3

1 -— 1

405

406

B2 Programming

Practice questions

13. Describe the term Big O efficiency. [2 marks]

14. Explain how Big O can be used to evaluate the efficiency

of an algorithm. [3 marks]

15. Consider the following data structure:

SWIMMER

(0] (1] (2] [3] (4] [5] (6] (7] (8]

Fabian | Zack | Martin | Alana | Blerina | Pawel | Pramiti | Oscar | Leone

Construct an algorithm that will sort the data structure into ascending

alphabetical order. [5 marks]

16. Consider the following algorithm:

Java

public static int fact (int n){

if (n <= 1){

return 1;

}

else {

return n * fact(n — 1);

Python

def fact(n):

if (n<=1):

return 1

else:

return (n * fact(n - 1))

Trace the algorithm for fact (4). [5 marks]

:YRW File processing

Syllabus understandings

B2.5.1 Construct code to perform file-processing operations

B2.5.1 Construct code to perform

file-processing operations
When programming, you store data in lists. However, when you stop running

a program, all of your data is lost. When you store data in files, you can store

the data after the program has been closed. One type of file you can use is a

sequential file. A sequential file is z file that stores data one record after another.

The files can only be accessed in a linear fashion.

| e |
Start of file End offile

Y

Figure 17 Sequential file storage

To retrieve a record, the file needs to be read starting from the beginning until

you reach the file you are looking for. The nature of the file means the data can

only be read in order—you cannot skip a record. If you want to make your solution
effective in the long term, being

Sequential files are not useful for finding data quickly but are useful when you able to write to a file is particularly

need low overhead files. Example uses for sequential files include the following. useful.

System log files: If a system generates log files, these can be stored sequentially

in case they need to be looked at later.

Batch processing: In banks, many records are processed overnight. Data is

processed in large volumes. Sequential files are useful for this.

Storing archives: If you have older data, storing it in sequential files is useful as

you do not need to access them quickly.

File writing in Java

In Java, you can use the FileWriter class to write and append to a file.

If you open FileWriter with one parameter, for example:

FileWriter output = newFileWriter("TestFile.txt");

This will write to the file, writing over any previous contents.

If you open FileWriter with two parameters, for example:

FileWriter output = new FileWriter("TextFile.txt", true);

This will append the next text to the file, adding to the previous contents.

.write(data); will write datato the file.

.close(); will close the file to prevent any errors occurring from unclosed

resources.
407

B2 Programming

Example overwriting file code

File overwrite in Java

1. import java.io.File;

2. import java.io.FileNotFoundException;

3. import java.io.FileWriter;

4.

5. public class FileInputOutputMain {

6. public static void main(String[] args) {

e String [] test = new String [] {"Ana",
"Cate", "Jamie", "Ian", "Seb", "Lisa"};

8. String data = "";

9.

10. for (int i = 0; i < test.length; i++) {

11. data = data + ", " + test[i];

12. }

13. try {

14. FileWriter output = new
FileWriter("TestFile.txt");

L5e output.write(data);

16. output.close();

17. }

L catch (Exception e) {

19. e.getStackTrace();

20. }

21. }

22. }

Example appending to file code

File appendin Java

1. import java.io.File;

2. import java.io.FileNotFoundException;

3. import java.io.FileWriter;

4.

5. public class FileInputOutputMain {

6. public static void main(String[] args) {

7 String [] test = new String [] {"Ana",
"Cate"; "Ja.mie", “Ian“, "Seb", "Lisa"}:

B2.5 File processing

8. String data = "";

9.

10. for (int i = 0; 1 < test.length; i++) {

1L data = data + ", " + test[i];

12. }

13. try {

14. FileWriter output = new
FileWriter("TestFile.txt", true);

15, output.write(data);

16. output.close();

17. }

18. catch (Exception e) {

19. e.getStackTrace();

20. }

21. }

22. }

File reading in Java

BufferedReader

In Java, you can use the BufferedReader class to read in a file using the

readLine () method. It reads the file line by line so the data can be manipulated.

The code below shows that a BufferedReader object is created and the data

is read in line by line. This iswrappedintry ... catch ... finally blocks. If

there is an issue, an error will be shown. In the finally block, the file is closed to

prevent any errors. It is important to close your files.

Buffered reader in Java

1. import java.io.BufferedReader;

2. import java.io.FileReader;

3. 1import java.io.IOException;

4. public class FileInputOutputMain {

B public static void main(String[] args) {

6. BufferedReader myBufferedReader = null;

7o String data = "";

8.

9. try {

10. String readInLine;

LAl myBufferedReader = new BufferedReader (new
FileReader("TestFile.txt"));

12.

e
409

410

B2 Programming

13. while ((readInLine = myBufferedReader.
readLine()) != null) {

14. data = data + readInLine + "\n";

15. }

16. } catch (IOException ex) {

L7 o ex.printStackTrace();

18. } finally {

19. try {

20. if (myBufferedReader != null)

21. myBufferedReader.close();

22. } catch (IOException ex) {

23. ex.printStackTrace();

24. }

23, System.out.println(data);

26. }

27. }

28. }

Scanner

The scanner class enables you to read in the file line by line. This is shown in

the code below. Again, notice the try ... catch ... finally blocks, to prevent

errors and close the file appropriately.

Scannerin Java

1.

2.

S¥

4.

5.

6.

7o

8.

9.

10.

11.

12.

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

public class FileInputOutputMain {

public static void main(String[] args) {

String data = 7

Scanner fileReader = null;

try {

File readInFile new File("TestFile.txt");

fileReader = new Scanner(readInFile);

B2.5 File processing

15, while (fileReader.hasNextLine()) {

14. data = fileReader.nextLine();

15. }

16. } catch (FileNotFoundException ex) {

17. System.out.println("The file does not
exist");

18. ex.printStackTrace();

19. }

20. finally {

21. System.out.println(data);

22. fileReader.close();

23. System.out.println("The file has been
closed");

24. }

25. }

26. }

File reading and writing in Python

In Python you can use the file read, write and append methods to read from,

write to and append files. There are several methods you need to be aware of.

These are explained below.

with open ("TestFile.txt", "w") as filel:

Opens the file with an intention to write ("w"). By using the writelines () you

can add code to the file. Please note this means that anything previously in the file

will be overwritten.

with open ("TestFile.txt", "a") as filel:

Opens the file with the intention to append ("a"). By using the code

writelines () to write to the file you can keep the original data as well as add

new data to the current file.

with open ("TestFile.txt", "r+") as filel:

Opens the file with the intention to read ("r+"). This method allows you to read

data in from the file and store it in a variable ready for manipulation.

41

412

B2 Programming

%

The mood of a written article

could, in theory, be determined by

the number of times certain words

appear. For example, “celebrate”

suggests a positive article and

“guilt” could be used to suggest

a negative article. Select an online

news article or other written file.

Read the article and count the

number of instances of a given

word. If the count is more than five,

suggest the mood of the article.

File write in Python

e

10.

11.

13.

14.

15.

1LY/ o

fileData = ["Today is a lovely day \n I may go out
and eat an ice cream \n or go to the park"]

data — nn

with open ("TestFile.txt", "w") as filel:

filel.writelines(fileData)

filel.close()

with open ("TestFile.txt", "a") as filel:

filel.writelines("update it began to rain")

filel.close()

2

with open ("TestFile.txt", "r+") as filel:

data = filel.read()

filel.close()

16.

print (data)

g Linking questions

Does database programming in SQL require computational thinking (A3)?

Why is an understanding of variables and their scope important for

effective memory management in computer systems (A1)?

Is algorithmic efficiency relevant to machine learning, where large data

sets are processed and computational cost can be significant (A4)?

Are data structures like stacks and queues applicable in networking

algorithms for packet routing and load balancing (A2)?

How can graph theory be applied to packet distribution in networks

(A2, Mathematics A&l HL)?

How do graph algorithms and terminologies, such as vertices and

edges, impact machine learing algorithms like network analysis

(A4, Mathematics A&l HL)?

How can network traffic be used as an example of, or connection to,

programming algorithms (A2)?

How could programming algorithms be applied to develop machine

learning methods (A4)?

End-of-topic questions

End-of-topic questions

Topic review
1.

2.

S
E
C
h
E

R
 c

Y

How can we apply computer programming to solve problems? [6 marks]

Exam-style questions
State a suitable data type for the following variables.

a. Yourgiven name [T mark]

b. Yourage [1 mark]

c. The price of a cupcake [1 mark]

d. Whether you wear glasses [1 mark]

e. The name of your favourite game [1 mark]

Describe why i f statements are necessary in programming. [3 marks]

Describe two differences between awhile loop and a for loop. [4 marks]

QOutline the purpose of a function. [2 marks]

A shop owner wants to record the number of items sold in their

shop each day. This is what the owner records on one day:

Apples 10 Banana 3 Apples 2 Cherries 40 Grapes 20 Banana 4 Lemon 6

a. ldentify what type of data this is. [2 marks]

b. Identify one limitation of storing the data in this way. [2 marks]

c. Describe an alternative way to represent the data. [2 marks]

Compare a linear search and binary search. [4 marks]

Construct a function that will determine if someone is old enough

to view a given movie based on the certificate of the movie. [4 marks]

Using your knowledge from this topic, B2, answer the guiding

question as fully as possible:

413

B2 Programming

414

9. Below is a mystery algorithm given both in Java and Python.

Java Py‘fhon

public int mystery(int a, int b){ def mystery(a, b):

if (b > a){ if (b > a):

int temp = a; temp = a

a = b; a=>=

b = temp; b = temp

} while (b > 0):

r=a%s%hb

while (b > 0){ a=>ob

int r = a % b; b=r

a = b;

b = r; return a

}

return a;

11.

i. Using a trace table, trace this algorithm for the values

a=24and b= 36. [3 marks]

a b temp r b>0 return

ii. State the Big O of this algorithm. [1 mark]

Construct an algorithm to sort the following data set.

unsorted: {45, 89, 23,12, 90, 34, 58, 1, 76, 123, 8} [5 marks]

A stack has been created using the following instructions.

push(8)

push(10)

peek()

push(14)

pop()

pop()

Sketch the resulting stack after these operations have

been performed. [1 mark]

End-of-topic questions

12. A queue has been created as follows.

enqueue(3)

enqueue(5)

enqueue(2)

enqueue(9)

dequeue()

dequeue()

State the result, after these operations have been completed,

of the code: peek (). [1 mark]

13. The following table keeps a track of the volume of rain over the month.

(0] (1] (2] 3] (4] (5] (6]

[0] 5.2 53 4.6 8.6 4.9 39 8.6

[1] 41 10.2 115 3.8 7.5 7.2 10.5

[2] 9.2 3.6 4.7 4.5 6.8 3.76 11.5

[3] 41 0.2 0.7 5.6 6.4 124 412

a. i. l|dentify the data structure used.

ii. Outline one reason why this is a suitable data structure

for this task. [2 marks]

b. Constructa function that will return the lowest rainfall over

the course of the month. [4 marks]

c. The developeris facing difficulties with their coding.

Describe two debugging techniques they could use

to identify issues. [4 marks]

d. Constructa function that will return the average rainfall over

the course of the month. [5 marks]

415

Object-oriented programming

Is object-oriented programming (OOP) an appropriate paradigm

for solving complex problems?

When developing programs, you often want to model the real world, where objects do not

exist as many different separate attributes, but as objects that have attributes and behaviours.

Object-oriented programming (OOP) enables you to model objects closer to the way you

view them in the real world, with attributes and behaviours neatly wrapped inside an object.

This can often make it easier to solve complex problems. In this topic you will discover

how programming objects work, and how they enable us to model the world in a more

realistic way.

\

Fundamentals of OOP for
a single class

Syllabus understandings

B3.1.1 Evaluate the fundamentals of OOP

B3.1.2 Construct a design of classes, their methods and behaviours

B3.1.3 Distinguish between static and non-static variables and methods

B3.1.4 Construct code to define classes and instantiate objects

B3.1.5 Explain and apply the concepts of encapsulation and information

hiding in OOP

Object An instantiated class.
B3.1.1 Evaluate the fundamentals of OOP

Object-oriented programming, as the name suggests, makes use of objects Instance variables have been given

and classes to represent real world entities. But what is a class? If you have ever values and the object now exists

played a computer game, then you have interacted with a program produced in memory.

in object orientation. Every non-player character (NPC) in a game is an instance

of the non-playable character class. The class will determine how the NPC

moves and interacts with its environment. Each enemy will be an instance of the

enemy class. This class will tell the enemy how to behave when interacting with

the protagonist.

Class A plan or a blueprint of an

object identifying the instance

variables (attributes) and methods

(behaviours).

A Figure 1 Anon-player character is an instance of the non-playable character class

In B2 Programming, you learned how to develop programs using variables.

This enabled you to store singular pieces of data representing an attribute, such

as a test score, an age or the name of an item. If you want to store several pieces

of data about an item, you need a variable for each attribute you want to store.

If you want to store multiple data attributes about multiple items, then you would

probably use multiple lists.

417

B3 Object-oriented programming

Explaining the need for classes

Imagine you are developing a program to store information about the

conservation status of birds. You may want to store data similarly to Figure 2.

Variable 1 Variable 3

Name: Rainbow Diet: Fruit, Nectar,

Lorikeet Pollen

Variable 2 Variable 4
NativeTo: Australia Conservation: Least

Concern

=) ~
Variable 5 Variable 7

Name: Puffin Diet: Fish

Py i

Variable 6 L Variable 8 0
NativeTo: North Conservation:

Atlantic Vulnerable
/ ,

A Figure 2 Data about the conversation status of birds

The figure shows that you need eight variables to store all the details of two birds.

You may have used a separate list for each variable.

Name NativeTo Diet Conservation

[0] | Rainbow [0] | Australia [0] | Fruit, Nectar [0] | Least Concern

Lorikeet and Pollen

[1] | Puffin [1] | North [1] | Fish [1] | Vulnerable

Atlantic

S ——— e B, I e B, e e B R S

InB3.1.2, you will learn how to

design and create your own classes.

A Figure 3 Lists for variables

To solve the problem of many variables, many lists, and confusing code, you can

use object orientation. Object orientation enables you to store multiple attributes

and behaviours of an item in one class. For example, all the information you need

to store about birds would be contained within a bird class. Every time a new bird

is added, a new instance of the bird class is created. This means there is one list

containing all the information.

A class consists of instance variables (the attributes of the item) and behaviours

(what the item can do). The class is a blueprint or plan for the item. To create an

object, you give the instance variables starting values which produces an object

that can be manipulated. The code for the bird class is shown here in both Java

and Python.

B3.1 Fundamentals of OOP for a single class

Java

1. public class Bird {

25 private String name;

3. private String nativeTo;

4. private String diet;

Sea private String conservation;

6. public Bird (String name, String nativeTo,
String diet, String conservation) {

7. this.name = name;

8. this.nativeTo = nativeTo;

9. this.diet = diet;

10. this.conservation = conservation;

11. }

12. public String getName() {

131 return name;

14. }

15. public String getNativeTo() {

16. return nativeTo;

17. }

18. public String getDiet() {

19. return diet;

20. }

241 public String getConservation() {

22. return conservation;

23. }

24. public String __ str_ () {

25 o return “Name: " + name + " Native To: " +
nativeTo + " Diet: " + diet + " Conservation:
" + conservation;

26. }

27. }

@ Python

1. class Bird:

2. def __ini?__(self, name, nativeTo, diet,
conservation):

3. self.name = name

4. self.nativeTo = nativeTo

B self.diet = diet

6. self.conservation = conservation

7. def str (self):

8. return "Name: " +self.name + " Native to: "
+ self.nativeTo + " Diet: " + self.diet + "
Conservation: " + self.conservation

420

B3 Object-oriented programming

Instantiation An instantiation

of a class is when you call the

constructor method and provide

starting values for each of the

instance variables. The object

is allocated a space in memory

and can be used throughout

the program.

Choose a book, an item of clothing, or a friend. What attributes (instance

variables) could you store about them? What behaviours (methods) would

they have? Once you have identified the attributes and behaviours, swap your

ideas with a partner. Is there anything you could add to their work?

Tools within object orientation

There are tools in object orientation that you can use to model real-world entities.

You can use classes, objects, inheritance, encapsulation and polymorphism.

Classes

As shown in the conservation of birds example, you can use classes to design

real-world entities. A class is a blueprint or plan for an object that does not exist

until a constructor method (a special method that creates an object of the class) has

been called. This plan includes the attributes and behaviours they should have.

By designing classes, you can design objects to model their real-world

counterparts.

Objects

Once the constructor method has been called, and the instance variables assigned

their starting values, you have an object. This object can be manipulated and used

to mimic its real-world counterpart. Once an object is instantiated (created and

given a space in memory), it has an identifier that it can be referenced by.

Inheritance

Inheritance allows you to be efficient with your code. All common methods and

variables are stored in a superclass, and the subclasses extend the functionality

adding their own variables and methods. If you need to make any changes to the

code and the code is in the superclass, you only need to make the change once,

which is much more efficient than changing lots of separate classes. A real-world

example of inheritance is vehicles. The vehicle superclass stores all the common

information such as owner and size. Specific vehicles subclasses have their own

specific variables. A car might have fuel type, an aeroplane might have maximum

range, or a ship might have number of engines.

Encapsulation

One of the key features of object orientation is encapsulation. Encapsulation

enables you to reuse code easily. As all of the variables and methods are

wrapped up inside of the class, you can use the class in other programs with little

effort. Encapsulation also allows you to keep information safe, as the data cannot

be accessed outside of the class. Encapsulation allows you to use classes that are

complex. You do not need to understand how the internal methods are working,

just the information you need to send, the methods, and the information you

would expect to receive. If you have made use of a programming library when

coding, you have made use of encapsulation.

Polymorphism

Polymorphism—the word derives from the Greek, meaning “many forms"—

enables classes to behave in different ways depending on the situation.

B3.1 Fundamentals of OOP for a single class

For example, a method may have the same name but different parameters. The

version of the method you need to use depends on the number of parameters

you send to the method.

To make this easier to understand, think about yourself on your educational

journey. If you are asked to “write” in your Language A class, this may mean

develop a short story using creative language. In Natural Sciences, “write” may

mean producing a formal laboratory report. Outside of school, “write” may mean

sending an informal message to a friend. All these instructions use the same word

but you act differently depending on the setting.

Advantages and disadvantages of object-oriented
programming

Advantages
* Asobject-oriented development environments have libraries of code

prewritten and pretested, you can import useful libraries and save time with

development.

* The nature of object orientation enables you to take large, complicated

problems and break them into smaller, more manageable tasks.

* Using inheritance allows you to create superclasses to store common items

and then develop subclasses to make more specific items. This saves time

coding, as it promotes code reuse.

* Breaking a program into objects enables developers to work concurrently on

separate items, again saving time on development.

* Encapsulation helps to build secure programs, as the data is hidden within

the objects and prevents interference from external systems.

* Using classes to represent objects mimics the real-world.

Disadvantages
¢ The overhead of creating an object-oriented solution is often excessive for

simpler programs.

¢ Object-oriented programs are large in size, which can slow execution in

some instances.

e The modular nature of the code can make programs complex to understand,

especially for novice programmers.

® -
Identify whether OOP would be a suitable programming paradigm for these

tasks. Justify your response for each.

Developing a program to:

* store details about passengers

* complete an automated task on a server

* write a script for an automated car

* create a first-person role-playing game.

In topic A3 Databases, you

also tried to represent the real

world within the computer.

Understanding the attributes and

behaviours of objects will help you

to develop database models.

421

B3 Object-oriented programming

B3.1.2 Construct a design of classes, their

methods and behaviours
When you are designing classes, you need to think about the item you are storing

information about. What attributes does it have that you need to know? What

behaviours will it be expected to perform? Table 1 shows three examples that

give you an indication of attributes and behaviours you may want to store.

¥ Table 1 Attributes and behaviours of different objects

Object Image Attributes Behaviours

Car Size of car, number of Move forward, move

seats, size of engine, backward, turn left, turn

manufacturer, model right, need energy

Computer Lives, powers, name, Defensive action, attack

game hero type of character action, lose life, gain life

Person Name, age, address, Complete assigned work,

education have birthday, learn

The attributes and behaviours are the key parts of the class. The attributes will

eventually become the instance variables—the data you want to store about the

object. The behaviours will become the methods—what you need the object to

be able to do.

422

B3.1 Fundamentals of OOP for a single class

@ Research skills

To design classes, you have to understand the context of the class.

To understand the context, you may need to complete some research. This

links to real-life problem identification in the computational thinking process.

Develop a class for a hotel room. This Room class will be used to allocate a

room to hotel guests.

What attributes does the Room class have? What methods? What research

must you do to complete this task successfully?

It is important that all developers can understand your class design. Computer

scientists use universal modelling language (UML) diagrams to facilitate this.

Complex programs need clear planning, and UML diagrams help with this.

UML diagrams can also help to communicate the system to non-technical users.

By using UML diagrams that other developers can understand, you avoid wasting

time explaining what you mean. There are many different UML diagrams a

developer can use when designing a system.

* Sequence or event diagrams show the order in which objects interact.

* Use case diagrams show how the users will interact with the system.

* State diagrams show how objects can transition from one stage to the next.

* Package diagrams show the dependencies between different packages in

the system.

All these diagrams are useful when developing large, complex solutions with

multiple different users. In this course, you will use the UML class diagram.

This enables software developers to view the classes and the relationships

between the classes in a visual form. Class diagrams are an important tool in

object-oriented programming design.

UML class diagrams show three boxes. These contain the name of the class, the

instance variables of the class, and the methods of the class. The construction of

the UML class diagram is shown in Figure 4.

@ Communication skills

Being able to produce a representation of a class that is universally recognized

enables you to become a better communicator.

UML diagrams let you communicate clearly with developers. Using UML

diagrams ensures that everyone knows what classes are required in the

program and how the classes are linked.

Identify other diagrams that you have developed or studied in this course that

also provide clear communication. What are the similarities and differences in

the diagrams? What is each kind of diagram used for?

Work in small groups to make a short video to teach other students about

these diagrams. If you do not have access to video equipment, present your

work to your class or your group.

Universal modelling language

(UML) diagram A universally

recognized way to identify the

modifiers, identifiers and data types

of the variables and methods within

a class. These diagrams are then

used to develop the class in code.

UML diagrams are unified diagrams

that show developers the design of

the program. You will also look at

standardized models in Databases

topic A3.

The different kinds of modifiers—

public, private and protected—will

be described further in section

B3.1.5.

423

424

B3 Object-oriented programming

- Denotes a private

modifier

+ Denotes a public

modifier

Denotes a protected

modifier

A 4

You will learn more about this in

subtopic B3.2 Fundamentals of

OOP with multiple classes.

Top box shows

the name of the

class
- /

P 7N
Middle box shows

ExampleClass

-exampleVar: String

-exampleVar: int the instance
. I variables and

-exampleVar: boolean .
variable types

-exampleVar: otherClass h 4

+ leA
exampleAcessor (f/ Lower box shows)

+ exampleAcessor () the methods

exampleMutator(int x) available and the EE—
exampleMutator(String y) expected

parameters if

__necessary o

A Figure 4 UML Class example

laebiey
Develop a UML class diagram for each of these items.

1. Student Attributes: Name, Grade level, Homeroom, Age.

Behaviours: Access the information, change age, change

grade level.

2. Toy Attributes: Name, Manufacturer, Minimum age, Batteries required.

Behaviours: Access the information, set out of batteries.

3. Song Attributes: Name, Artist, Song length, Star rating.

Behaviours: Access the information, set star rating.

TOK

When developing classes, you need to decide which attributes and

behaviours are important and which you can ignore. For example, when

storing information about a car, you may choose to store the make, the model,

and the number of doors but ignore the factory in which it was built. Keep

in mind the purpose of the data that you are saving—data which is irrelevant

does not need to be saved.

By doing this, to what extent do you affect the production and acquisition of

knowledge for the users of your solutions?

Modelling relationships between classes

UML class diagrams also show the relationships between classes. There are three

types of relationships you need to be aware of in object-oriented programming.

B3.1 Fundamentals of OOP for a single class

Aggregation: In an aggregated relationship, the classes can exist independent

of each other, but in the program being developed they need each other.

Example: Actor and Movie. An actor can exist without a movie and a movie

without an actor but usually a movie needs actors.

Composition: In a composition relationship, the classes cannot exist without

each other. Example: Chapter and Book. You cannot have a chapter without a

book or a book without at least one chapter.

Inheritance: In an inherited relationship, one class is the parent class, and the

child class contains all the variables and methods of the parent class as well as its

own specific variables in methods. Example: Animal and Cat. A cat contains all

the general attributes of an animal as well as its own specific cat attributes.

These can be modelled in the following way.

Movie Actor

Aggregation

(shown with a

transparent

diamond).

Book Chapter

L
4

Composition

(shown with a

solid diamond).

Animal

Generalization

(inheritance, shown

with a transparent

triangle).

Note: Variables and methods

are present but not shown

Cat

A Figure 5 A diagram showing the different UML relationships

B3.1.3 Distinguish between static and

non-static variables and methods

A book in a library has many different attributes that could be stored. These may

include the title of the book, the author of the book, the ISBN, and whether it

is fiction or non-fiction. A book in a library may also have different behaviours:

whether the book is currently borrowed, whether there is a waiting list for the

book, and whether the book needs to be replaced. But the book itself cannot tell

you how many books have been borrowed from the library. This is why you need

static variables.

Static A variable or method

belonging to the class rather than

the instance of the class.

425

B3 Object-oriented programming

The UML class diagram for a book might look like the following.

Book

- title: String

- author: String

- borrowed: Boolean

- waitingList: Boolean

A Figure 6 Books in a library + getTitle()

+ getAuthor()

+ getBorrowed()

+ setBorrowed(Boolean b)

+ getWaitList()

+ setWiaitList(Boolean b)

These variables belong to the instance of the class and can only be altered by

the instance of the class. When you access these variables, you are accessing the

values of the instance. However, if you add a static variable and method, these act

differently. You do not need an instance to access a static variable—you can use

the class name. The updated UM class diagram, including the underlined static

variable—which belongs to the class not the instance—would look similar to the

following.

Book

- title: String

-author: String

- borrowed: Boolean

- waitingList: Boolean

- booksBorrowed: int

+ getTitle()

+ getAuthor()

+ getBorrowed()

+ setBorrowed(Boolean b)

+ getWaitList()

+ setWaitList(Boolean b)

+ getNumberOfBooksBorrowed()

The code below shows the construction of the Library class in Java and Python

that makes use of static variables. The instantiation of the class is also shown,

demonstrating the difference between referencing the instance of the class (the

object) and the class itself.

Java library class code

1. public class Book {

2.

3o private String title;

4. private String author;

G private boolean borrowed;

6. private boolean waitList;

7o private static int booksBorrowed = 0;

426

B3.1 Fundamentals of OOP for a single class

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

2l

22,

23.

24.

25,

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

public Book (String title, String author) {

this.title = title;

this.author = author;

this.borrowed false;

this.waitList false;

public String getTitle() {

return title;

}

public String getAuthor() {

return author;

}

public boolean getBorrowed() {

return borrowed;

}

public void setBorrowed(boolean b) {

borrowed = b;

if (borrowed) {

booksBorrowed = booksBorrowed + 1;

}

else {

booksBorrowed = booksBorrowed - 1;

}

}

public boolean getWaitList() {

return waitList;

}

public void setWaitList (boolean b) {

waitList = b;

}

public static int getNumberOfBooksBorrowed() {

return booksBorrowed;

}

public String toString() {

return "Name of Book: " + title + ",
Author of Book: " + author + ", Borrowed:
" + borrowed + ", Wait List: " + waltList;

427

428

B3 Object-oriented programming

Java code to test the class

1. public class LibraryMain {

2.

Zin public static void main(String[] args) {

4.

5 Book one = new Book ("Community and
Support"”, "D Larkin");

6. Book two = new Book ("Where is Archibald?",
"C Rington");

7o Book three = new Book ("Horticulture for
the Balcony", "A Abed");

8.

9. one.setBorrowed(true);

10. two.setBorrowed(true);

BIH1R two.setWaitList(true);

12.

13, System.out.println(one.toString());

14. System.out.println(two.toString());

15, System.out.println("The number
of books borrowed is: " + Book.
getNumberOfBooksBorrowed()) ;

16.

17. }

18.

19. }

Output:

Name of Book: Community and Support, Author of Book: D Larkin, Borrowed:

true, Wait List: false

Name of Book: Where is Archibald?, Author of Book: C Rington, Borrowed: true,

Wait List: true

The number of books borrowed is: 2

Python library class code

1. class Book:

2. __booksBorrowed: int = 0

3.

4. def _ init (self, title, author):

5. self. title = title

6. self. author = author

7. self. borrowed = False

8. self. waitList = False

9.

10. def getTitle(self):

11. return self. title

12.

B3.1 Fundamentals of OOP for a single class

13.

14.

15.

16.

17.

18.

19.

20.

21.

2373 o

23.

24.

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

def getAuthor(self):

return self. author

def getBorrowed(self):

return self._ borrowed

def getWaitList(self):

return self. waitList

def setBorrowed(self, b):

self. borrowed = b

if (self._ borrowed):

Book._ booksBorrowed
booksBorrowed + 1

Book.

else:

Book._ booksBorrowed = Book.
booksBorrowed - 1

def setWaitList (self, b):

self. waitList = b

def getNumberOfBooksBorrowed (Book):

return Book._ booksBorrowed

def str (self):

return "Title: " + self. title + ",

Author: " + self._ author + ", Borrowed:
+ str(self. borrowed) + ", Waitlist: " +
str(self. waitList)

"

Python code to test the class

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

from Book import Book

one = Book ("Community and Support", "D Larkin")

two = Book ("Where is Archibald", "C Rington")

three = Book ("Horticulture for the Balcony”, "A
Abed")

one.setBorrowed(True)

two.setBorrowed (True)

two.setWaitList (True)

print(one._str_ ())

print(two. str_())

print("The number of books borrowed is: ", Book.
getNumberOfBooksBorrowed (Book))

429

430

B3 Object-oriented programming

Output:

Title: Community and Support, Author: D Larkin, Borrowed: True, Waitlist: False

Title: Where is Archibald, Author: C Rington, Borrowed: True, Waitlist: True

The number of books borrowed is: 2

The previous code demonstrates the following.

¢ Staticvariables belong to the class, not the instance of the class. In Java they

are denoted using the static keyword. In Python they are declared prior to

the _init__ function as a class variable.

* InPython you use import to include the class file. This is your program

rather than a standard library.

* Thereis only one copy of the static variable and this static variable is shared

between all instances of the class.

* The static variable is initialized once (at the start of the execution) and retains

their values throughout the program’s run.

* Thestaticvariable is accessed through the class name and not the instance name.

* Static methods in java include the keyword static and in python by

passing in the name of the class as a parameter rather than “self”.

* Static methods can only access static variables. They cannot access instance

variables directly without an object reference.

e
For each item, identify one static and three non-static variables that might be

in the class.

* Television show on a streaming platform.

* (Carina carsalesroom.

* Teacherinaschool.

@ Thinking skills

Being able to identify which variables and methods are static develops your

coding skills. Identifying the variables required develops your abstraction skills.

Consider a large supermarket that sells food, household supplies, stationery,

clothes and books. What do you need to know in order to successfully identify

the variables and methods? How would you know which are static?

Static variables are useful when you wish to share data and behaviours across

classes. They need to be used carefully so you do not accidentally change

shared data.

B3.1 Fundamentals of OOP for a single class

B3.1.4 Construct code to define classes and

instantiate objects
Implementing classes in code looks very different in Java and Python, as has

already been shown. This section will describe each in detail.

First, remember that a class is a blueprint or a plan of how to build an object.

To successfully construct the class, you should plan it with a UML class diagram

showing the plan. Here, you will use a UML class diagram to design the class Plant.

Plant

+ scientificName: String

+ scientificFamily: String

+ distribution: String

+ bloom: boolean

- getScientificName()

- getScientificFamily()

- getDistribution()

- getBloom()

A Figure 8 UML diagram to design the class Plant

To create this class in your chosen IDE in Java,
develop a new class without a main method.

This class should be in the same package as

your other classes.

In Java, the filename and class name need to be the

same. But in Python, this is optional.

Declare the variables using the correct maodifier.

Write the constructor method to allow the class to

be allocated a space in memory.

Declare and write the methods using the correct

maodifier.

A method toString() isincluded in Java

to provide a formatted version of the data

in the class.

There are examples of library code

insection B3.1.3.

A Figure 7 Ablueprint

New i [Project...
Go Into < File

Open Type Hierarchy F4 (5 Folder

Show | >
own @ Annotation

[Copy #C @ Class

2 Copy Qualified Name & Enum

T Paste “V @ Interface

A Delete % ¥ Package

Build Path > (¥ Record
Source » &7 Source Folder
Refactor >

? [Other... #N
r Import...

1 Refresh F5

Close Project

Close Unrelated Projects

Referencs >

Declarations >
~ i VinyiCollection

~_[§® src/main/java @ Coverage As »

> 1) Vinyljava © Run As >
> [T VinyiMainjava “% Debug As >

> M sro/main/resources Restore from Local history...

z :Wm Team >
> sro/test/resources

> m JRESystemlibrary ~ COMMPAre With)
> s Configure >
> [=target . -

8 vinyl Properties #1

A Figure 9 How to create a new class in Java, using the Eclipse IDE

431

B3 Object-oriented programming

Note the use of this in the constructor method to show the difference between

the instance variables and the value passed by the parameters.

&

Name of file: Plant.java] -

_

1. public class Plant { /

7o

Instance 3o private String scientificName;

variables private 4. private String scientificFamily;

as shown in UML B private String distribution;
Parameters

6. private boolean bloom;

7.

8. public Plant (String scientificName, String
scientificFamily, String distribution, boolean
bloom) {

9.

10 this.scientificName = scientificName Constructor
) 18.564 serenti ! Method used to

11. this.scientificFamily = scientificFamily; < | create an object

12. this.distribution = distribution; of the class

13. this.bloom = bloom;

14.

15, }

16.

07 o public String getScientificName() {

18. return scientificName;

19. }
- ™

Methods used 20. public String getScientificFamily() {

to access the 21. return scientificFamily;

information from || 22. }

outside the class _-;?-'*public string getDistribution() {

/'cc.)mplete tasks 24. return distribution;
inside the class

J | 25. }

26. public boolean getBloom() {

27. return bloom; To StrlngdmethOd

provides a
28. .

} formatted version
29. public String toString() { st dERs

30. return "Plant Name: " + scientificName +
", Plant Family: " + scientificFamily + ",
Areas Found: " + distribution + ", Flowers:
" + bloom;

3% }

232 o

33. }

A Figure 10 Explaining the Plant class code in Java

432

B3.1 Fundamentals of OOP for a single class

To create this class in your chosen IDE in Python, create a new Python file. Itis good

practice to name the file the same as your class name (but not essential in Python).

Create the file and class with a suitable name.

Declare the variables.

Write the constructor method to allow the class to be

allocated a space

in memory.

Write the methods.

> [H pip

> I pip- 2321 dist-info

pip-2321 ¥ Cut
‘& - gitignore 8 Copy

pyvenv.cfg Copy Path/Reference...

~ = PlantMod O Paste
i __init__py)

i MainMethod.py A=
% PlantClass. py Find In Files...

Amethod str (self)isincluded inPythonto " S Extemel braries e
— _ {) " Scaratches and Consoles Inspect Code...

Refactor provide a formatted version of the data in the class.

Note the use of self in the constructor method to show

Clean Python Compiled Files

Bookmarks

the difference between the instance variables and the

value passed by the parameters.

P

PyCharm IDE

[Name of file: Plant.py J

def
Instance

variables as

shown in UML =

(modified to

private)

def

def

=

Methods used

to access the def

information from

outside the class >

or complete def
tasks inside

the class
def

class Plant:

distribution, bloom):

_—
__init _ (self, scientificName, scientificFamily,

-

self. scientificName = scientificName

self. scientificFamily = scientificFamily

self. distribution =

i _ virtuale,
®X

#C

EV

XF7

o%BF

%R

File

&' Scratch File
"% Directory

0 Python Package

= Python File

s HTML File

i1 Resource Bundle

11 EditorConfig File

{1 Jupyter Notebook

(71 JavaScript File

£ TypeScript File
) SQL File

G¥EN

A Figure 11 How to create a new class in Python, using the

Name of class

Expected

parameters

Constructor

self. bloom = bloom

getScientificName (self):

return self. scientificName

getScientificFamily (self):

return self. scientificFamily

getDistribution(self):

return self. distribution

getBloom(self):

return self. bloom

__str__ (self): /

return ("Scientific Name: {self. scientificName},
Scientific Family: {self. scientificFamily}")

A Figure 12 Explaining the Plant class code in Python

method used to

create an object

of the class

The toString

method provides

a formatted

version of

the class

433

B3 Object-oriented programming

Once you have created the class in your chosen programming language, you

need to create an instantiation of the class, also known as an object. Once you

have instantiated the class (called the constructor and given the starting values in

the parameters) you have an object. This means a space in memory is assigned to

the object, it is given an identifier, and its instance variables are given initial values.

Instantiation of an object usually happens in a runner class (a class that controls the

flow of the program). In Java, this is usually the class that has the main method.

In Python, this can be the same file or a different file. Figure 13 gives the example

code for creating an instance of an object in Java, and Figure 14 gives the example

code for creating an instance in Python.

1. public class main { - i =
B Actual values given

) as parameters.
‘Instar’u:e ____33__________,. public static void main(String args[]){ — TiEse o ihE
identifier -
) 4. initial values of the

(variable name) .) . .
Do Plant myFavourite = new Plant("Narcissus", L instance variables.)

"Amaeyllidceae", "Worldwide", true);

6 I ™

. | toString() called for

7. / testing purposes
-

8. System.out.println(myFavourite.toString());

9.

10. }

11.

12. }

A Figure 13 Creating an instance of an object in Java

,__[Class imported for use]
1. from Plant import Plant +——— |

2.

3.

Instance 4. myFavourite = Plant('Narcissus', Actual values given as
identifier | —¥ 'Amaryllidaceae’, 'Worldwide', True) parameters. These are

‘_-_-_-__"—-———--_________ s ais

(variable name) 5. the initial values of the

6. print(myFavourite.toString()) instance variables.
L —

434

A Figure 14 Creating an instance of an object in Python
toString() called for testing purposes J

B3.1 Fundamentals of OOP for a single class

TOK

The Svalbard Global Seed Vault holds seeds of food crops from all over the

world. It has the capacity to store 4.5 million varieties of seeds. As of 2024,

the seed vault is preserving from extinction unique varieties of food staples

including varieties of maize, rice, wheat, cowpea, sorghum, eggplant, lettuce

and potato. The purpose of the seed vault is to safeguard as much genetic

material of the world's crops as possible. The information in the seed vault

needs to be carefully recorded and managed.

Now that you understand how to

make objects through calling the

constructor method and creating

an instantiation, use the skills you

learned in topic B2 to develop

more interesting programs. There is

also a practical skills section in this

topic to support you.
A Figure 15 Svalbard

How can storing data in an organized manner enable us to preserve

knowledge for the future? Use the Svalbard Global Seed Vault and at least

one other example of large data storage in your answer.

Develop code to instantiate objects for each of your classes from the activities

in sections B3.1.2 and B3.1.3. You can use either Python or Java.

B3.1.5 Explain and apply the concepts of

encapsulation and information hiding in OQOP 4 Figure16 Amedicine capsule
One way to think about encapsulation is to think about a capsule. All the

variables and methods are hidden from view, but you know they are in there.

You can use the capsule without fully understanding how it works. You also know

the contents of the capsule are safe, as nobody has been able to access it. Encapsulation When data is
hidden within a class and accessed

You probably interact with encapsulated code daily. For example, when you log only using publicly accessible

into email or a social media site, you type in your username and password, which methods, promoting reuse and

are the variables. Several methods will occur—most of them behind the scenes improved code maintenance.

or without your active participation—before you gain access. You do not directly

encounter the variables and methods, but you know they will do the job you ask

of them.

435

>
I =

436

B3 Object-oriented programming

@ Thinking skills

Developing encapsulated code means you are thinking carefully about how to

keep data safe and ensure any data provided by the program accurately represents

the object in question. It also helps you to strengthen your abstraction skills.

* What features of code make it encapsulated?

* Whyis it important to keep the code safe using encapsulation?

* How does this link to abstraction?

Share your thoughts with a partner. What can you learn from each other?

The main principle of encapsulation is to hide information. Hiding information

keeps it protected and ensures that data cannot be changed by external sources,

keeping it secure.

The advantages of encapsulation are as follows.

* Encapsulated code works and functions within its own class—no external

interaction is needed for it to function. This means code is flexible and easy

to adapt.

* Code modification in an encapsulated environment does not cause

problems for other code.

* Maintenance is improved because you only have to change the code in one

place and this is reflected in all programs that use the encapsulated class.

* Private fields are not accessible so data is secure.

* Data and code are safe from external influences and, therefore, more secure.

To encapsulate your code, first set the modifier for your instance variables.

Variables can have one of these three modifiers.

Private: This is the modifier you are most likely to use when developing your own

code. The private modifier means the instance variable is only accessible inside

the class it is declared in.

Protected: Variables declared with the protected modifier can be accessed by

the class and from all classes within the package. This includes the subclasses that

inherit variables from their superclasses.

Public: Variables declared with the public modifier can be accessed by the class

it is declared in as well as all other classes. Public variables are the least secure. If

your variables are public then you do not have encapsulated code.

Inheritance has an impact on access to parent class members.

* Private variables are not accessible to subclasses. To access a private variable

outside the class, your class needs to include a public accessor/getter method.

* Toaccess a protected variable outside of the package, you would need to

include a public accessor/getter method.

Table 2 gives an overview of the maodifiers in Java and Python.

B3.1 Fundamentals of OOP for a single class

¥ Table 2 Variable modifiers in Java and Python

Modifier

Private Protected Public

Example in Java private int cost; protected int cost; public int cost;

Example in Python self. cost self. cost self.cost

Class Yes Yes Yes

Subclass No Yes Yes

Package No Yes Yes

Other classes No No Yes

You are programming a computer system for a restaurant. You have a menu

that contains many dishes. The dishes each have a name, a type (starter, main,

or dessert), allergen information, a cost price (what the dish costs to make),

and retail price (the cost to the customer, with a profit margin added). The

restaurant does not want the customers to know how much extra they are

paying, so you want to keep your calculations private.

Create a program to help the restaurant store its menu.

A Figure 17 A restaurant could use a program to store its menu

Solution

Use a UML class diagram to represent the class you will use, like this.

variables and methods
N

-

+ Denotes public

Dish

7 h - - Stri
- Denotes private fame- St_rlng

> -type: String

- double: costPrice

- double: retailPrice

variables and methods
-

(~Showsthatthisisa

private method that

cannot be seen outside

\ the class.)

+ setNamel(): void

+ getName(): String

+ setTypel(): void

+ getType(): String
+ setCostPrice(): void

+ getCostPrice(): double

- setRetailPrice(): void

+ getRetailPrice(): double

A Figure 18 UML class diagram

When using computer programs

for everyday tasks, an element

of trust is assumed between the

people who create and manage

the program (the programmers)

and the people who use it (the

consumers).

Consumers assume that any data

they put in the program will be safe,

that it will not be misused, that any

calculations made using the data

will be correct, and that their data

cannot be changed incorrectly.

What ethical responsibilities do

programmers have to ensure

security of data?

e 437

B3 Object-oriented programming

e The UML diagram shows that the class is encapsulated. Its private variables

and methods limit the access to the class members. The public methods

enable access to the private variable values from other classes.

The retail price is calculated within a private modifier so it cannot be seen or

manipulated outside of this class. Access to this method and the variables

within the class is limited.

Encapsulated class in Java

1. public class Dish {

2.

3. private String name;

4. private String type;

Se private double costPrice;

6. private double retailPrice;

7.

8. public Dish (String name, String type, double
costPrice) {

9.

10. this.name = name;

1Ll this.type = type;

1123 this.costPrice = costPrice;

1135 this.retailPrice = setRetailPrice();

14. }

15.

16. public String getName() {

17. return name;

18. }

19. public void setName (String n) {

20. name = nj;

21. }

22 o public String getType() {

23 return type;

24. }

25 public void setType(String t) {

26. type = t;

27. }

28. public double getCostPrice() {

29. return costPrice;

30. }

il 5 public void setCostPrice(double c) {

32. costPrice = c;

S setRetailPrice();

34. }

438

B3.1 Fundamentals of OOP for a single class

‘g 35. private double setRetailPrice() {

36. retailPrice = costPrice + (costPrice *

0.6);

37. return retailPrice;

38. }

39. publiec String toString() {

40. return “Name of Dish: " + name + ", Type
of Dish: " + type + ", Price of Dish: " +

retailPrice;

41. }

42. }

In the runner class, you would create an instance of the encapsulated class

and use the encapsulated class just as you would any other. In this example

an instance of the class has been created and several methods run.

1. Dish myDish = new Dish ("Spaghetti Bolognaise",
"Main Course", 8.50);

2. myDish.setName("Spaghetti Carbonara");

3. myDish.setCostPrice(10);

4. System.out.println(myDish.toString());

Output:

Name of Dish: Spaghetti Carbonara, Type of Dish: Main Course, Price of

Dish: 16.0

Encapsulated class in Python

1. class Dish:

2 def init (self, name, theType, costPrice):

3 self. name = name

4. self. theType = theType

5. self. costPrice = costPrice

6. self.setRetailPrice(costPrice)

T

8. def getName(self):

9. return self._ name

10.

11. def setName(self, n):

12. self. name = n

el

14. def getType(self):

15. return self._ theType

16.

L7 - def setType(self, t):

18. self. theType = t

19.

20. def getCostPrice(self):

ZiL - return self. costPrice

439

B3 Object-oriented programming

22.

23. def setCostPrice(self, c):

24, self. costPrice = c

5N self.setRetailPrice(c)

26.

A7 o def setRetailPrice(self, costPrice):

28. self. retailPrice = self._ costPrice +
(self. costPrice * 0.4)

29.

30. def getRetailPrice(self):

31. return self. retailPrice

32.

33. def show(self):

34. return "Name: ", self. name + " Type: ",
self. theType, " Retail Price ", self. _
retailPrice

In the runner class, you would create an instance of the encapsulated class

and use the encapsulated class just as you would any other. In the runner

class, an instance of the class has been created and several methods run.

1. from Dish import Dish

2

3. myDish = Dish("Spaghetti", "Main", 8.50)

4. myDish.setName("Spaghetti Carbonara")

5. myDish.setCostPrice(10)

6. print(myDish.show())

Qutput:

Name: Spaghetti Carbonara Type: Main Retail Price: 16.0

T
Develop your own encapsulated class, from UML diagram design to creating

and testing. Choose a topic of your own, or use one of these for inspiration.

* Aclass that stores information about an item in a shop and works out the

salesperson commission.

e Aclass that stores information about hotels that calculates the

commission they owe to third-party apps.

When you have developed your class, share your ideas with a partner.

Do they agree with your choices? What advice can they offer you to

improve your class?

B3.1 Fundamentals of OOP for a single class

Method headers in Java

The method header in Java consists of the access modifier, return time, and method signature of the method.

Every method in Java needs to have a method header.

In an exam, it is a good idea to check how the method header has been presented as it could provide you a clue to the

expected return type. Look at Figure 19.

public double setRetailPrice (double tax, double costPrice)

[Modifierj [Return type] [Method name] [Expected parameters including type J

A Figure 19 A labelled example of a method header in Java

Moadifier: Can either be: private (only seen by the class), protected (only seen by the package), or public (seen by all

classes).

Return type: The type of value that will be returned from the method: int, double, boolean, String, ObjectType, int[],

double [], String [], ObjectType [] or void. Void means that no information will come back from the method; for example,

in set/mutator methods.

Method name (identifier): How the method will be referred to when being called. For example, in x.getPrice(),

the method name is getPrice.

Parameter list: The values the methods expects to receive when the method is called. When calling the method, you

replace the expected parameters with actual parameters (values) of that type. In the example in Figure 19, when calling

the method you could say y . setRetailPrice(0.25, 10).

Method headers in Python consist of the modifier, function name, and parameters.

As Python dynamically casts the variable type, a Python function heading does not Casting Forcing the variable

need to include the return type. In the exam, it is a good idea to check how the to act as a specific variable

method heading has been presented. This will provide you with information such type, e.g. forcing input from a

as parameter types. user to act as a String. Useful

when collecting data from a

def ‘ L setRetailPrice (self, tax, costPrice): user in Python:

age = int(input ("How

[Method name] [Expected parameters] old 1?' the perzon the
game is for?"))

A Figure 20 A labelled example of a method header in Python

Moadifier: Can either be private (only seen by the class), which is denoted by the double underscore __, or public with

no preceding underscores (seen by all classes).

Method name (identifier): How the method will be referred to when being called. For example, in

x.getPrice(self), the name of the methodis getPrice.

Parameter list: The values the method expects when the method is called. When calling the method, you replace the

expected parameters with actual parameters (values) of that type. In the example in Figure 20, when calling the method

youcouldsayy. setRetailPrice(self, 0.25, 10).

B3 Object-oriented programming

Dot notation Using a dot (.) to

indicate when you access the

methods within a class using the

following structure:

nameOfInstance.
methodName (parameters)

This section of the book introduces

you to creating data structures,

selection statements, loops,

searching and sorting using

objects. You may find these skills

useful in your internal assessment.

When storing informationin a list,

what counts as knowledge? Is the

knowledge the data within the

structure or does the knowledge

only occur when you perform an

action upon it?

Constructing code with single classes

As classes allow you to develop more sophisticated programs, it is useful for

you to understand how the different programming structures can be used

together with classes. The structures are the same in all cases, but how you

access the data to make comparisons, count occurrences, and search and

sort the data is different. Throughout this section you should pay particular

attention to the use of dot notation. Dot notation allows you to access the

data held inside variables within objects.

Creating one-dimensional (1D) structures

Look back at topic B2 to section B2.2.2. You coded an array and list to store

individual data values within a list structure. Using classes, you can store a lot of

data within the list structure. Here are examples in |ava and Python.

Creating a static 1D list in Java (Array)

The code for creating a static array follows this structure.

<Classname> [] <identifier> = new <Classname> [size of

array];

Example: Game [] myBoardGame = new Game [10];

Creating a dynamic 1D list in Java (ArrayList)

The code for creating a dynamic ArrayList will follow this structure.

ArrayList <Classname> <identifier> = new ArrayList
<Classname> ();

Example: ArrayList <Game> myBoardGame = new ArrayList
<Game>();

Adding to a static 1D list in Java

The code for adding to a static array will follow this structure.

<identifier> <index> = new <Classname> <Parameters>;

Example: myBoardGame[2] = new Game("Chicken vs the Egg",
"Snoops", 12, 120);

Adding to a dynamic 1D list in Java

The code for adding to a dynamic ArrayList will follow this structure.

<identifier>.add(new <Classname> <Parameters>);

Example: myBoardGame.add(new Game("Chicken vs the Egg",
"Snoops", 12, 120));

Remove from a dynamic 1D list in Java (by index)

The code to remove an object from an ArrayList will follow this structure.

<identifier>.remove (index) ;

Example: myBoardGame.remove(2);

B3.1 Fundamentals of OOP for a single class

Worked example 2

A group of friends regularly play board games together. They would like to

have a library of the games they have played so they can recommend them

when other people ask. Using Java, develop a system for them to use.

Solution

The code below shows the creation of an ArrayList with the identifier

myBoardGame in Java using objects of the Game class. The Game class

is instantiated four times and each object added to the myBoardGame

ArrayList. Once the objects have been added to myBoardGame one item

is removed. The result of this is then printed out.

Gameclassin Java

1. public class Game {

2

3is private String title;

4. private String manufacturer;

G private int recommendedAge;

6. private int approxGameTime;

Ta

8. public Game (String title, String manufacturer,
int recommendedAge, int approxGameTime) {

9.

10. this.title = title;

11. this.manufacturer = manufacturer;

12. this.recommendedAge = recommendedAge;

L5 this.approxGameTime = approxGameTime;

14. }

15. public String getTitle() {

16. return title;

17. }

18. public String getManufacturer() {

19. return manufacturer;

20. }

2T ¢ public int getRecommendedAge() {

22. return recommendedAge;

23 e }

24. public int getApproxGameTime() {

258 return approxGameTime;

26. }

27

B3 Object-oriented programming

28. public String toString() {

29. return "Title: " + title + ", Manufacturer:
" + manufacturer + ", Recommended Age: " +

recommendedAge + ", Approximate Game Time:
" + approxGameTime;

30. }

31. }

Runner class in Java

1. import java.util.ArrayList;

2.

3. public class GameMain {

4.

P public static void main(String[] args) {

6.

7= ArrayList <Game> myBoardGame = new
ArrayList <Game>();

8.

9. myBoardGame.add (new Game("Chicken vs the
Egg", "Snoops", 12, 120));

10. myBoardGame .add (new Game("Foxes and
Hedgehogs"”, "Snoops”", 14, 180));

NI myBoardGame .add (new Game("Cards against
History", "PopMoon", 18, 60));

e myBoardGame.add (new Game("Better or Worse",
"RadioWaves", 5, 20));

13.

14. myBoardGame.remove(2);

15

16. for (int i =0; i < myBoardGame.size();
i++) {

17.

18. System.out.println(myBoardGame.get(i).
toString());

19. }

20. }

21. }

Output:

Title: Chicken vs the Egg, Manufacturer: Snoops, Recommended Age: 12,

Approximate Game Time: 120

Title: Foxes and Hedgehogs, Manufacturer: Snoops, Recommended Age: 14,

Approximate Game Time: 180

Title: Better or Worse, Manufacturer: RadiocWaves, Recommended Age: 5,

Approximate Game Time: 20

B3.1 Fundamentals of OOP for a single class

Creating a dynamic 1D list in Python (List)

The code for creating a List will follow this structure.

<identifier> = []

Example: myBoardGame = []

Adding to a dynamic 1D list in Python

The code for adding to a list will follow this structure.

<identifier>.append(<Classname> <Parameters>);

Example: myBoardGame.append (Game(“Chicken vs the Egg",
"Snoops", 12, 120))

Remove from dynamic 1D list in Python (by index)

The code to remove an object from a list will follow this structure.

del = <identifier> [index]

Example: del myBoardGame[2]

Worked example 3
A group of friends regularly play board games together. They would like to

have a library of the games they have played so they can recommend them

when other people ask. Using Python, develop a system for them to use.

Solution

The code below shows the creation of a List with the identifier

myBoardGame in Python using objects of the Game class. The Game class is

instantiated four times and each object added to the myBoardGame List.

Once the objects have been added to myBoardGame one item is removed.

The result of this is then printed out.

Game class in Python

1. class Game:

2.

5 def init (self,title,manufacturer,
recommendedAge, approxGameTime) :

4. self. title = title

5 self. manufacturer = manufacturer

6. self. recommendedAge = recommendedAge

e self. approxGameTime = approxGameTime

8.

9. def getTitle(self):

10. return self. title

11.

2 def getManufacturer(self):

13. return self._ manufacturer

B3 Object-oriented programming

14.

5 def getRecommendedAge(self):

16. return self. recommendedAge

17.

18. def getApproxGameTime(self):

19. return self. approxGameTime

20.

21. def _ str (self):

2 return "Title: " + self. title + ",
Manufacturer: " + self. manufacturer
+ ", Recommended Age: " + str(self.
recommendedAge) + ", Approximate Game Time:
" + str(self._ approxGameTime)

@ Runner class in Python

1. from Game import Game

2

3. myBoardGame = []

4.

5. myBoardGame.append(Game("Chicken vs the Egg",
"Snoops", 12, 120))

6. myBoardGame.append(Game("Foxes and Hedgehogs",
"Snoops", 14, 180))

7. myBoardGame.append(Game("Cards against History",
"PopMoon", 18, 60))

8. myBoardGame.append(Game("Better or Worse",
"RadioWaves", 5, 20))

9.

10. del myBoardGame[2]

ALik

12. for x in myBoardGame:

13. print(x._ str_ ())

Output:

Title: Chicken vs the Egg, Manufacturer: Snoops, Recommended Age: 12,

Approximate Game Time: 120

Title: Foxes and Hedgehogs, Manufacturer: Snoops, Recommended Age: 14,

Approximate Game Time: 180

Title: Better or Worse, Manufacturer: RadioWaves, Recommended Age: 5,

Approximate Game Time: 20

Develop a data repository to store information about something you love. You

should have a class to represent the information and then several instances

of the class in a list. Try having different options: creating a new instance,

deleting an instance, searching for an instance, sorting the instances.

B3.1 Fundamentals of OOP for a single class

Creating two-dimensional (2D) data structures

Developing dynamic 2D data structures can become complex. Accessing

the elements of the class within the two-dimensional lists requires a lot of

knowledge regarding how the list is traversed and how to access different data

within the classes.

Creating a dynamic 2D listin Java (ArrayList)

The code for creating a dynamic ArrayList follows this structure.

ArrayList <ArrayList<Classname>> <identifier> = new
ArrayList <ArrayList<Classname>> ();

Repeat for each row required.

<identifier>.add(new ArrayList<className>);

Example:

ArrayList <Arraylist <Plane>> parking = new ArrayList
<ArrayList<Plane>>();

parking.add(new ArrayList<Plane>());

Adding to a dynamic 2D list in Java

The code for adding to adynamic ArrayList will follow this structure.

ArrayList <classname> <inner list>= new ArrayList
<Classname>();

<identifier>.add(<inner list>);

Example:

ArrayList <Plane> rowOne = new ArrayList<Plane>();

rowOne.add(new Plane("BCX 292", "Embrarer 195"));

rowOne.add(new Plane("BCZ 182", "Embrarer 190"));

rowOne.add(new Plane("BHT 894", "Embrarer 195"));

Remove from dynamic 2D list in Java (by index)

The code to remove an object from an ArrayList will follow this structure.

<identifier>.get (rowIndex) .remove (columnindex) ;

Example: parking.get(0).remove(l);

Worked example 4

Airports keep careful track of where planes are parked when they are on the

ground.

The planes at an airport are stored in a table-like structure. Develop a program

to help the airport achieve this.

Solution

The worked example shows a dynamic 2D ArrayList holding objects in

practice. The program enables the user to add planes to the table to show

where they are parked in the airport.

B3 Object-oriented programming

e Classin Java

1. public class Plane {

2

3. private String planeNumber;

4. private String planeType;

5.

6. public Plane (String planeNumber, String
planeType) {

7o

8. this.planeNumber = planeNumber;

9. this.planeType = planeType;

10. }

Tl public String getNumber() {

12. return planeNumber;

13. }

14. public String getType() {

15. return planeType;

16. }

07/ o public String toString() {

18. return "Plane Number: " + planeNumber + ",

Plane Type: " + planeType;

19. }

Main method in Java

1. import java.util.ArrayList;

2.

3. public class MainMethod {

4.

S public static void main(String[] args) {

6.

7o ArrayList <ArrayList <Plane>> parking =
new ArrayList<ArrayList<Plane>>();

8.

9. parking.add(new ArrayList<Plane>());

10. parking.add(new ArrayList<Plane>());

1Ll parking.add(new ArrayList<Plane>());

12.

134 ArrayList <Plane> rowOne = new
ArrayList<Plane>();

14. rowOne.add (new Plane("BCX 292", "Embrarer

195"));

15, rowOne.add (new Plane("BCZ 182", "Embrarer
1907)); &

B3.1 Fundamentals of OOP for a single class

e 16. rowOne.add(new Plane("BHT 894", "Embrarer

195"));

17

18. ArrayList <Plane> rowTwo = new
ArrayList<Plane>();

19. rowTwo.add (new Plane("XSK 922", "Airbus

3307));

20. rowTwo.add (new Plane("IUY 293", "Airbus
350"));

2L - rowTwo.add (new Plane("NFF 912", "Boeing

777")):

22. rowTwo.add (new Plane("XSJ 883", "Airbus

350"));

23.

24. ArrayList <Plane> rowThree = new
ArrayList<Plane>();

258 rowThree.add (new Plane("KSJ 948", "Airbus
380"));

26. rowThree.add(new Plane("PSJ 829", "Boeing

747"));:

27.

28. parking.add(0, rowOne);

29. parking.add(1l, rowTwo);

30. parking.add(2,rowThree);

31.

Sii parking.get(0) .remove(l);

33.

34. for (int i = 0; i <parking.size(); i++) {

359 for (int j = 0; j <parking.get(i).
size(); j++) {

36. if (parking.get(i).get(])-
getType().contains("Airbus")){

37. System.out.println(parking.get(i).

get(j).toString() + ", At Row " + i

+ ", Space: "+j);

38. }

39. }

40. }

41. }

42. }

Output:

Plane Number: XSK 922, Plane Type: Airbus 330, At Row 1, Space: 0

Plane Number: IUY 293, Plane Type: Airbus 350, At Row 1, Space: |

Plane Number: XS] 883, Plane Type: Airbus 350, At Row 1, Space: 3

Plane Number: KSJ 948, Plane Type: Airbus 380, At Row 2, Space: O

B3 Object-oriented programming

450

@ Communication skills

It can be a challenge to think about 2D lists and how they operate logically.

Using clear communication with comments and correct syntax can help to

make this easier

Comments look different in different languages. In Java you use a double

forward slash // and in Python you use a hash #.

Choose one of the activities that you have coded earlier in this unit and

practice writing comments. Examples in both languages are shown here to

give you some ideas.

Java

// loop through the coffee shop list

for (int i = 0; i <coffeeShop.size(); i++) {

// check if the coffee shop is in the given town
and has

// a star rating over the max rating

if (coffeeShop.get(i).getTown().equals(searchTerm) &&
coffeeShop.get(i).getOverallRating() > maxRating) {

// if over the max rating set new max

maxRating = coffeeShop.get(i).
getOverallRating();

// get index of new max

max = 1i;

}

Python

#Code to loop through the board game list
for x in myBoardGame:

if statement to check if the recommended age is
less than

the age provided by the user
if x.getRecommendedAge()<= age:

#print the game information out to screen
print(x.toString())

Selection statements with objects

Previously, when using selection statements, you compared a variable with

another variable. Being able to compare objects rather than variables allows

you to develop more sophisticated programs. You can compare objects and

make decisions using the information within the objects by utilizing the accessor

methods. To do this, you need to know the identifier of the object and the

accessor methods available to you.

B3.1 Fundamentals of OOP for a single class

4
Revisit the program you made to create a map showing a seating plan for a

play in B2.2.1. Replace the seat number (the primitive data type) with one of

these options:

* aclassto represent the ticket that sold the seat

* aclassto represent the seat (cost, number, availability)

* aclassto represent the person that bought the seat.

Identify the attributes and behaviours required to sell the seat. For example,

the user will need to choose their preferred seat. The program needs to check

that the seat exists and if the seat is available. If the seat is been sold, the

program needs to change the availability to unavailable.

Construct a program that will enable a seat map to be represented by seat objects.

In Java, the code for creating a selection statement using if statements follows

this structure.

if (<identifier>.<getMethodName()>.equals(<search term>) {

// code here

}

else if (<identifier>.<getMethodName()>.equals(<search term>)

//code here

}

else{

// code here

}

Note: .equals () has been used if the search term is a String or object data type.

==should be used for Java primitive data types. The else statements are optional.

Creating a selection statement using if statements in Java

1. if (temp.getManufacturerName().equals("Snoops"){

25 System.out.println("Game has long delivery
time");

3.}
4. else if (temp.getManufacturerName()-.

equals ("PopMoon") {

B System.out.println("Supports next day
delivery");

6. 1}

7. else {

8. System.out.println("Average delivery time 3 —
5 working days"):

9. 1}

451

452

B3 Object-oriented programming

Notice the use of the identifier to get the instance ofthe object and the use of the

dot notation to access the method.

Worked example 5

Using the Game class from Worked example 2, write Java code that allows the

user to enter an age and then print games that are suitable for that age group.

Solution

You need to create a for loop, which will allow you to search through

the objects. You need to ask the user their age and use this to produce a

recommendation.

1. import java.util.ArrayList;

2. import java.util.Scanner;

3.

4. public class GameMain {

5.

6. public static void main(String[] args) {

7.

8. ArrayList <Game> myBoardGame = new
ArrayList <Game>();

9. Scanner input = new Scanner(System.in);

10.

il o myBoardGame.add (new Game ("Chicken vs the
Egg", "Snoops", 12, 120));

12. myBoardGame.add (new Game('Foxes and
Hedgehogs", "Snoops", 14, 180));

13. myBoardGame.add (new Game("Cards against
History", "PopMoon", 18, 60));

14. myBoardGame.add (new Game("Better or Worse",
"RadioWaves", 5, 20));

15 myBoardGame.add (new Game ("March of the
Flamingos"”, "RadioWaves", 10, 15));

16. myBoardGame .add (new Game("Travel Spelling”,
"PopMoon", 9, 20));

17.

18. System.out.println("How old is the person
this game is for?");

19. int age = input.nextInt();

20.

2331 for (int i = 0; 1 < myBoardGame.size();
i++) {

22.

23. if (myBoardGame.get(i).
getRecommendedAge()<= age) {

24. System.out.println(myBoardGame.
get(i).toString());

B3.1 Fundamentals of OOP for a single class

© . }

26. }
27. }

28. }

In this example, the most important part to note is the if statement, which

uses the dot notation (.) to gain access to the instance. Also note that the dot

notation uses the accessor method to access the value of the variable.

In Python, the code for creating a selection statement using if statements follows

this structure (remember elif and else are optional):

if (<identifier>.<getMethodName()>= =<search term>):

// code here

elif (<identifier>.<getMethodName()>= =<search term>):

//code here

else:

// code here

Creating a selection statement using if statements in Python

1. if (myBoardGame[O0].getManufacturer()=="Snoop"):

2o print("Game has a long delivery time")

3.

4. elif (myBoardGame[O0].getManufacturer()=="PopMoon"):

Sin print("Next day delivery supported")

6.

7. else:

8. print ("Average delivery time 3 - 5 working
days")

Notice the use of the identifier to get the instance of the object and the use of the

dot notation to access the method.

@ Worked example 6

Using the Game class from Worked example 3, write Python code that allows the

user to enter an age and then print games that are suitable for that age group.

Solution

You need to create a for loop, which will allow you to search through

the objects. You need to ask the user their age and use this to produce a

recommendation.

453

454

B3 Object-oriented programming

This code also uses a for loop to search through the game objects.

g

2.

3.

4.

5.

10.

I3k

12.

13.

14.

15.

16.

Notice the use of casting to force the input to be an integer and the use of the

from Game import Game

myBoardGame = []

myBoardGame. append (Game ("Chicken vs the Egg",
"Snoops", 12, 120))

myBoardGame . append (Game ("Foxes and Hedgehogs",
"Snoops", 14, 180))

myBoardGame. append (Game (“Cards against History",

"PopMoon", 18, 60))

myBoardGame. append (Game ("Better or Worse",
"RadioWaves", 5, 20))

myBoardGame. append (Game ("March of the Flamingoes",
"RadioWaves", 10, 15))

myBoardGame.append (Game ("Travel Spelling",
"PopMoon", 9, 20))

age = int(input ("How old is the person the game
is for?"))

for x in myBoardGame:

if x.getRecommendedAge()<= age:

print(x.toStr())

dot notation () to access the method.

Repetition statements with objects

Loops using objects are like loops without objects. However, it is important to

note that in many cases when you use loops to access an object in a list, you need

to use the index to get the current instance of the object in order to access the

methods.

In Java, you can loop through a list using a for loop. The index of this list is used

to access the current instance of the object in the list. The cade follows this

structure:

for (inti=0,i < <List_identifier>.size(); i ++){

<list_identifier>.get(i) //gets current instance of object

}

Looping a list using a for loop in Java

for (int i = 0; i < myBoardGame.size(); i++){

myBoardGame.get(1i);

B3.1 Fundamentals of OOP for a single class

You can also loop through the list using an iterator. The code must be told what

information itis looking for by casting it to an object type. The .next () method

can be used to access the current instance in the list. The code follows this

structure:

lterator <classType> <iterator_identifier> = <List_identifier>.iterator();

while (<iterator_identifier>.hasNext()) {

<classType> temp = <iterator_identifier>.next() // store current instance in

a variable called temp

}

Looping through a list using an iterator in Java

1. Iterator <Game> it = myBoardGame.iterator();

2.

S while (it.hasNext()) {

4. Game temp = it.next();

5. }

Searching with objects

Searching algorithms operate in the same way, whether you use single values or

objects. How you access the data you are searching for will be different.

For a linear search in Java, the code follows this structure:

int index -1;

for (int i = 0; i < <list_identifier>.size(); i++){

// set at -1 in case it 1is not found

if (<list_identifier>.get(i).equals(searchTerm)) {

index = 1i;

}

}

if (index > 0){

System.out.println("Item found at: " + index);

}

else {

System.out.println("Item not found");

}

Linear searchin Java

1. Scanner input = new Scanner(System.in);

2. System.out.println("What shop are you looking for");

3. String searchTerm = input.nextLine();

4.

5. int index = -1;

6.

7. for (int i = 0; i < coffeeShop.size(); i++) {

8. if (coffeeShop.get(i).getShopName().
equals(searchTerm)) { e

455

456

B3 Object-oriented programming

9. index = i;

10. 1}
11. }
12.

13. if (index > 0) {

14. System.out.println("Item found at " + index);

15. }
16. else {
07 System.out.println("Item not found");

18. }

For a binary search in Java, the code follows this structure:

Index = binarySearch (<list_ identifier>,<searchTerm>); //
call method

private static int binarySearch (ArrayList <classtypes>
<list identfier>, <variable type> <search term>) {

int left = 0, right = <list Identifier>.size()-1;

while(left <= right) {

int mid = left + (right - left) /2;

if (<list_identifier>.get(mid).getMethodName().
equals(<searchTerm>)) {

return mid;

}

if((<list_identifier>.get(mid).getMethodName().
compareTo(<searchTerm>)>0) {

left = mid + 1;

}

else {

right = mid - 1;

b

}
return -1;

}

Binary search in Java

1. private static int binarySearch (ArrayList <Review>
coffeeShop, String searchTerm) {

2.

I int left = 0, right = coffeeShop.size()-1;

4.

o while(left <= right) {

6. int mid = left + (right - left) /2;

7.

8. if (coffeeShop.get(mid).getShopName().
equals(searchTerm)) {

9. return mid;

B3.1 Fundamentals of OOP for a single class

10. }

11. if (coffeeShop.get(mid).getShopName().
compareTo(searchTerm)>0) {

12. left = mid + 1;

13. }

14. else {

13, right = mid - 1;

16. }

17. }

18. return -1;

19. }

Worked example 7
Using Java, develop a recommendation system that allows users to add

coffee shops to a list and then search for recommendations based on

different criteria.

Solution

The program shows details of coffee shops in different towns. The program

allows the user to rate the food and the coffee in the coffee shop. These

ratings are then used to create an overall rating. The program will then make

use of a linear search to find the highest-rated coffee shop in a given town.

Class for the review in Java

1. public class Review {

2.

3. private String shopName;

4. private String town;

Se private int coffeeRating;

6. private int foodRating;

e private double overallRating;

8.

9. public Review (String shopName, String town,
int coffeeRating, int foodRating) {

10.

Ll this.shopName = shopName;

173 this.town = town;

13. this.coffeeRating = coffeeRating;

14. this.foodRating = foodRating;

18e this.setOverallRating();

16.

17. }

18. public String getShopName() {

19. return shopName;

20. } ‘g

457

458

B3 Object-oriented programming

21.

22,

S

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57. }

public String getTown() {

return town;

}

public int getCoffeeRating() {

return coffeeRating;

}

public int getFoodRating() {

return foodRating;

}

public double getOverallRating() {

return overallRating;

}

public void setCoffeeRating (int x) {

if (x < 5) {

coffeeRating = x;

this.setOverallRating();

}

else {

System.out.println("not a wvalid
rating");

}

}

public void setFoodRating (int x) {

if (x < 5) {

foodRating = x;

this.setOverallRating();

}

else {

System.out.println("not a wvalid
rating");

}

}

public void setOverallRating () {

overallRating = (coffeeRating * 0.75)
+ (foodRating * 0.25);

}

public String toString () {
[[T "

return "Name of Shop: + shopName + in
+ town + ". Coffee Rating: " + coffeeRating
+ ", Food Rating: " + foodRating + ",

Overall Rating: " + overallRating;

}

B3.1 Fundamentals of OOP for a single class

e Main method for this class in Java

1. public class CoffeeShopMain {

2

3. public static void main(String[] args) {

4.

G ArrayList <Review> coffeeShop = new
ArrayList <Review>();

6.

= coffeeShop.add(new Review("Belle Cafe",
"Valtorcia", 4,4));

8. coffeeShop.add(new Review("Brewed
Awakening", "Nord Lozarn", 2,2));

9. coffeeShop.add(new Review("Cattucino",
"Valtorcia", 2,2));

10. coffeeShop.add (new Review("Coffee Haus",
"Nord Lozarn", 3,4));

L. coffeeshop.add(new Review("Kickstart",
"Montebello", 5,3));

2 coffeeShop.add (new Review("Latte Da",
"Montebello", 4,4));

13. coffeeShop.add (new Review("Metro Mocha",
"Alpenfeld”, 5,3));

14. coffeeShop.add (new Review("The Apothek”,
"Nord Lozarn", 3,4));

15 coffeeShop.add (new Review("The Grind", "Nord
Lozarn", 5,4));

16. coffeeShop.add (new Review("The Java Guys",
"Alpenfeld", 2,1));

7

18. Scanner input = new Scanner (System.in);

19. System.out.println("What town are you
looking for");

20. String searchTerm = input.nextLine();

2].

22. int max = -1;

23. double maxRating = 0;

24.

25. for (int i = 0; i <coffeeShop.size();
i++) {

26.

27. if (coffeeShop.get(i).getTown().
equals (searchTerm) && coffeeShop.get(i).
getOverallRating() > maxRating) {

28.

29. maxRating = coffeeShop.get(i).
getOverallRating();

S0 max = 1i; e

459

B3 Object-oriented programming

460

Sl }

528 }

33. if (max > 0) {

34. System.out.println("The best coffee
shop in " + searchTerm + ", is: " +
coffeeShop.get (max)) ;

g5 }

36. else {

37. System.out.println("No shop found");

38. }

39. }

40. }

For a linear search in Python, the code follows this structure:

foundIndex = -1

searchTerm = input("<question>")

for i, <variable> in enumerate(<list identifier>):

if (<variable> == searchTerm):

foundIndex = i

if (foundIndex != -1):

print("<statement" + str(foundIndex))

else:

print("<statement>")

Linear search in Python

1. searchTerm = input("What shop are you looking
for?")

2. index = -1

g

4. for i, shop in enumerate(coffeeShop):

Sa if shop.getShopName() == searchTerm:

6. index = i

7

8. if (index > 0):

9. print ("Item found at " + str(index))

10. else:

SIS print("Item not found")

For a binary search in Python, the code follows this structure:

def binarySearch (searchArray, left, right, searchTerm):

while left < right:

midPoint = left + (right - left) // 2

#check if searchTerm is present at the midPoint

if searchArray[midPoint] == searchTerm:

return midPoint

B3.1 Fundamentals of OOP for a single class

#if searchTerm is greater than midPoint, ignore the
left half

elif searchArray[midPoint] < searchTerm:

left = midPoint + 1

#1f searchTerm is smaller than midPoint, ignore the
right half

else:

right = midPoint -1

1f the searchTerm is not found return -1

return -1

Binary search in Python

1. def binarySearch(searchList, left, right,
searchTerm) :

2 while left < right:

3. midPoint = left + (right - left) // 2

4.

B if searchList[midPoint].getShopName() ==
searchTerm:

6. return midPoint

e elif searchList [midPoint].getShopName() <
searchTerm:

8. left = midPoint + 1

9. else:

10. right = midPoint -1

11.

12. return -1

Worked example 8

Using Python, develop a recommendation system that allows users to add

coffee shops to a list and then search for recommendations based on

different criteria.

Solution

The program shows details of coffee shops in different towns. The program

allows the user to rate the food the coffee in the coffee shop. These ratings

are then used to create an overall rating. The program will then make use of a

linear search to find the highest-rated coffee shop in a given town.

@ Class for the review in Python

1. class Review:

2

e def init (self,shopName, town, coffeeRating,
foodRating):

4. self. shopName = shopName

5. self. town = town

6. self. coffeeRating = coffeeRating

B3 Object-oriented programming

e e self. foodRating = foodRating

8. self. overallRating = 0

9. self.setOverallRating()

10.

AL, def getShopName(self):

12. return self. shopName

13.

14. def getTown(self):

15. return self. town

16.

17/ def getCoffeeRating(self):

18. return self. coffeeRating

19.

20. def getFoodRating(self):

21. return self. foodRating

22.

23. def getOverallRating(self):

24, return self. overallRating

25,

26. def setCoffeeRating(self, x):

27. if (x < 5):

28. self. coffeeRating = 5

29. self.setOverallRating()

30. else:

31. print("This is not a valid rating")

32.

33. def setFoodRating(self, x):

34. if (x < 5):

35. self. foodRating = 5

36. self.setOverallRating()

37. else:

38. print("This is not a valid rating")

39.

40. def setOverallRating(self):

41. self. overallRating = (self._coffeeRating
* 0.75) + (self._ foodRating * 0.25)

42,

43. def _ str (self):

44. return "Name of Shop: " + self. shopName
" + " in + self. town + ", coffee rating:

" + self. coffeeRating + ", food rating: "
+ self. foodRating + ", overall rating: "
+ self._ overallRating e

462

B3.1 Fundamentals of OOP for a single class

© Main method for this class in Python

1. from Review import Review

2

3. coffeeshop = []

4.

G zogeeShop.append(Review(“Belle cafe", "Valtorcia",

«4))

6. coffeeShop.append(Review("Brewed Awakening"”, "Nord
Lozarn", 2,2))

7. coffeeShop.append(Review("Cattucino"”, "Valtorcia",

2,2))

8. coffeeShop.append(Review("Coffee Haus", "Nord
Lozarn", 3,4))

9. coffeeShop.append(Review("Kickstart"”, "Montebello",
5,3))

10. coffeeShop.append(Review("Latte Da", "Montebello",

4,4))

11. coffeeshop.append(Review("Metro Mocha", "Alpenfeld",

2,2))

12. coffeeShop.append(Review("The Apothek", "Nord
Lozarn", 3,4))

13. coffeeShop.append(Review("The Grind", "Nord Lozarn",

5,4))

14. coffeeshop.append(Review("The Java Guys",
"Alpenfeld", 2,1))

15.

16. searchTerm = input("What town are you looking
for?")

17. index = -1

18. highest = 0

19.

20. for i, shop in enumerate(coffeeShop):

21. if coffeeshop[i].getTown() == searchTerm and
coffeeshop([i].getOverallRating() > highest:

22. index = i

23. higher = shop.getOverallRating()

24.

25. if (index > 0):

26. print ("The highest rated shop in " +
" "

searchTerm + :" + coffeeshop[index].
getShopName())

27. else:

28. print("Item not found")

463

B3 Object-oriented programming

TOK

464

People often use apps and

websites to find the “best”

restaurant in town or the “best”

tourist attractions. These take

many different forms and can be

confusing for some users. The

coffee shop program developed

in Worked examples 7and 8 isa

simple version of programs that are

used regularly by consumers.

What challenges are faced by

programmers when they are

communicating knowledge?

@ Self-management and social skills

Searching and sorting can be quite challenging in code. It is important to

understand what is happening at each stage of the process so you can identify

if something has gone wrong. Using debugging techniques such as print

statements at key points helps you to communicate the issues in the program,

aiding the testing and evaluation cycle.

Review one of the programs you have written for an activity in this unit. Write

down how you could use debugging techniques to improve your code. Work

with a partner to check through each other’s code and implement your ideas.

What were the benefits of working with a partner? Was there anything that

made working with a partner challenging? Would you do anything different

next time?

Sorting with objects

Sorting objects can be a challenging task depending on what you wish to use to

sort the object. In Python and Java, sorting using numbers is relatively easy. The

algorithm follows the same steps as non-object sorting. In Python, since a String

is treated as a primitive data type, you can use the primitive comparison operators

(>, >=, <, <=, == 1=).

Java is different: a String is an object data type, so you have to use a comparison

method called the compareTo method. The compareTo method allows you

to compare two objects to determine if one object is lexicographically (using the

order of the alphabet) less than or greater than the other object.

When comparing the two objects using compareTo then the method will return

values as follows.

* Qifthe two objects are equal.

+ < Qifthe object is lexicographically less than the compared object.

* > 0ifthe object is lexicographically greater than the compared object.

The following two examples show how to sort objects alphabetically using

bubble sort: first in Java, thenin Python.

In Java, because you are using objects that use pointers, you need a helper

method to actually make the swap. This is because you must remove the

element from its old position and re-add the element in its new position. The sort

algorithm and the helper method will look similar to this:

<className>tempOne;

<className>tempTwo;

//first index

//second index

int fIndex;

int sIndex;

for(int i = 0; i < <arraylist identifier>.size()-1; i++){

for(int j =

J++){
0; Jj < arraylist identifier>.size()-i-1;

B3.1 Fundamentals of OOP for a single class

if
(<arraylist identifier>.get(j).compareTo(<arraylist
identifier>.get(j+1))>0){

tempOne = <arraylist identifier>.

get(J);:

fIndex = j;

tempTwo = <arraylist identifier>.

get(j + 1);
sIndex = j + 1;

swap(<arraylist identifier>, fIndex, sIndex,
tempOne, tempTwo);

}

public static void swap (ArrayList<className> <arraylist
identifier>, int current, int next, <className>
currentObj, <className> nextObj){

<arraylist identifier>.
remove(current);

<arraylist identifier>.add(current,
next0bj);

<arraylist identifier>.remove (next);

<arraylist identifier>.remove(next,

currentObj);

}

Bubble sort with objects in Java

1. student temp;

2. student temp2;

3. int fIndex;

4. int sIndex;

5.

6. for (int i = 0; i < studentlList.size()-1; i++) {

Ue for (int j = 0; j < studentList.size()-i-1;

i++) |
8.

9. if (studentList.get(]).
compareTo(studentList.get(j+1))>0) {

10.

il o, temp = studentList.get(]);

12. fIndex = j;

13. temp2 = studentList.get(j + 1);

14. sIndex = j+1;

15 swap(studentList, fIndex, sIndex,
temp, temp2);

16. }
17. }

18. }

465

466

B3 Object-oriented programming

19. for (int i = 0; i <studentList.size(); i++) {

20. System.out.println(studentList.get(i));

21. }

22. }

23. public static void swap(ArrayList <student>

studentList, int current, int next, student
currentStudent, student nextStudent) {

24.

25, studentList.remove(current);

26. studentList.add(current, nextStudent);

27. studentList.remove (next) ;

28. studentList.add(next, currentStudent);

29.

30. }

31. }

Worked example 9

Using Java, write a program that allows teachers to add students to a student

list. They need to be able to include the student’s name, age, and any

allergies they have. The output must print students in alphabetical order, so

that the teachers can find the information as quickly as possible.

Solution

One way to do this would be to develop a class to store the data and then use

alist to add an instance of the class for each student. Teachers can then search

and sort the data according to their needs.

Student class in Java

1. public class Student {

2.

3. private String name;

4. private String surname;

Se private int age;

6. private boolean allergy;

e private String allergyTo;

8.

9. public Student (String surname, String name,
int age, boolean allergy, String allergyTo) {

10.

1L this.name = name;

12. this.surname = surname;

13. this.age = age;

14. this.allergy = allergy;

B3.1 Fundamentals of OOP for a single class

@ NG this.allergyTo = allergyTo;

16.

17. }

18. public String getName() {

19. return name;

20. }

2L public String getSurname() {

22. return surname;

23. }

24. public int getAge() {

A return age;

26. }

27. public boolean getAllergy() {

2Be return allergy;

29. }

30. public String getAllergyTo() {

31. return allergyTo;

A }

33. public int compareTo(Student sobj) {

34. return this.surname.compareTo(sobj.
getSurname());

35. }

36.

37. public String toString() {

38. return surname + ", " + name + ", Age: "
+ age + ", Allergy: " + allergy + " " +
allergyTo;

39. }

40. }

Main method in Java

1. public class MainMethod {

2

s public static void main(String[] args) {

4.

Sn ArrayList<Student> studentList = new
ArrayList <Student>();

6.

7 studentList.add(new Student("Chai",
"Yuhan", 15, false, "")):

8. studentList.add(new Student("Renaudie”,
"Thomas", 16, true, "Shellfish"));

9. studentList.add(new Student ("Shyamsukha",
"Priya", 15, false, ""));

10. studentList.add(new Student("Urcum",
"Kerem", 15, false, "")): e

467

468

B3 Object-oriented programming

11.

12.

13.

14.

15.

Ee

17.

18.

19.

20.

21.

27 ¢

23.

24.

25,

26.

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

studentList.add(new Student("Zuaiter",
"Sebastian", 16, true, "Shellfish"));

studentList.add(new Student("Wallstrom",
"Tobias", 16, false, ""));

studentList.add(new Student("Cova",

"Francesca", 16, false, "")):

studentList.add(new Student("Buchli",
"Maria", 17, true, "Pineapple"));

studentList.add(new Student("Joinson",
"Ava", 17, false, ""));

studentList.add(new Student("Halldorsson",

"Kristoffer", 15, false, ""));:

Student temp;

Student temp2;

int fIndex;

int sIndex;

for (int i = 0; i < studentList.size()-1;
i++) {

for (int j = 0; j < studentList.
size()-1i-1; j++) {

if (studentList.get(]).
compareTo(studentList.

get(j+1))>0) {

temp = studentList.get(]);

fIndex = J;

temp2 = studentList.get (]
7 dj)p

sIndex = Jj+1;

swap(studentList, fIndex,
sIndex, temp, temp2);

for (int i = 0; i <studentList.size();
it+) {

System.out.println(studentList.get(i));

B3.1 Fundamentals of OOP for a single class

“g 45.

46.

47. }

48. public static void swap(ArrayList <Student>

studentList, int current, int next, Student
currentStudent, Student nextStudent) {

49.

50. studentList.remove(current);

51. studentList.add(current, nextStudent);

A - studentList.remove (next) ;

53. studentList.add(next, currentStudent);

54.

55. }

56.

57. }

Output:

Buchli, Maria, Age: 17, Allergy: true Pineapple

Chai, Yuhan, Age: 15, Allergy: false

Cova, Francesca, Age: 16, Allergy: false

Halldorsson, Kristoffer, Age: 15, Allergy: false

Joinson, Ava, Age: 17, Allergy: false

Renaudie, Thomas, Age: 16, Allergy: true Shellfish

Shyamsukha, Priya, Age: 15, Allergy: false

Urcum, Kerem, Age: 15, Allergy: false

Wallstrom, Tobias, Age: 16, Allergy: false

Zuaiter, Sebastian, Age: 16, Allergy: true Shellfish

In Python, because of the way that lists are stored and String data types are

treated, the bubble and selection sort do not require the use of a helper method.

The code is similar to this:

for i in range (0, len (<list_ identifier>)):

for j in range (0, len(<list identifier>)-i-1):

if (<list_identifier>[j].<method name> > <list

identifier>[j+1].<method name>):

temp = <list_ identifier>[]]

<list_identifier> [j] = <list identifier> [j+1]

<list_identifier> [j+1] = temp

469

470

B3 Object-oriented programming

(@) Bubble sort with objects in Python

1. for i in range(0, len(studentList)):

2 for j in range(0, len(studentList)-i-1):

S if (studentList[]]-
getName()>studentList[j+1].
getName()):

4. temp = studentList[]]

Sa studentList[]j] = studentList[j+1]

6. studentList[j+1] = temp

Worked example 10

Using Python, write a program that allows teachers to add students to a

student list. They need to be able to include the student’s name, age, and any

allergies they have. The output must print students in alphabetical order, so

that the teachers can find the information as quickly as possible.

Solution

One way to do this would be to develop a class to store the data and then use

a list to add an instance of the class for each student. Teachers can then search

and sort the data according to their needs.

Student class in Python

1. class student:

2

25 def init (self, name, surname, age,
allergy, allergyTo):

4. self. name = name

5. self. surname = surname

6. self. age = age

7. self. allergy = allergy

8. self. allergyTo = allergyTo

9.

10. def getName(self):

11. return self. name

g

113 def getSurname(self):

14. return self._ surname

15.

le6. def getAge(self):

17. return str(self.__age)

18.

19. def getAllergy(self):

20. return str(self._allergy)

21.

D def getAllergyTo(self):

23. return self. allergyTo

24.

B3.1 Fundamentals of OOP for a single class

e 25. def str__ (self):

26. return "Surname: " + self. surname + ",
Name: " + self. name + ", Age: "

207 - + str(self. age) + ", Allergy: " +
str(self._allergy) + ", Allergy To: " +
self. allergyTo

(®) Main method in Python

1. from student import student

2

3. studentList = []

4.

5. studentList.append(student("Chai", "Yuhan", 15,
False, ""))

6. studentList.append(student(”Renaudie”, "“Thomas",
16, True, "Shellfish"))

7. studentList.append(student ("Shyamsukha", "Priya",
15, False, ""))

8. studentList.append(student("Urcum", "Kerem", 15,
False, ""))

9. studentList.append(student ("Zuaiter", "Sebastian",
16, True, "Shellfish"))

10. studentList.append(student ("Wallstrom", "Tobias",
16, False, ""))

11. studentList.append(student ("Cova", "Francesca",
16, False, ""))

12. studentList.append(student("Buchli", "Maria", 17,
True, "Pineapple"))

13. studentList.append(student("Joinson", "Ava", 17,
False, ""))

14. studentList.append (student(“Halldorsson",
"Kristoffer", 15, False, ""))

5.

16.

17. for i in range(0, len(studentList)-1):

18. for j in range(i+l, len(studentList)-i-1):

19. if (studentList[]].
getName ()>studentList[j+1].getName()):

20. temp = studentList[]]

21. studentList[j] = studentList[]j+1]

22. studentList[j+1] = temp

23.

24.

25. for x in studentList:

26. print(x._ str_ ())

Output:

Surname: Yuhan, Name: Chai, Age: 15, Allergy: False, Allergy To:

Surname: Thomas, Name: Renaudie, Age: 16, Allergy: True, Allergy To: Shellfish

Surname: Priya, Name: Shyamsukha, Age: 15, Allergy: False, Allergy To: e

471

B3 Object-oriented programming

e Surname: Francesca, Name: Cova, Age: 16, Allergy: False, Allergy To:

Surname: Maria, Name: Buchli, Age: 17, Allergy: True, Allergy To: Pineapple

Surname: Kristoffer, Name: Halldorsson, Age: 15, Allergy: False, Allergy To:

Surname: Ava, Name: Joinson, Age: 17, Allergy: False, Allergy To:

Surname: Kerem, Name: Urcum, Age: 15, Allergy: False, Allergy To:

Surname: Tobias, Name: Wallstrom, Age: 16, Allergy: False, Allergy To:

Surname: Sebastian, Name: Zuaiter, Age: 16, Allergy: True, Allergy To: Shellfish

(N
Ms Ava is a teacher who works with primary school children. Every week, she

sets a mini-quiz that is a mixture of trivia questions and questions about the

topics the students have studied. Students work in table groups to answer the

questions. At the end of the month, the table at the top of the leader board

gets 15 extra minutes of play time.

Put together everything you know and develop a more complex program to

help Ms Ava.

Practice questions

1. Identify two disadvantages of using OOP for programming. [4 marks]

2. Anarticle is a story that appears in a magazine. It has a title, a subtitle,

an author and a number of words. Construct a UML diagram for an

Article class. [4 marks]

3. Explain the difference between a static and non-static variable. [3 marks]

4. Hereis a constructor method heading for an Article class.

public Article (String title, String author, int words){

// code missing

}

def init _ (self, title, author, words):

#code missing

In either Java or Python, initialize an instance of the class using the following

information.

Title: “Top 10 creepy movies”, Author: “Patrick D",

Number of words: 350 [3 marks]

5. ldentify two advantages of using encapsulation. [4 marks]

6. State three features of encapsulated code. [3 marks]

472

multiple classes
X WA Fundamentals of OOP for

Syllabus understandings

B3.2.1 Explain and apply the concept of inheritance in OOP to promote code

reusability

B3.2.2 Construct code to model polymorphism and its various forms, such as

method overriding

B3.2.3 Explain the concept of abstraction in OOP

B3.2.4 Explain the role of composition and aggregation in class relationships

B3.2.5 Explain commonly used design patterns in OOP

B3.2.1 Explain and apply the concept

of inheritance in OOP to promote code

reusability
If you think about a mammal, what do you think of? Do you think of a blue

whale? Do you think of a cat? Do you think of a lion? Do you think of a human?

They all have attributes and behaviours in common that make them a mammal:

warm-blooded, backbones, four limbs, fur, hair. They also have things that

make them very different. Another example is when you think of a vehicle,

what do you think of? Do you think of a car? Do you think of an aeroplane? Do

you think of a boat? All these items have attributes and behaviours in common

that make them a vehicle—move forward, brake, transport items—but each

have their own attributes that make them different. The ability to identify both

commonalities and differences between items helps you when developing code

that uses inheritance.

Inheritance in object-oriented programming makes use of a superclass to store

common attributes and behaviours. Subclasses inherit all the common attributes

and behaviours from the superclass and add some of their own specific attributes

and behaviours. If we continue with the example of vehicles, the superclass

may contain information about the fuel type, capacity and maximum range.

An aeroplane may contain additional information about whether it is commercial,

a car may contain information about whether it is electric, and a ship may contain

information about how much cargo it can hold. As all common code is stored in

the superclass, you only need to code this once.

You can represent inheritance using a UML diagram (see Figure 23). Note the

use of the arrows to denote an is_a relationship: Aeroplane is a Vehicle, Carisa

Vehicle and Ship is a Vehicle.

A Figure 21 The platypus has attributes

and behaviours in common with other

mammals

Inheritance (in coding) Using a
superclass to store all common

variables and methods then using

subclasses to store specific variables

and methods, promoting code

reuse and easier maintenance.

473

474

B3 Object-oriented programming

Superclass Name

- Common variables

for all items

+ Common methods

for all items

A

Subclass Name Subclass Name Subclass Name

- Specific variables for

the subclass

- Specific variables for

the subclass

- Specific variables for

the subclass

+ Specific methods for

the subclass

+ Specific methods for

the subclass

+ Specific methods for

the subclass

A Figure 22 Generic UML diagram for a superclass

The vehicle UML diagram will look something like this.

Vehicle

- fuelType:String

- capacity:int

- maxRange:int

+ getFuel()

+ getCapacity()

+ getRange()

A

Aeroplane Car Ship

- commercial: boolean - electric: boolean - cargoCapacity: int

+ getCommercial() + getElectric() + getCapacity()

A Figure 23 UML diagram for a Vehicle superclass

The advantages of using inheritance are as follows.

Reusing the code: Multiple subclasses can use the code in the superclass as

they inherit the same properties.

More efficient code: It only has to be written once.

Simpler maintenance: Any changes in the superclass only need to be made

once and are then reflected across all subclasses.

Modular code: Code that uses inheritance is modular, so it can be used in other

applications with relative ease.

B3.2 Fundamentals of OOP for multiple classes

When using inheritance, you must be careful with the modifier you use for the

variables and methods as this will determine whether the data can be seen by the

subclass or not.

* A private variable or method can only be seen by the class in which it is

declared. Any private variable or method in the superclass cannot be seen in

the subclass (unless accessed through a public accessor method).

* Protected variables and methods can be seen by the superclass and the

subclass. They cannot be seen outside of the inherited class structure.

If you declare variables as protected in the superclass, they can be seenin

all subclasses.

* Anyvariable or method declared public in the superclass can be seen in the

superclass and all subsequent subclasses. Public variables and methods can

also be seen outside the inherited class structure.

* Anyvariable or method declared with the default modifier limits the visibility

to the package. Any class outside of the package is unable to see the variable

and method.

@ Research skills

When using inheritance, it is good to understand how the objects are

expected to work. This is similar to pattern management and identification

in computational thinking. Identify the patterns across all classes that can be

placed in the superclass. Look for are behaviours or attributes that all items have.

Consider the following animals: cow, dolphin, giraffe, whale, lion, sheep.

* What variables would you need to store the required information?

* What methods would you need to represent the behaviours of the animal?

* What would you put in the superclass?

* What would be in each of the subclasses?

Coding with inheritance in Java

In the superclass you declare all the common variables and methods.

The following example will make use of the Vehicle superclass and Aeroplane,

Car and Ship subclasses from the UML diagram in Figure 23. Note that because

the variables have been declared private, public accessor methods will need to

be used to access this data from the subclass.

Example superclass in Java

1. public class Vehicle {

2

3. private String fuelType;

4. private int capacity;

e private int maxRange;

6.

e public Vehicle (String fuelType, int capacity,

int maxRange) {

8.

475

476

B3 Object-oriented programming

9. this.fuelType = fuelType;

10. this.capacity = capacity;

fINI this.maxRange = maxRange;

12.

13. }

14. public String getFuel() {

15. return fuelType;

16. }
7 . public int getCapacity() {

18. return capacity;

19. }
20. public int getMaxRange() {

21. return maxRange;

22. }
23. public String toString() {

24.

25 o return "Fuel: " + fuelType + ", Capacity:
" " + capacity + ", Max Range: "

+ maxRange;

In the subclass you declare variables and methods specific to the subclass.

The following example shows the Aeroplane subclass. Note the use of the

word extends to show that the Aeroplane is a Vehicle and therefore inherits

the Vehicle variables and methods. The constructor method takes parameters

for both the subclass and the superclass. Within the constructor the super

keyword is used to invoke the superclass constructor. The toString()

method will override the toString() method in the superclass. This will be

discussed further in section B3.2.2. The toString() method also calls upon

the superclass toString () which will print the data from the superclass as well

as the specifics from the subclass.

Example subclass in Java

1. public class Aeroplane extends Vehicle {

2.

3o private boolean commercial;

4.

Gin public Aeroplane (String fuelType, int
capacity, int maxRange, boolean commercial) {

6.

o super (fuelType, capacity, maxRange);

8. this.commercial = commercial;

9. }
10. public boolean getCommercial() {

11. return commercial;

12. }

B3.2 Fundamentals of OOP for multiple classes

13. public String toString() {

14. return super.toString() + ", Commercial: "
+ commercial;

15. }

16. }

An example of the main method for this class is shown below. The superclass is

used as the type for the ArrayList. This allows us to add all types of subclass to

the array list. This means we do not have to have an array list per class type. When

you loop through the list you can check the type of class using the method.

getClass() .getSimpleName (). You can then use this to cast the Vehicle to

a type to access the subclass methods.

This is shown in the main method below. An if statement is used to check if the

current Vehicle is a Ship. We then use this to create a temp variable of type ship

(line 21). We can then use this temp variable to access the specific methods of the

ship class.

Example main method in Java

1. dimport java.util.ArrayList;

25

3. public class MainMethod {

4.

S public static void main(String[] args) {

6.

T ArrayList <Vehicle> theVehicles = new
ArrayList <Vehicle>();

8.

9. theVehicles.add(new Car("Petrol"”, 5, 400,
false));

10. thevVehicles.add(new Car("Electric", 5,
250, true));

11. thevVehicles.add(new Ship("Diesel", 5500,

800, 0));

12. thevehicles.add(new Ship("Hybrid", 200,
1100, 10000));

13. theVehicles.add(new Ship("Diesel”, 7000,
800, 10));

14. thevehicles.add(new Aeroplane("Diesel”,
200, 600, true));

15 theVehicles.add(new Aeroplane("Diesel”,
240, 650, true));

16. theVehicles.add(new Aeroplane("Diesel”,
10, 500, false)):;

17.

18. for (int i = 0; i < theVehicles.size();
i++) {

19. if(thevehicles.get(i).getClass().
getSimpleName().equals("“Ship")){

20.

2o Ship temp = (Ship)theVehicles.

get(i);
22.

477

478

B3 Object-oriented programming

23 o if (temp.getCargoCapacity()>5000)

24. System.out.println(theVehicles.
get(i).toString());

25. }

The code above shows that complexity can by minimized by using one

ArrayList rather than several array lists.

Coding with inheritance in Python

In the superclass you declare all the common variables and methods.

The following example will make use of the Vehicle superclass and Aeroplane,

Car and Ship subclasses from the UML diagram in Figure 23. Note that because

the variables have been declared private, public accessor methods will need to

be used to access this data from the subclass.

Example superclass in Python

1. class Vehicle():

Z o def init (self, fuelType, capacity, maxRange):

g self. fuelType = fuelType

4. self. capacity = capacity

5. self. maxRange = maxRange

6.

7o def getFuelType(self):

8. return self. fuelType

9.

10. def getCapacity(self):

fINI return self. capacity

12.

13. def getMaxRange(self):

14. return self. maxRange

15.

16. def str_ (self):

17. return "Fuel Type " + self. fuelType + ",

Capacity " + str(self._capacity) + ", Max
Range " + str(self._maxRange)

In the subclass you declare variables and methods specific to the subclass.

The following example shows the Aeroplane subclass. Note the Vehicle class

is passed in as a parameter to the class declaration to show that the Aeroplane

is a Vehicle and therefore inherits the Vehicle variables and methods. The

constructor method takes parameters for both the subclass and the superclass.

Within the constructor, the super keyword is used to invoke the superclass

constructor. The __str__ () method willoverridethe __str__ () method

in the superclass. This will be discussed further in section B3.2.2.

B3.2 Fundamentals of OOP for multiple classes

The __str__ () method also calls upon the superclass __str__ () which will

print the data from the superclass as well as the specifics from the subclass. Note

that, for the superclass to work, you need to import the superclass ready for use.

. Example subclass in Python

1. from Vehicle import Vehicle

2. «class Aeroplane(Vehicle):

3.

4. def init (self, fuelType, capacity,
maxRange, commercial):

Se super().__init (fuelType, capacity,
maxRange)

6. self. commercial = commercial

7.

8. def getCommercial(self):

9. return self. commercial

10.

11. def _ str_(self):

12.

13 return super()._str () + ", Commercial:
" + str(self. commercial)

An example of the main method for this class is shown below. The vehicles

(all categories) can be added to the list. This means we do not have to have a list

per class type. When you loop through the list you can check the type of class

using isInstance (X, classType). You can then use thistoaccessthe

subclass methods. As Python uses dynamic binding, you do not need to cast the

class—it will act as the class type it has been declared as. This is shown in the main

method below. An if statement is used to check if the current Vehicle is a Ship.

You can then access the specific methods of the ship class.

Example main method in Python

1. from Vehicle import Vehicle

2. from Ship import Ship

3. from Car import Car

4. from Aeroplane import Aeroplane

S

6. theVehicles = []

T e

8. thevVehicles.append(Car("Petrol”, 5, 400, False))

9. thevVehicles.append(Car("Electric", 5, 250, True))

10. theVehicles.append(Ship("Diesel"”, 5500, 800, 0))

11. thevVehicles.append(Ship("Hybrid", 200, 1100,
10000))

12. thevVehicles.append(Ship("Diesel"”, 7000, 800, 10))

13. thevVehicles.append(Aeroplane("Diesel”, 200, 600,
True))

14. thevVehicles.append(Aeroplane("Diesel", 240, 650,
True)) e

479

B3 Object-oriented programming

15. thevVehicles.append(Aeroplane("Diesel"”, 10, 500,
False))

16.

17. for X in theVehicles:

18. if (isinstance(X, Ship)):

19.

20. if X.getCargoCapacity()>5000:

231 print(X. str_ ())

The animals in a zoo can be divided into three groups: reptiles, amphibians

and mammals. The zoo wants to store information about each animal,

including the section of the park where the animal can be found. Develop a

program for the zoo to use.

B3.2.2 Construct code to model

polymorphism and its various forms,

such as method overriding
A smartphone can be used as a metaphor for polymorphism.

Telephone call

device
Map device Weather

Social media

device

Polymorphism (in coding) Code

that has many forms. The version

of the code chosen depends on

the type of object or the number of

parameters passed into the method.

This promotes code reuse and

better maintenance.

forecast device

Messaging

device

Gaming device

A Figure 24 A smartphone can take on different forms

In programming, polymorphism is used to mean that a method can take on many

different forms. To think about polymorphism in the real world, consider yourself

as a person. Sometimes you act as a student, sometimes as a child, sometimes

a friend. You have many different forms (roles) depending on the situation you

arein. Thisis the same as your phone. Sometimes you use your phone as a map,

sometimes to watch videos, and sometimes to stay in contact with friends and

family. The form of your phone changes depending on the situation you are in.

B3.2 Fundamentals of OOP for multiple classes

Polymorphism in code is similar. The form the code takes depends on different

factors, including the number of parameters passed into the method and

what type of object the method is within. Polymorphism can either be static or

dynamic. You will examine these more later in the section.

Advantages of polymorphism

* Code can be reused. You can make a common class and different objects

can be treated as a common class.

* You need to write much less code. You can have different versions of

methods in the same class.

* less maintenance, as many of the methods are in the same class.

* Generic code can be used, this enables all objects to be treated as the same

generic type, requiring less specific coding.

Disadvantages of polymorphism

* Increased computational power. When using dynamic polymorphism,

decisions must be made at runtime. This increases the computational

power required.

* Increased code complexity.

@ Research skills

Researching how an object or method should work is a key skill. Using algorithmic

thinking can help you to understand how an object should operate within

algorithms. If the object needs to behave in different ways, use polymorphism.

1. Research a character in a computer game. Some characters interact with the

main character. Some characters have no interaction. What attributes would

a character that interacts with the main character have that the others would

not? Think about their characteristics. For example, do they give clues to

the main character? Are they there to make the scene more interesting?

2. Forthe characters who do interact with the main character, would you

make a polymorphic class or not? What features would this class have?

3. Ifyou cannot use polymorphism, how would you make the class?

Static polymorphism

Static polymaorphism is sometimes called compile-time polymorphism as it

happens at compile time. When a program is compiled, it is translated from a

high-level language into machine code using the translation process. At this

point, the compiler checks which method will be used, based on the number

and type of parameters passed into the method.

This is useful as it allows for several methods with the same name that make use of

different parameters to carry out a task.

An example is a Salesperson class. Salespeople can either work on a fixed salary

or by having a base salary and adding commission. Without polymorphism, you

would need to have two different method names, which could be confusing. You

would need to remember what type of object you are using or use two different

classes (a base salesperson and a commissioned salesperson).

B3 Object-oriented programming

With polymorphism, you can have a single Salesperson class and use two

methods with the same name but different parameters.

* calculateWage() //when the salespersondoes not work on commission.

* calculateWage(monthlySales) //when the salesperson works

with commission.

You do not need to have many different salesperson classes—one with

polymorphism will suffice. This also allows for flexibility if a salesperson changes

from basic to commissioned. You do not need to create a new version of the

class for this—you just change the method you use. This type of polymorphism is

sometimes called method overloading.

Static polymorphism in Java

There are two overloaded methods in the class. The first is the constructor

method. There are two constructor methods: one that takes three parameters

(Salespeople who do not work on commission) and one that takes four parameters

(Salespeople who work on commission). How many parameters there are in the

call to the constructor depends on which constructor method is chosen. The

second overloaded method is the calculateWage () method. One method

requires no parameters (for Salespeople who do not work on commission)

and one requires one parameter (for Salespeople who work on commission):

calculateWage(double monthlySales). Again, whether a parameteris

given or not depends on which method is chosen.

@ Example class that uses static polymorphism in Java

1. public class Salesperson {

2.

£ private String name;

4. private String location;

o private double annualSalary;

6. private double commission;

7.

8. public Salesperson(String name, String
location, double annualSalary) {

9.

10. this.name = name;

7L this.location = location;

2, this.annualSalary = annualSalary;

1.3 5 this.commission = 0.0;

14.

15. }

16. public Salesperson(String name, String
location, double annualSalary, double
commission) {

17.

18. this.name = name;

19. this.location = location;

20. this.annualSalary = annualSalary;

B3.2 Fundamentals of OOP for multiple classes

2311, o this.commission = commission;

22.

23. }

24. public String getName() {

25. return name;

26. }

27 o public String getLocation() {

28. return location;

29. }

30. public double getSalary() {

31. return annualSalary;

32. }

33. public double getCommission() {

34. return commission;

S5 }

36. public void setCommission(double comm) {

27 commission = comm;

38. }

39. public double calculateWage() {

40. return annualSalary / 12;

41. }

42. public double calculateWage(double monthlySales) {

43.

44, douh%e @onthlycommission = monthlySales *
commission;

45. return (annualSalary/12)
+ monthlyCommission;

46. }

47. public String toString() {

48. return "Name: " + name + ", Location: " +
location;

49. }

50. }

The main method instantiates two instances of the Salesperson class: one using

the constructor that takes three parameters and one using the constructor that

takes four parameters. The main method also calls upon two versions of the

overloaded method calculateWage(): one that requires no parameter and

one that requires the monthly sales.

Example main classin Java

1. public class MainMethod {

2

S public static void main(String[] args) {

4.

5e Salesperson firstPerson = new
Salesperson("Cole Martinez", "Porto",
45000.00);

483

484

B3 Object-oriented programming

6. Salesperson secondPerson = new Salesperson
("Rina Markaj", "Patas", 37500.00, 0.75);

7.

8. System.out.println(firstPerson.
calculateWage()):

9. System.out.println(secondPerson.
calculateWage(3500));

10. }

11. }

This example shows that polymorphism makes code more reusable. You can

switch between a non-commissioned and commissioned salesperson by setting

the commission of a salesperson and using the overloaded method rather than

creating a whole new instance of the Salesperson. Any changes to the cade only

have to be made in this class, making maintenance easier.

Static polymorphism in Python

Method overloading is not supported in Python. There are ways to pretend it

waorks using if statements, but the object-oriented version of static polymorphism

is not supported.

A campsite has several pitches (spaces) for tents, divided into three price

bands: Basic Tent (cost per night), Enhanced Tent (cost per night plus

25 for electricity) and Premium Tent (cost per night plus 25 electricity and

30 per night for access to the luxury shower block). Develop a program

using polymorphism that will provide a solution.

Dynamic polymorphism

Dynamic polymorphism is sometimes called runtime polymorphism as it

happens at runtime. This type of polymorphism happens in inherited classes

where the superclass has a method in it with the same name as the subclass but

the subclass method is called when available. The superclass shows the method

is available and then, at runtime, the method from the subclass is called and

run. This type of polymorphism is sometimes called method overriding as the

subclass method overrides the superclass method of the same name.

One example of method overriding could be the toString () method.

The toString() method in the superclass contains a formatted version of the

data within the superclass. However, this will be overridden by the toString()

method in the subclass, which may contain formatted data from both the

superclass and the subclass.

This is useful as it means we can have specific classes in the subclasses that actin

accordance with the type they have been cast as. There are a few rules we have

to know when using method overriding,

* The classes must have an inheritance (is_ a) relationship.

* The name of the method must be the same in both the superclass and

the subclass.

B3.2 Fundamentals of OOP for multiple classes

* The number and type of parameters must be the same in the superclass

and subclass.

e Static methods cannot be overridden.

Dynamic polymorphismin Java

An example of a class that uses dynamic polymorphism (method overriding) is

shown below. The superclass contains a move () method. Each subclass also

contains a move () method. The method in the subclass takes precedence

over the superclass method and will therefore be the only one that is run. The

second method that uses method overriding is the toString() method. The

toString() method in the superclass is never called directly by the main

method. However, the subclass uses the superclass toString() method to get

the data from the superclass and then adds the subclass information.

Code for the superclass in Java

1. public class Vehicle {

28

3 private String fuelType;

4. private int capacity;

B private int maxRange;

6.

e public Vehicle (String fuelType, int capacity,
int maxRange) {

8.

9. this.fuelType = fuelType;

10. this.capacity = capacity;

11. this.maxRange = maxRange;

e

13. }

14. public String getFuel() {

15. return fuelType;

16. }

17/ o public int getCapacity() {

18. return capacity;

19. }

20. public int getMaxRange() {

21. return maxRange;

22. }

R public String move() {

24. return “"The vehicle is moving";

25. }

26. publiec String toString() {

27.

28. return "Fuel: " + fuelType + ", Capacity:
" + capacity + ", Max Range: " + maxRange;

29. }

30. }

485

B3 Object-oriented programming

@ Code for the subclass Car in Java

1. public class Car extends Vehicle {

2.

e private boolean electric;

4.

B public Car (String fuelType, int capacity, int
maxRange, boolean electric) {

6.

7o super (fuelType, capacity, maxRange);

8. this.electric = electric;

9. }
10. public boolean getElectric() {

7L return electric;

12. }
13. public String move() {

14. return "The Car is moving";

15. }
16. public String toString() {

17.

18. return super.toString() + ", Electric: " +

electric;

19. }
20. }

Code for the subclass Aeroplane in Java

1. public class RAeroplane extends Vehicle {

2.

3o private boolean commercial;

4.

Gin public Aeroplane (String fuelType, int
capacity, int maxRange, boolean commercial) {

6.

o super (fuelType, capacity, maxRange);

8. this.commercial = commercial;

9. }
10. public boolean getCommercial() {

11. return commercial;

12. }
13. public String move() {

14. return "The Aeroplane is moving";

15. }
16. public String toString() {

7 return super.toString() + ", Commercial: "
+ commercial;

18. }

B3.2 Fundamentals of OOP for multiple classes

@ Code for the subclass Ship in Java

1. public class Ship extends Vehicle {

2.

I private int cargoCapacity;

4.

S public Ship (String fuelType, int capacity,
int maxRange, int cargoCapacity) {

6.

7. super (fuelType, capacity, maxRange);

8. this.cargoCapacity = cargoCapacity;

9. }
10.

i, public int getCargoCapacity() {

12 return cargoCapacity;

13. }
14. public String move() {

15 return "The Ship is moving";

16. }
17. public String toString() {

18.

19. return super.toString() + ", Capacity: " +
cargoCapacity;

20. }

21. }

22.

An example of the main method for this class is shown below. The main method

instantiates several vehicles, some of type Car, some of type Aeroplane, and

some of type Ship. The main method also calls the overridden method move ().

Printing the move () method shows that only the overridden method in the

subclass is called.

Main method in Java

1. dimport java.util.ArrayList;

2

3. public class MainMethod {

4.

B public static void main(String[] args) {

6.

7o ArrayList <Vehicle> theVehicles = new
ArrayList <Vehicle>();

8.

9. theVehicles.add(new Car("Petrol"”, 5, 400,
false));

10. thevVehicles.add(new Car("Electric", 5,
250, true));

487

B3 Object-oriented programming

1L thevehicles.add(new Ship("Diesel", 5500,
800, 0));

12, theVehicles.add(new Ship(“Hybrid", 200,
1100, 10000));

13. theVehicles.add(new Ship("Diesel"”, 7000,
800, 10));

14. theVehicles.add (new Aeroplane("Diesel"”,
200, 600, true));

15, thevehicles.add (new Aeroplane("Diesel"”,
240, 650, true));

16. thevehicles.add (new Aeroplane("Diesel"”,
10, 500, false));

17.

18. System.out.println(theVehicles.get(1).

move());
19. System.out.println(theVehicles.get(6).

move());

20. }
21. }

Output:

The Caris moving

The Aeroplane is moving

Dynamic polymorphism in Python

An example of a class that uses dynamic polymorphism (method overriding) is

shown below. The superclass contains a move () method. Each subclass also

contains a move () method. The method in the subclass takes precedence over

the superclass method and therefore will be the only one that is run. The second

method that uses method overriding is the __str__() method. The __str__ ()

method in the superclass is never called directly by the main method. However,

the subclass uses the superclass __str () method to get the data from the

superclass and then adds the subclass information.

Code for the superclass in Python

1. class Vehicle():

2. def init (self, fuelType, capacity,
maxRange) :

3. self. fuelType = fuelType

4. self. capacity = capacity

S self. maxRange = maxRange

6.

7o def getFuelType(self):

8. return self._ fuelType

9.

10. def getCapacity(self):

11. return self. capacity

12.

13. def getMaxRange(self):

14. return self._ maxRange

B3.2 Fundamentals of OOP for multiple classes

15.

16. def move(self):

107 return "the Vehicle is moving"

18.

19. def _ str (self):

20 return "Fuel Type " + self. fuelType + ",
Capacity " + str(self. capacity) + ", Max
Range " + str(self. maxRange)

21.

Code for the subclass Car in Python

1. from Vehicle import Vehicle

2. class Car(Vehicle):

o

4. def init (self, fuelType, capacity,
maxRange, electric):

e super().__init (fuelType, capacity,
maxRange)

6. self. electric = electric

Te

8. def getElectric(self):

9. return self. electric

10.

11. def move(self):

12. return "The Car is moving"

13.

14. def _ str (self):

15. return super()._ str () + ", Electric: "
+ str(self._electric)

Code for the subclass Aeroplane in Python

1. from Vehicle import Vehicle

2. class Aeroplane(Vehicle):

L

4. def _ init (self, fuelType, capacity,
maxRange, commercial):

Se super().___init (fuelType, capacity,
maxRange)

6. self. commercial = commercial

7o

8. def getCommercial(self):

9. return self. commercial

10.

11. def move(self):

12. return "The Aeroplane is moving"

13.

14. def _ str (self):

15, return super()._str () + ", Commercial:
" + str(self._ commercial)

489

490

B3 Object-oriented programming

0 Code for the subclass Ship in Python

1.

2,

3o

4.

5.

6.

7.

8.

9.,

10.

L

12.

13.

14.

15.

16.

17.

from Vehicle import Vehicle

class Ship(Vehicle):

def init (self, fuelType, capacity,
maxRange, cargoCapacity):

super().__init_ (fuelType, capacity,
maxRange)

self. cargoCapacity = cargoCapacity

def getCargoCapacity(self):

return self. cargoCapacity

def move(self):

return "The Ship is moving"

def str (self):

return super()._ str () + " Capacity: " +
str(self. cargoCapacity)

An example of the main method for this class is shown below. The main method

instantiates several vehicles, some of type Car, some of type Aeroplane, and

some of type Ship. The main method also calls the overridden method move ().

Printing the move () method shows that only the overridden method in the

subclass is called.

Main method in Python

1. from Vehicle import Vehicle

2. from Ship import Ship

3. from Car import Car

4. from Aeroplane import Aeroplane

5.

6. thevVehicles = []

7

8. thevVehicles.append(Car("Petrol”, 5, 400, False))

10. thevVehicles.append(Ship("Diesel", 5500, 800, 0))

9. theVehicles.append(Car("Electric", 5, 250, True))

11. theVehicles.append(Ship("Hybrid", 200, 1100, 10000))

12. theVehicles.append(Ship("Diesel", 7000, 800, 10))

13. theVehicles.append(Aeroplane("Diesel", 200, 600, True))

14. theVehicles.append(Reroplane(“Diesel”, 240, 650, True))

B3.2 Fundamentals of OOP for multiple classes

e 15. thevehicles.append(Reroplane("Diesel”, 10, 500, False))

16.

17. print(theVehicles[1l].move())

18. print(theVehicles[6].move())

Output:

The Caris moving

The Aeroplane is moving

Duck typing and Python

One of the major differences between Java and Python is the use of data types.

When you create a variable in Java, you have to declare its type. For example:

int count = 0;

When you declare a variable in Java, you are telling it how to behave and limiting

its functionality. While this can be useful, because you do not need to cast items

later on, sometimes it can limit the reuse and functionality of a method.

Python does not have this concept. Instead, Python uses duck typing. Whether

a variable or object is suitable for a task or not is determined by the presence

of the correct methods and attributes—it is decided at runtime. This processis

called duck typing because it works on the principle that “if it looks like a duck,

swims like a duck, and quacks like a duck, then it probably is a duck.”

By allowing objects of different types to be used interchangeably, as long as they

have the correct methods available, code becomes more flexible and reusable,

making loose typed or duck typed languages preferable in certain situations.

In the example program below, three classes have been declared: duck, goose

and magpie. Duck and goose have a function called waddle () but the magpie

has a function called fly ().

Duck typing in Python

1. class duck:

2 def waddle(self):

3. print("I am a duck for sure")

4.

5. c¢lass goose:

6. def waddle(self):

7. print ("I am a goose but I am still valid")

8.

9. class magpie:

10. def fly(self):

i, print("I am a magpie and I fly")

In the following test code, the listwildlife contains only classes that contain a

waddle () method, so no error is thrown. However, trying to perform the same

operation on wildlifeTwo throws an error because a magpie can not act like a

duck, thereby breaking the code.

Duck typing A form of using

objects with Python. The method

or function calling the object does

not care what type of objectitis

dealing with, only that the methods

or attributes it wishes to use are

available within the object it is

using.

492

B3 Object-oriented programming

Flexibility is fundamental to making

programs work. Understanding

how objects are represented in

coding and how they can take

on many forms can help you

understand how knowledge is

represented within code.

* How does palymorphism

enable flexibility in the code?

* How does the perspective

of the programmer affect the

flexibility of the code?

Abstraction Hiding all essential

details of implementation from the

user.

9 Test code in Python

1. def testMe(item):

2 item.waddle()

S

4. wildlife = [duck(), duck(), goose()]

5. wildlifeTwo = [duck(), duck(), goose(), magpie()]

6.

7. for X in wildlife:

8. print (testMe (X))
9.

10. for Y in wildlifeTwo:

11. print (testMe(Y))

Output wildlife:

| am a duck for sure

| am a duck for sure

| am a goose but | am still valid

Output wildlifeTwo:

item.waddle()

AANANANNNNN

AttributeError: ‘magpie’ object has no attribute ‘waddle’

B3.2.3 Explain the concept of abstraction

in OOP
Abstraction is one of the key features of object-oriented code, along with

encapsulation and inheritance. Abstraction in object-oriented programming

refers to the idea that, in object orientation, all non-essential details are hidden

from the user. You could consider a car to be an abstraction. When you place

your foot on the accelerator, the car moves forward, and when you brake,

the car slows down. You do not know the detail of how the car works as the

implementation details have been hidden from you, but you know how they

function. This is similar to how classes function in object-oriented programming.

Classes hide the complex implementation from the end user.

A Figure 25 A car can be considered as an abstraction

B3.2 Fundamentals of OOP for multiple classes

Building code with abstraction

To achieve abstraction in your code, abstract all the essential data about an

item and place it in an abstract class, filtering out all the irrelevant data.

Specific data can then be placed into concrete classes. Abstract classes allow you

to have abstract methods showing the methods that are present in the concrete

classes, guaranteeing they are there but allowing you to mix classes within a data

structure. For example, consider animals. An animal can be extracted (put into)

into atype, a habitat, a diet, and whether it is endangered. This information can

then be placed into an abstract class.

The abstract class guarantees that the subclasses contain all the methods.

So, if you have several different concrete classes within one data structure,

an error will not occur because there is a common abstract class.

Lion extends Animal Panda extends Animal Elephant extends Animal

- park: String - province: String - park: String

+ getPark() + getProvince() + getPark()

+ toString() + toString() + toString()

A Figure 27 UML diagrams showing subclass use with an abstract class

This example shows that an abstract class is similar to a superclass in inheritance

but none of the implementation is provided. The abstract class is a generalized

form of the class that is shared by subclasses. The subclasses are necessary to

provide the implementation information.

@ Thinking skills

When using abstract classes, you will probably have to use datato

identify items that can be abstracted into the abstract class. Abstractionin

computational thinking can help with this. It enables you to focus only on the

relevant information.

* Inwhatway is an abstract class different to using inheritance?

* How do abstract classes enhance the stability of the code?

Abstract class in Java

Animal class. The use of abstract shows that the class cannot be instantiated.

1. public abstract class Animal {

2

EL public Animal () {

4.

S }

6. public abstract String getType();

T public abstract String getHabitat();

8. public abstract String getDiet();

9. public abstract boolean getEndangered();

10. public abstract String toString();

11. }

Abstract Class Animal

- type: String

- habitat: String

- diet: String

- endangered: Boolean

+ Abstract getType()

+ Abstract getHabitat()

+ Abstract getDiet()

+ Abstract getEndangered()

+ Abstract toString()

A Figure 26 UML diagram for the

Animal abstract class

Using an Abstract class is using

a technique known as dynamic

binding. This is a form of

polymorphism (covered in section

B3.2.2). Dynamic binding is a

runtime polymorphism technique.

During the compile phase, the

compiler looks to the abstract class

to check that the methods being

called exist; the abstract class

acts as a guarantee that they are

there and no problem will occur.

At runtime, the abstract class is

ignored and the actual class of the

type provided it runs. Choosing the

specific subclass to run at runtime

based on guarantees from the

abstract class is known as dynamic

binding.

493

494

B3 Object-oriented programming

Subclasses provide the concrete implementations of the method.

Use extends to show they are related to Animal.

Code for the subclass Elephant in Java

Z o

3.

4.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

3L,

32.

S

34.

35.

36.

1. public class Elephant extends Animal {

String type;

String habitat;

String diet;

private

private

private

private boolean endangered;

private String park;

public Elephant (String type, String habitat,
String diet, boolean endangered, String park)

this.type = type;

this.habitat = habitat;

this.diet= diet;

this.endangered = endangered;

this.park = park;

public String getType() {

return type;

}
public String getHabitat() {

return habitat;

}
public String getDiet() {

return diet;

}
public boolean getEndangered() {

return endangered;

}
public String getPark() {

return park;

}
public String toString() {

return "Type: " + type + ", habitat
" + habitat + ", Diet: " + diet + ",
Endangered: " + endangered + ", Park: " +

park;

}

{

B3.2 Fundamentals of OOP for multiple classes

@ Code for the subclass Lion in Java

1. public class Lion extends Animal {

25

o private String type;

4. private String habitat;

e private String diet;

6. private boolean endangered;

e private String park;

8.

9. public Lion (String type, String habitat,
String diet,boolean endangered, String park) {

10.

SINIRS this.type = type;

1122 this.habitat = habitat;

13. this.diet= diet;

14. this.endangered = endangered;

15 this.park = park;

16.

17. }

18. public String getType() {

19. return type;

20. }

21 public String getHabitat() {

22. return habitat;

23. }

24. public String getDiet() {

725 return diet;

26. }

27.

28. public boolean getEndangered() {

29. return endangered;

30. }

31. publiec String getPark() {

32. return park;

23, }

34. public String toString() {

S5

36. return "Type: " + type + ", habitat
" + habitat + ", Diet: " + diet + ",
Endangered: " + endangered + ", Park: " +
park;

37. }

38. }

495

496

B3 Object-oriented programming

@ Code for the subclass Pandain Java

2

B

4.

58

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

2155

26.

27.

28.

29.

30.

31.

32.

235

34.

35.

36.

38. }

1. public class Panda extends Animal {

private String type;

String habitat;

String diet;

private

private

private boolean endangered;

private String province;

public Panda (String type, String habitat,
String diet, boolean endangered, String
province) {

this.type = type;

this.habitat = habitat;

this.diet= diet;

this.endangered = endangered;

this.province = province;

}
public String getType() {

return type;

}
public String getHabitat() {

return habitat;

}
public String getDiet() {

return diet;

}

public boolean getEndangered() {

return endangered;

}
public String getProvince() {

return province;

}
public String toString() {

return "Type: " + type + ", habitat
" + habitat + ", Diet: " + diet + ",

Endangered: " + endangered + ", Park: " +
park;

}

The main method shows that all instances that inherit the abstract class can be

instantiated within one linked list. The subclasses have concrete methods rather

than abstract methods. The compiler decides which version of the subclass to

run at runtime.

B3.2 Fundamentals of OOP for multiple classes

@ Main method in Java

1. import java.util.LinkedList;

2

3 public class Main {

4.

e public static void main(String[] args) {

6.

7o

8. LinkedList <Animal> myZoo = new
LinkedList<Animal>();

9.

10. myZoo.add(new Panda("Giant Panda",
"Jungle", "Bamboo", true, "Schezan"));

11. myZoo.add(new Lion("Lion", "Plains",
"Meat", false, "Krugar"));

12. myZoo.add(new Lion("Lion Lion", "Plains",
"Meat", false, "tanzania"));

13.

14. for(int I = 0; i < myZoo.size(); i++) {

15 System.out.println(myZoo.get(i).toString());

16. 1
17.

18. }

19.

20. }

Abstract class in Python

To develop an abstract class in Python you need to import ABC (abstract base

class) otherwise this will not work. The class then inherits ABC through the class

parameter brackets. You need to tell Python this is an abstract method with

the @abstractmethod decorator.

1. from abc import ABC, abstractmethod

2. class Animal(ABC):

o

4. #def _ init Animal(self):
58 @abstractmethod

6. def getType(self):

7. pass

8. @abstractmethod

9. def getHabitat(self):

10. pass

11. @abstractmethod

12. def getDiet(self):

13. pass

14. @abstractmethod

15, def getEndangered(self):

16. pass

17. @abstractmethod

18. def _ str_(self):

19. pass

497

498

B3 Object-oriented programming

Subclasses are used to provide the concrete implementations of the method.

To make this a subclass that inherits the superclass methods, you need to import

the Animal class and tell the subclass it is part of the inherited, Animal structure

using the parameter brackets.

Code for Elephant subclass in Python

1. from Animal import Animal
25
3. class Elephant(Animal):
2
5o def init (self, type, habitat, diet,

endangered, park):
6. self. type = type
Ve self. habitat = habitat
8. self. diet = diet
9. self. endangered = endangered
10. self. park = park
11.
L2 5 def getType(self):
13. return self._ type
14. def getHabitat(self):
15. return self. habitat
16.
107 o def getDiet(self):
18. return self. diet
19.
20. def getEndangered(self):

21. return self. endangered
242
2o def getPark(self):
24. return self._ park
25.
26.
27. def _ str_ (self):
28. return "Type: " + self. type + ", Habitat:

" + self. habitat + ", Diet" + self._ diet
+ ", Endangered: " + str(self._ endangered)
+ ", Park: " + self. park,

Code for Lion subclass in Python

1. from Animal import Animal
2.
3. class Lion(Animal):
4.
5 def init (self, type, habitat, diet,

endangered, park):
6. self. type = type
7o self. habitat = habitat
8. self. diet = diet
9. self. endangered = endangered
10. self. park = park
11.
12. def getType(self):
13. return self. type
14.
15 def getHabitat(self):
16. return self. habitat
17.
18. def getDiet(self):
19. return self. diet
20.
2l def getEndangered(self):
22. return self. endangered
23.
24. def getPark(self):
25. return self. park
26.

B3.2 Fundamentals of OOP for multiple classes

27. def _ str_(self):
28. return "Type: " + self. type + ", Habitat:

" + self. habitat + ", Diet" + self._ diet
+ ", Endangered: " + str(self._ endangered)

+ ", Park: " + self. park

Code for Panda subclass in Python

1. from Animal import Animal
28
3. class Panda(Animal):
4.
5. def init (self, type, habitat, diet,

endangered, province):
6. self. type = type
7. self. habitat = habitat
8. self. diet = diet
9. self._ endangered = endangered
10. self. province = province
11.
12. def getType(self):
13. return self. type
14.
13, def getHabitat(self):
16. return self. habitat
17.
18. def getDiet(self):
19. return self._ diet
20.
21. def getEndangered(self):
22. return self. endangered
23.
24. def getProvince(self):
25. return self._ province
26.
27. def str (self):
28. return "Type: " + self. type + ", Habitat:

" + self. habitat + ", Diet"” + self._ diet
+ ", Endangered: " + str(self._endangered)
+ ", Park: " + self. park

The main method shows that all instances that inherit the abstract class can be

instantiated within one list. The subclasses have concrete methods rather than

abstract methods. The compiler decides which version of the subclass to run

at runtime.

Main method in Python

1. from Animal import Animal
2. from Panda import Panda
3. from Lion import Lion
4. from Elephant import Elephant
So
6. myZoo = []
7. myZoo.append(Panda("Giant Panda", "Jungle",

"Bamboo", True, "Schezan"))
8. myZoo.append(Lion("Lion", "Plains", "Meat", False,

"Krugar"))
9. myZoo.append(Lion("Lion Lion", "Plains", "Meat",

False, "tanzania"))
10.
11. for x in myZoo:
12. print(x._ _str__ ())

499

B3 Object-oriented programming

e
A restaurant wants to use an OOP program to manage its menu. The menu

is separated into three sections: Small Plates (a starter or appetizer), Large

Plates (@ main course or entrée), Sweet Plates (a dessert). Customers can

order individual plates or a shared family meal. For the shared meal, each

person can pick a combination of any three Small Plates, Large Plates

and/or Sweet Plates.

The restaurant wants to be able to add and remove items on the menu list

depending on the season. Use abstract classes to develop a program to

help the restaurant.

Key things to know about abstract classes

* You need to use the abstract keyword so the compiler knows that the class

cannot be instantiated.

* Abstract methods are declared with no implementation. They serve as a

guarantee that the subclass will provide implementation details.

* The methods must be overridden in the subclass.

abstraction and how you can

abstract important information When developing code, decisions are often made regarding what data
to represent real-world concepts should be stored within a system and what data is irrelevant. For example,

is particularly useful in the A3 if you are storing data from a retail business, you may decide to store

Databases and A4 Machine information about the products your customers buy and where they buy them.

learning topics. This allows data warehouses to make connections between the objects being

bought, their geographic location and related products. You may decide not

to store data about the consumer themselves—this kind of data could be used

to make judgements or assumptions about the consumers.

What are the ethical implications of leaving out the details when

representing data?

B3.2.4 Explain the role of composition and

aggregation in class relationships
There are three types of relationship you need to be aware of between classes in

object-oriented programming. The firstone, is_a, has been covered in sections

B3.2.1and B3.2.3. Thisis when there is a superclass or an abstract class with

common methods that are inherited or implemented by the subclasses. The

other two are aggregation and composition.

One of the main principles of object orientation is breaking larger problems

into smaller, more manageable, encapsulated objects of code. This promotes

ease of maintenance and code reuse, but it does mean that there are often many

relationships between objects.

500

B3.2 Fundamentals of OOP for multiple classes

Aggregation

An aggregation relationship is a relationship between two objects where

both objects can exist separately from each other. This is sometimes known as a

has_a relationship. For example, this could be a song and a playlist. A playlist

can exist with no songs in it, and a song can exist without being in a playlist. This

could be represented using this UML diagram.

Playlist Song

- name: String - name: String

- purpose: String - artist: String

-length: int - album: String

- songs: <Song>list o -length: int

- genre: String
+ getName(): String ——
+ getPurpose(): String i ge:‘:l;fr\t((fi)o-sit_flng

+ getlLength(): int getArtist): String

+ getSong(int x): Song JJ: ge:f\lbu?;(()): _Stilflg
getlength(): in

+ getGenre(): String

A Figure 28 UML diagram of an aggregated relationship

If you use a streaming service to listen to music, it is unlikely you will

listen to songs album by album. You are more likely to have songs

you like from different artists together in one place, in a playlist.

Aggregated relationships are used to make this possible. When you

create a playlistand spend time thinking of the best songs to go on

there, the songs exist elsewhere. The collection of songs that make

up your playlist, however, does not exist without those songs. This is

investigated further in the following example.

Aggregated relationships are usually one-directional. Each can exist separately.

For example, a playlist can be empty or it can have songs. Songs exist

independently and they can be included on playlists. They do not rely on each

other, as you could delete the playlist and the songs would still exist. Similarly, if

you deleted a song, the playlist would still exist. This is aggregation. Aggregated

relationships usually have a variable of one object type within another class.

Aggregation in Java

In this example, the Song class is used within the Playlist class to store details

about each song on the playlist. This is an example of an aggregated relationship.

The Song class is also shown for reference.

Playlist classin Java

1. dimport java.util.ArrayList;

2.

3. public class Playlist {

4.

S private String name;

6. private String purpose;

Aggregation When two classes

rely on each other but can exist

separately from each other.

501

107

B3 Object-oriented programming

7.

8.

9.

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

private int length;

private ArrayList <Song> playlistSongs;

public Playlist(String name, String purpose)

this.name = name;

this.purpose = purpose;

playlistSongs = new ArrayList<Song>();

public String getName() {

return name;

}
public String getPurpose() {

return purpose;

}
public int getLength() {

return length;

}
public Song getSong(int x) {

return playlistSongs.get(x);

}
public void addSong(Song x) {

playlistSongs.add(x);

}
public String toString() {

" " return "Name: + name + ", Purpose: " +

purpose + ", Length" + length;

}

Songclassin Java

1.

2.

3o

4.

5.

6.

10.

11.

12,

13.

14.

15.

public class Song {

private String name;

private String artist;

private String album;

private int length;

private String genre;

public Song (String name, String artist,
String album, int length, String genre){

this.name = name;

this.artist = artist;

this.album = album;

this.length = length;

this.genre = genre;

B3.2 Fundamentals of OOP for multiple classes

16. }
17.

18. public String getName() {

19. return name;

20. }

2o public String getArtist() {

22 return artist;

23. }
24. public String getAlbum() {

25 return album;

26. }
27. public int getLength() {

28. return length;

29. }

30. public String getGenre() {

31. return genre;

32. }

33. public String toString() {

34. return "Name: " + name + ", Artist: " +

artist + ", Album: " + album;

35. }
36. },

The main method uses the Song class to make a list of songs. This list of songs is

then used to populate the playlist. Although the playlist makes use of the Song

class, the Song class can exist alone.

Main method in Java

1. import java.util.ArrayList;

2.

3. public class MainMethod {

4.

S public statiec void main(String[] args) {

6.

7. ArrayList <Song> allSongs = new
ArrayList<Song>();

8. allSongs.add(new Song("Low Lights", "The
Judges"”, "Bridge over Gray", 340, "Pop"));

9. allSongs.add(new Song("Shiny Sparkles",
"Sprites", "Bubblegum", 280, "Pop")):

10. allSongs.add (new Song("Elephant Light",
"Jarvis Happy Hippy", "The Zoo and You",
410, "Alternative"));

11. allSongs.add(new Song(“Tiles and Smiles”,
"The Leons", "Album zZX", 350, "Rock"));

12. allSongs.add(new Song("For my Friends",
"Catherine Torres", "Short Stories for
All", 440, "Spoken"));

13 allSongs.add(new Song("At the Beach", "The
Judges", "Bubblegum Two", 350, "Pop"));.

503

504

B3 Object-oriented programming

14. allSongs.add(new Song("Fireplace
Fairytales", "Jarvis Happy Hippy", "The
Patterns", 410, "Alternative"));

154 allSongs.add(new Song("Static Noise", "The
Leons", "Fibo and Recur", 320, "Rock"));

16.

107 Playlist party = new Playlist("PartyTime",
"Party");

18.

19. for (int i = 0; i <allSongs.size(); i++) {

20. if (allSongs.get(i).getGenre().

equals("Pop")) {
2L party.addSong(allSongs.get(i));

22. }
23. }
24. System.out.println(party.getSong(1l).

toString());

25. }
26. }

Output:

Name: Shiny Sparkles, Artist: Sprites, Album: Bubblegum

Aggregation in Python

In this example, the Song class is used within the Playlist class to store details

about each song on the playlist. This is an example of an aggregated relationship.

The Song class is also shown for reference.

Playlist class in Python

1.
2.
3.
4.
5.
6.
7.
8.

9.

from Song import Song

class Playlist:

def

def

def

def

def

def

def

__init_(self, name, purpose):

self. name = name
self. purpose = purpose

self. length = 0
self. playlistSongs = []

getName(self):
return self._ name

getPurpose(self):
return self. purpose

getLength(self):
return self._ length

getSong(self, x):
return self. playlistSongs[x]

setSong(self, x):
self. playlistSongs.append(x)

__str_ (self):
return “"Name: + self. name + ", Purpose:
" + self. purpose +", Length: " + self.
length

B3.2 Fundamentals of OOP for multiple classes

O Song class in Python

1. class Song:
2.
S def init (self, name, artist, album, length,

genre):

4.
5. self. name = name

6. self. artist = artist
7. self. album = album
8. self. length = length
9. self. genre = genre
10.
11. def getName(self):
12. return self. name
13. def getArtist(self):
14. return self. artist
15. def getAlbum(self):
16. return self. album
17. def getLength(self):
18. return self._ length
19. def getGenre(self):
20. return self. genre
21. def _ str_(self):
22. return "Name: " + self. name + ", Artist: "

+ self. name + ", Album: " + self. album

The main method uses the Song class to make a list of songs. This list of songs is

then used to populate the playlist. Although the playlist makes use of the Song

class, the Song class can exist alone.

Main method in Python

1. from Song import Song
2. from Playlist import Playlist
o
4. allsongs = []
5.
6. allSongs.append(Song("Low Lights", "The Judges",

"Bridge over Gray", 340, "Pop"))
7. allSongs.append(Song("Shiny Sparkles", "Sprites",

"Bubblegum", 280, "Pop"))
8. allSongs.append(Song("Elephant Light",

"Jarvis Happy Hippy", "The Zoo and You", 410,
"Alternative"))

9. allSongs.append(Song("Tiles and Smiles", "The
Leons", "Album ZX", 350, "Rock"))

10. allSongs.append(Song("For my Friends"”, "Catherine
Torres"”, "Short Stories for All", 440, "Spoken"))

11. allSongs.append(Song("“At the Beach", "The Judges"”,
"Bubblegum Two", 350, "Pop"))

12. allSongs.append(Song("Fireplace Fairytales",
"Jarvis Happy Hippy", "The Patterns", 410,
"Alternative"))

13. allSongs.append(Song("Static Noise", "The Leons",
"Fibo and Recur", 320, "Rock"))

14.
15. party = Playlist("PartyTime", "Party")
16.
17. for x in allSongs:
18. if x.getGenre() == "Pop":
19. party.setSong(x)
20.
21. print(party.getSong(l)._ str ())

Output:

Name: Shiny Sparkles, Artist: Sprites, Album: Bubblegum 505

B3 Object-oriented programming

506

Composition When two classes

rely on each other but neither can

exist without the other.

Understanding how objects relate

to one anotheris useful when

developing relational databases.

You will find this in section A3.2.2.

Composition

A composition relationship is a relationship between two objects where the

objects cannot exist separately from each other. It is a more dependent form of

aggregation. This is sometimes called a part_of relationship.

For example, consider a book and a chapter. The book cannot exist without

chapters, and a chapter cannot exist without a book. This could be represented

using this UML diagram.

Book Chapter

- title: String - title: String

- author: String *> - text: String

- chapter: list<chapter> + getTitle(): String

+ getText(): String
+ getTitle(): String

+ getAuthor(): String

+ getChapter(int x): Chapter

A Figure 29 UML diagram of a composition relationship

This is a composition relationship. Composition relationships are bi-directional.

For example, a book has to have chapters and chapters have to have books. They

cannot exist separately. If we deleted the book, all of the chapters would also

disappear. As with other aggregated relationships, one object exists inside the

other.

Compositionin Java

In this class. the Course class is used within the School class to store details about

each course in the school. If you delete the instance of the School class then you

lose all the information about the courses within the School. The two are tightly

coupled—the school cannot exist without courses and the courses cannot exist

without the school. This makes sense in this situation, as all schools represent

their courses in their own way. This is an example of a composition relationship.

The Course class is also shown for reference.

School classin Java

1. import java.util.ArrayList;

2.

3. public class School {

4.

o private String name;

6. private String address;

7o private String age;

8. private ArrayList <Course> courses;

9.

10. public School(String name, String address,
String age) {

ILiL this.name = name;

12. this.address = address;

13 this.age = age;

14. courses = new ArrayList <Course>(); ‘3

B3.2 Fundamentals of OOP for multiple classes

15. }

16.

107 public String getName() {

18. return name;

19. }

20 public String getAddress() {

24l o return address;

22. }

2 public String getAge() {

24. return age;

25. }

26. public Course getCourse(int x) {

27. return courses.get(x);

28. }

29. public void addCourse(Course x) {

30. courses.add(x);

31. }

32. public int getSize() {

33. return courses.size();

34. }

35. public void removeCourse(String x) {

36.

27 int index = -1;

38. for (int i = 0 ; i < courses.size(); i++) {

39. if (x.equals(courses.get(i).getID())){

40. index = 1i;

41. }

42. }

43. if (index > -1) {

44, courses.remove (index) ;

45. }

46. }

47 .

48. }

Course classin Java

1. public class Course {

2

3 private String identification;

4. private String name;

5. private String level;

6.

e public Course(String identification, String
name, String level) {

Gl this.identification = identification;

L1074

508

B3 Object-oriented programming

9. this.name = name;

10. this.level = level;

11. }

12.

135 public String getID() {

14. return identification;

15. }

16. public String getName() {

17/ return name;

18. }

19. public String getLevel() {

20. return level;

21. }

27 public String toString() {

23. return "ID: " + identification + ", Name: "
+ name + ", Level: " + level;

24. }

25.

26. }

The main method uses the Course class to make a list of courses in the school.

These are added and stored within the instance of the School class. The courses

do not exist outside of the school.

Main method in Java

1. public class MainMethod {

2.

e public static void main(String[] args) {

4.

S School theSchool = new
School("Blossomhill", "Riverside Drive, HL,
6332", "11 - 18");

6.

7o theSchool.addCourse(new Course("CS001",
"Computer Science Basics", "LS"));

8. theSchool.addCourse(new Course("HS002",
"Human Geography", "LS"));

9. theSchool.addCourse (new Course("CS002",
"Computer Science Advanced", "HS"));

10. theSchool.addCourse (new Course("DT001",
"Human Centered Design", "HS"));

1, theSchool.addCourse(new Course("DT002",
"Designing Solutions", "HS"));

12 theSchool.addCourse(new Course("MT001",
"Algebra 101", "HS"));

13 theSchool.addCourse (new Course("MT002",
"Algebra 102", "HS"));

14.

15 theSchool.removeCourse("DT002");

16.

B3.2 Fundamentals of OOP for multiple classes

17/ o for(int i = 0; i < theSchool.getSize();
i++) {

18. System.out.println(theSchool.
getCourse(i).toString());

19. }

20. }

21. }

Output:

ID: CS001, Name: Computer Science Basics, Level: LS

ID: HS002, Name: Human Geography, Level: LS

ID: CS002, Name: Computer Science Advanced, Level: HS

ID: DTOO1, Name: Human Centered Design, Level: HS

ID: MTOOT, Name: Algebra 101, Level: HS

ID: MTO02, Name: Algebra 102, Level: HS

Composition in Python

In this class, the Course class is used within the School class to store details about

each course in the school. If you delete the instance of the School class then you

lose all the information about the courses within the school. The two are tightly

coupled—the school cannot exist without courses and the courses cannot exist

without the school. This makes sense in this situation, as all schools represent

their courses in their own way. This is an example of a composition relationship.

The Course class is also shown for reference.

School class in Python

1. class School:
2.
e def init (self, name, address, age):
4. self. name = name
5. self. address = address
6. self. age = age
7. self. courses = []
8.

9. def getName(self):
10. return self._ name

1L def getAddress(self):
12. return self._ address
12 def getAge(self):
14. return self._age
1L def getCourse(self, x):
16. return self._ courses[x]
17. def addCourse(self, x):
18. self. courses.append(x)
19. def getSize(self):
20. return len(self._courses)
ZL 5 def removeCourse(self, x):
22. index = -1
23. for i, course in enumerate(self._ courses):
24. if(self._ courses[i].getID() == x):
25. index = i
26.
27 o if (index > -1):
28. del(self. courses[index])

509

510

B3 Object-oriented programming

O Course class in Python

1. class Course:
2.
S def init (self, identification, name, level):
4. self. identifcation = identification
5. self. name = name
6. self. level = level
7.
8. def getID(self):

9. return self. identifcation
10. def getName(self):
11. return self._ name
12. def getLevel(self):
13. return self._level
14. def str (self):
15. return "ID: " + self. identifcation + ", Name:

" + self. name + ", Level: " + self. level

The main method uses the Course class to make a list of courses in the school.

These are added and stored within the instance of the School class. The courses

do not exist outside of the school.

Main method in Python

1. from Course import Course
2. from School import School
g
4. theSchool = School("Blossomhill"”, "Riverside

Drive, HL, 6332", "11 - 18")
5.
6. theSchool.addCourse(Course("CS001", "Computer

Science Basics", "LS"))
7. theSchool.addCourse(Course("HS002", "Human

Geography", "LS"))
8. theSchool.addCourse(Course("CS002", "Computer

Science Advanced", "HS"))

Design", "HS"))
10. theSchool.addCourse(Course("DT002", "Designing

Solutions”, "HS"))

9. theSchool.addCourse(Course("DT001", "Human Centered

11. theSchool.addCourse(Course("MT001", "Algebra 101",
IIHSII) }

12. theSchool.addCourse(Course(“"MT002", "Algebra 102",
"HS"))

13.
14. theSchool.removeCourse("DT002")
5
16. for x in range (0, theSchool.getSize()):
17. print (theSchool.getCourse(x)._str_())

Output:

ID: CS001, Name: Computer Science Basics, Level: LS

ID: HS002, Name: Human Geography, Level: LS

ID: CS002, Name: Computer Science Advanced, Level: HS

ID: DTOOT, Name: Human Centered Design, Level: HS

ID: MTOOT, Name: Algebra 101, Level: HS

ID: MTO02, Name: Algebra 102, Level: HS

B3.2 Fundamentals of OOP for multiple classes

@ Thinking skills

When identifying relationships, you are looking to examine how the classes

are interrelated and at which points. Decomposition can help you with this.

You can break down the problems and identify the different overlap between

classes, which helps you to identify the relationship.

For each of the following relationships, identify whether you would use

aggregation or composition, and explain why.

* Television show and actor

* Carandengine

* Mobile phone and apps

* Hotel and hotel room

e Town and tourist attractions

|

You have created many programs that have relationships within them. Spend

some time reviewing your programs. Where have you used an aggregated

relationship? Where have you used a composition relationship? How do

you know?

Which type of relationship do you prefer to work with when coding? Explain why.

Constructing code with multiple classes

Itis important to understand how to use programming structures with multiple

classes. Being able to access the data correctly in the classes is essential when

creating programs, in order to store data correctly and enable users to view

the correct data. You need to understand how the code fits together in order

to understand how to access the data.

If you have a list instance variable that is of a class variable type contained within

a class, it is advisable to have the following: a method that returns the size of the

list within the class, a method that returns a specific instance of that class, and a

method that allows adding an instance of that class to the list. Having these within

the class hosting the list will enable you to access specific instances from within

the list more easily.

The following extracts of code show how to create a list ofa classType within

another class, how to add to this list from the driver class, and how to iterate

through the class from the driver class.

Multiple classes in Java

An example of this is shown in the revisited School class from the composition

example. Shown below, the School class has a list containing the courses available

in the school. This list is contained within the School class. In order to make this list

easy to use in the driver class, a few helper methods have been added.

511

B3 Object-oriented programming

* public int getSize()

This returns the size of the ArrayList so we can iterate through it easily in

the driver class.

* public Course getCourse(int x)

This returns a class from a specific space in the list, again helping to

manipulate it from the driver class.

* public void addCourse (Course Xx)

This class allows us to add new instances of the course from the driver class.

When developing code with multiple classes it is worth considering adding

these methods habitually.

School classin Java

1. import java.util.ArrayList;

2.

3. public class School {

4.

5 private String name;

6. private String address;

7o private String age;

8. private ArrayList <Course> courses;

9.

10. public School(String name, String address,
String age) {

1171 this.name = name;

12. this.address = address;

13 this.age = age;

14. courses = mnew ArrayList <Course>();

15. }

16.

107 public String getName() {

18. return name;

19. }

20. public String getAddress() {

2L return address;

22. }

235 public String getAge() {

24. return age;

25. }

26. public Course getCourse(int x) {

2T o return courses.get(x);

28. }

29. public void addCourse(Course x) {

30. courses.add(x);

TS }

32. public int getSize() {

33. return courses.size();

512

B3.2 Fundamentals of OOP for multiple classes

34. }

g5 public void removeCourse(String x) {

36.

7 int index = -1;

38. for (int i = 0 ; i < courses.size(); i++) {

39. if (x.equals(courses.get(i).getID())){

40. index = 1i;

41. }

42. }

43. if (index > -1) {

44 . courses.remove (index);

45. }

46. }

47 .

48. }

The main method may use the methods you have added in the a similar manner

to those shown below. The code below creates an instance of the School class

and stores it within the variable theSchool. The School instance contains a list

of courses. The code below shows how the methods from the School instance

are used to access the list within the class by the driver class. The public int

getSize () methodis used to end the loop searching through each of the

courses. This prevents an error occurring by trying to view a value beyond those

available. The public void addCourse(Course x) method has been

used to add an instance of the course variable to the list within the instance of the

School class. Finallythe public Course getCourse(int x) method has

been used to access the different instances of the course with the loop.

Main method in Java

1. public class MainMethod {

25

e public static void main(String[] args) {

4.

5. School theSchool = new
School("Blossomhill", "Riverside Drive, HL,
6332", "11 - 18");

6.

7. theSchool .addCourse(new Course("CS001",
"Computer Science Basics", "LS"));

8. theSchool .addCourse(new Course("HS002",
"Human Geography", "LS"));

9. theSchool .addCourse(new Course("CS002",
"Computer Science Advanced", "HS"));

10. theSchool.addCourse(new Course("DT001",
"Human Centered Design", "HS"));

Ll theSchool .addCourse(new Course("DT002",
"Designing Solutions”, "HS"));

T2 theSchool .addCourse(new Course("MT001",
"Algebra 101", "HS")):

13s theSchool.addCourse(new Course("MT002",
"Algebra 102", "HS"));

513

514

B3 Object-oriented programming

14.

s, theSchool.removeCourse("DT002");

16.

17. for(int i = 0; i < theSchool.getSize(); i++) {

18. if(theSchool .getCourse(i).getLevel ().
equals("HS")) {

19. System.out.println(theSchool.
getCourse(1i).toString());

20. }

21. }

22. }

23. }

Output:

ID: CS002, Name: Computer Science Advanced, Level: HS

ID: DTOOT, Name: Human Centered Design, Level: HS

ID: MTOOT, Name: Algebra 101, Level: HS

ID: MTO02, Name: Algebra 102, Level: HS

Multiple classes in Python

An example of this is shown in the revisited School class from the compaosition

example. Shown below, the School class has a list containing the courses available

in the school. This list is contained within the School class. In order to make this list

easy to use in the driver class, a few helper methods have been added.

* def getSize(self)

This returns the size of the list so we can iterate through it easily in the driver class.

* def getCourse(self, x)

This returns a class from a specific space in the list, again helping to

manipulate it from the driver class.

* def addCourse (self, Xx)

This class allows us to add new instances of the course from the driver class.

When developing code with multiple classes it is worth considering adding

these methods habitually.

School classes in Python

1. class School:
2.
Tin def init (self, name, address, age):
4. self. name = name
5. self. address = address
6. self. age = age
7. self. courses = []
8.
9. def getName(self):
10. return self._ name
11. def getAddress(self):
12. return self._ address
13. def getAge(self):

14. return self._age
15. def getCourse(self, x):
16. return self. courses[x]

B3.2 Fundamentals of OOP for multiple classes

17. def addCourse(self, x):
18. self. courses.append(x)
19. def getSize(self):
20. return len(self._courses)
21. def removeCourse(self, x):
22. index = -1
2 for i, course in enumerate(self._ courses):
24. if(self. courses[i].getID() == x):
25. index = i
26.
257 if (index > -1):
28. del(self._ courses[index])

The main method may use the methods you have added in the a similar manner

to those shown below. The code below creates an instance of the School class

and stores it within the variable theSchool. The School instance contains a

list of courses. The code below shows how the methods from the School

instance are used to access the list within the class by the driver class. The

getSize(self) method isused to end the loop searching through each of

the courses. This prevents an error occurring by trying to view a value beyond

those available. The addCourse (self, x) method has been used to add an

instance of the course variable to the list within the instance of the School class.

Finally, the getCourse(self x) method has been used to access the different

instances of the course with the loop.

Main method in Python

1. from Course import Course

2. from School import School

o
4. theSchool = School("Blossomhill", "Riverside

Drive, HL, 6332", "11 - 18")
S
6. theSchool.addCourse(Course("CS001", "Computer

Science Basics", "LS"))
7. theSchool.addCourse(Course("“HS002", "Human

Geography”, "LS"))

8. theSchool.addCourse(Course("CS002", "Computer
Science Advanced"”, "HS"))

9. theSchool.addCourse(Course("“DT001", "Human Centered
Design", "HS"))

10. theSchool.addCourse(Course("DT002", "Designing
Solutions", "HS"))

11. theSchool.addCourse(Course(“MT001", "Algebra 101",
IIHS ") }

12. theSchool.addCourse(Course("MT002", "Algebra 102",
"HS ") }

13.

14. theSchool.removeCourse("DT002")

15.

16. for x in range (0, theSchool.getSize()):

17. if (theSchool.getCourse(x).getLevel() == "HS"):
18. print(theSchool.getCourse(x)._str_ ())

Output:

ID: CS002, Name: Computer Science Advanced, Level: HS

ID: DTOOT, Name: Human Centered Design, Level: HS

ID: MTOOT, Name: Algebra 101, Level: HS

ID: MTO02, Name: Algebra 102, Level: HS
515

516

B3 Object-oriented programming

Removing instances from a list

If you can add and search the list within a class in the driver class then you also

need to be able to remove it. Being able to remove from the list is essential. The

class containing the list should have a method to help with this. The method will

usually take a variable as a parameter that allows you to search for the correct

item to remove within the list. When developing code within multiple classes it is

advised to develop methods that enable users to remove instances from the list.

Removing instances in Java

In the School class from the composition example there isa public void

removeCourse (String x) method which allows a course identification to

be added to the code. This code is then used to search the list and remove the

course if found. The code does not execute anything.

Example in Java

1. public void removeCourse(String x) {

2.

S int index = -1;

4. for (int i = 0 ; 1 < courses.size(); i++) {

5 if (x.equals(courses.get(i).getID())){

6. index = i;

7. }
8. }

9. if (index > -1) {

10. courses.remove (index);

11. }

12. }

Removing instances in Python

In the School class from the composition example there is a def

removeCourse (self, x) method which allowsa course identification to

be added to the code. This code is then used to search the list and remove the

course if found. The code does not execute anything.

Example in Python

1. def removeCourse(self, x):

2. index = -1

3o for i, course in enumerate(self._courses):
4. if(self. courses[i].getID() == Xx):
Sa index = i

6.
o if (index > -1):

8. del(self. courses[index])

You need to understand how to reference different methods when using multiple

classes. This enables you to check the different values within the instances in

the list, to search and sort effectively, and to access the information within the

encapsulated classes. Consider the following example.

B3.2 Fundamentals of OOP for multiple classes

Driver Class School

theSchools:list <School> name : String

address : String

age : String

courses: list <Course>

Methods Not Shown

getName() : String

getAddress() : String

getAgel(): String

getCourse(int x) : Course

addCourse(Course x): Void

getSize(): int

removeCourse(String x): void

Level One: Driver class Level Two: Class

A Figure 30 UML diagram of an if statement

In the UML diagram, you have the driver class which contains a list of Schools. This

example will be used to explain how dot notation works with multiple classes.

Dot notation in Java

In the code below, there are different levels of dot notation being used. The

first example is accessing each instance of the School class using the . get ()

method.

The first use of level one dot notation is in the line of code below. The .get ()

is used to access each instance of the school within theSchools. If a school is

forages 11-18 then HS level courses are added. If a schoal is for ages 5-11 then

LS course are added. The .get () method in this case gets the instance of the

school.

theSchools.get(i).addCourse(new Course("MT001", "Algebra
101"’ "HS"));

theSchools.get (i) accesses the instance of the school and then adds the

course into the courses list within that instance.

To get information from this class, you need to access the instance of the class

and then use the accessor methods of that class to discover what the instances of

the class contain.

If you think about the levels, this could be thought of as second-level accessing,

as you are accessing the instance and then accessing the information within the

instance. For example:

theSchools.get(i).getAge().contains("11-18")

* theSchools.get (i)

Gets the instance of the school.

* .getAge()
Gets the age range of that instance of school.

Course

identification: String

name : String

level : String

getlD() : String

getName() : String

getlevel() :String

getString() : String

Level Three: Nested class

Accessing In programming,

accessing means getting

information from the class.

517

518

B3 Object-oriented programming

To get information from an instance within the current object—for example, in

this program you want to access a specific school object and then the specific

instance of the course which will allow you to find course information—you need

to use another level of dot notation.

This can be seen in the following code.

if(theSchools.get(i).getCourse(j).getName().
contains("Algebra"))

* theSchools.get(1i)

Gets the instance of the school (level one).

. .getCourse()

Gets the instance of the course within the instance of the school (level two).

+ .getName()
Gets the name of the course within the current instance of the course

(level three).

Dot notation example in Java

P public static void main(String[] args) {

2.

Tin ArrayList <School> theSchools = new
ArrayList <School>();

4.

Gn theSchools.add(new School("Blossomhill”,
"Riverside Drive, HL, 6332", "11 - 18"));

6. theSchools.add(new School("IS Porta Susa”,
"Corso San Patrizio, IT, 38292", "11 - 18"));

7o theSchools.add(new School("MS Fort
Clifford", "Boulevard Michel, FR, 88844",

8.

9. for(int i = 0; i < theSchools.size(); i++)

{
10.

., if (theSchools.get(i).getAge().
contains("11 - 18")) {

162 theSchools.get(1i).addCourse (new
Course("CS002", "Computer Science
Advanced", "HS"));

13, theSchools.get (i) .addCourse(new
Course("DT001", "Human Centered
Design", "HS"));

14. theSchools.get (i) .addCourse (new
Course("DT002", "Designing
Solutions", "HS"));

15 theSchools.get (i) .addCourse (new

Course("MT001", "Algebra 101",

16. theSchools.get (i) .addCourse (new
Course("MT002", "Algebra 102", "HS")):;

17. }

18. else {

19. theSchools.get (i) .addCourse (new
Course("CS001", "Computer Science
Basics", "LS")):

B3.2 Fundamentals of OOP for multiple classes

20. theSchools.get (i) .addCourse(new
Course("HS002", "Human Geography",

"LS"));
21. }
22. }

23.

24. for(int i = 0; i < theSchools.size(); it++)

{
25 for (int j = 0; j < theSchools.get(i).

getSize(); j++) {

26.

27 o System.out.println(theSchools.get(i).
getCourse(j)-toString());

28.

29. }

30. }
31. }
32. }

23,

The whole code for the main method above shows the different levels of dot

notation in use.

Another key thing to note is that if you want to loop through all instances of a

class and then all instances of the class within that class contained within a list

(such as the courses within schools) then you need a double loop such as the one

demonstrated in lines 24-30.

Dot notation in Python

In the code below, the different levels of dot notation are in use. The first example

is accessing each instance of the school class using a for loop.

The first use of level one dot notation can be viewed in line of code below.

The Xis used to access each instance of the school within theSchools list.

If a school is for ages 11-18 then HS level course are added. If a school is for ages

5-11 then LS course are added. The X in this case gets the instance of the school.

for X in theSchools:
if(X.getAge()=="11 - 18"):

X.addCourse (Course ("CS002", "Computer Science
Advanced", "HS"))

X accesses the instance of the school and then adds the course into the courses

list within that instance.

To get information from this class, we need to access the instance of the class and

then use the accessor methods of that class to discover what the instances of the

class contains.

If you think about the levels, this could be thought of as second-level accessing,

as you are accessing the instance and then accessing the information within the

instance. For example:

if(X.getAge()=="11 - 18"):

* X Getsthe instance of the school.

* .getAge() Gets the age range of that instance of school.

519

520

B3 Object-oriented programming

To get information from an instance within the current object—for example, in

this program you want to access a specific school object and then the specific

instance of the course which will allow you to find course information—you need

to use another level of dot notation.

This can be seen in the following code.

for i in range(0, len(theSchools)):
for j in range (0, theSchools[i].getSize()):

if ("Algebra" in theSchools[i].getCourse(]).
getName()):

print (theSchools[i].getCourse(]).toString())

* theSchools[i]

Gets the instance of the school (level one).

* .getCourse(])

Gets the instance of the course within the instance of the school (level two).

+ .getName()
Gets the name of the course within the current instance of the course

(level three).

Dot notation example in Python

1. from Course import Course

2. from School import School

g

4. theSchools = []

5. theSchools.append(School("Blossomhill", "Riverside
Drive, HL, 6332", "11 - 18"))

6. theSchools.append(School("IS Porta Susa", "Corso
San Patrizio, IT, 38292", "11 - 18"))

7. theSchools.append(School("MS Fort Clifford",
"Boulevard Michel, FR, 88844", "5 - 11"))

8.

9. for X in theSchools:

10. if(X.getAge()=="11 - 18"):

i, X.addCourse(Course ("CS002", "Computer
Science Advanced", "HS"))

7, X .addCourse(Course("DT001", "Human Centered
Design", "HS"))

13 X.addCourse(Course("DT002", "Designing
Solutions", "HS"))

14. X.addCourse(Course("MT001", "Algebra 101",
"HS"))

15, X.addCourse (Course("MT002", "Algebra 102",
IlHS" } ,

16.

17. else:

18. X.addCourse (Course("CS001", "Computer
Science Basics”, "LS"))

19. X.addCourse(Course("HS002", "Human
Geography", "LS"))

20.

21.

B3.2 Fundamentals of OOP for multiple classes

e 22. for i in range(0, len(theSchools)):

23. for j in range (0, theSchools[i].getSize()):

24. if ("Algebra" in theSchools[i].
getCourse(j) .getName()):

255 print(theSchools[i].getCourse(j)._
str__ ())

The whole code for the main method above shows the different levels of dot

notation in use.

Another key thing to note is that if you want to loop through all instances of a

class and then all instances of the class within that class contained within a list

(such as the courses within schools) then you need a double loop such as the one

demonstrated in lines 22-25.

(N
You have developed several programs using multiple classes. Now, choose

one of these problems (or come up with your own) and use computational

thinking patterns and the other skills you have learned to solve it.

* The theatre group wants to organize props, costumes, microphones, and

other equipment for the school play. Develop a program that stores this

information, scene by scene.

* The school rugby club wants to develop off-season training routines for

the team. Develop a program that stores a personalized training routine

for each player.

* Alocal business is developing an inventory to store all the information

about their shops. This includes the stock, customers and sales. Develop

a program that allows the shop to store this information, as well as what

each customer bought.

B3.2.5 Explain commonly used design

patterns in OOP
Design patterns are like a toolkit for software engineers—they are a blueprint of

known solutions to recurring problems. Design patterns are not code. Instead,

they can be thought of as instructions telling you how to tackle different problems

when trying to design a solution. It is sensible to use design patterns when

designing solutions because they are proven to be successful. Patterns are not

specific to one particular coding software but should be thought of as a guideline

for developing the required code. If you follow the pattern to implement the

suggested code, then you can develop robust solutions to your problems. It is

important to remember that the design patterns will not give you the code.

Several design patterns are described below and contain example code in both

Java and Python. This code has been provided to show you how the code could

be implemented and the fundamentals of how the code could work. The code is

not intended to be the definitive version of the design pattern code.

521

B3 Object-oriented programming

You may find other design patterns

useful when developing a solution

for your Internal Assessment.

522

One reason developers choose to utilize design patterns is because they can

speed up the development process because they are tried and tested. When

developing large software solutions, there are many different factors to take into

consideration. If you do not factor in the different variables that could affect the

software, then issues may arise when the software is in use. Using design patterns

helps to negate these problems early in the implementation process as they allow

developers to make use of well-known and well-understood conventions for

software interactions.

When using design patterns, developers are usually provided with the following

information.

Intent: The intent section identifies an overview of the problem and different

factors the developer may be facing when deciding whether to use the pattern or

not. This may include real-life examples of usage.

Motivation: The motivation section describes the type of patterns the data may

display and the types of actions the programmer may want to achieve with the

solution. The motivation section then explains how the pattern can be used to

implement the actions required.

Structure: Usually in the form of a UML diagram, the structure shows the

classes required, the interaction of the classes within the pattern and its related

components.

Code example: A programming language provides a code example. In this

book you have examples in Python and Java to show the production of classes

and the interaction between the classes. They also show how data can be passed

between the classes.

Developers can use many different design patterns. These patterns have been

broadly split into three different types.

* Creational design patterns focus on objects and how they are created.

Creational design patterns look to maximize the reuse and flexibility of code,

to develop robust reliable programs. Creational design patterns will often

look to make use of inheritance and encapsulation.

* Structural design patterns enable software engineers to easily identify

the relationships between the different entities in a system. They show how

to take smaller parts of a system and put them into a larger working system

while focusing on keeping the system flexible to adapt to future changes.

* Behavioural design patterns focus on the behaviour of objects, looking

at their communication and how they interact with each other. When

patterns exist within communication, this is leveraged to make flexible,

reusable code.

There are more than twenty identified design patterns for software engineering,

each with different functions. For this course, you need to be able to explain the

functions of the singleton, factory, and observer design patterns.

@ Research skills and thinking skills

To use a design pattern effectively, you need to research the different patterns

available and how these can link to the problem you are solving. Spending

time identifying the problem and developing a specification for it can help

you to understand the outcome(s) you want to achieve and identify useful

design patterns.

When you have a problem specification, you can then break the problem

down into its component parts. Decomposition can help with this.

Imagine you have been asked to develop a program to organize the rental

of hire cars. The company has a selection of cars in the following categories:

budget, mini, classic and van. Cars are rented out to customers. The cost of

the rental is the cost of the car plus 5% per day for insurance. Each rental has a

start date and end date.

1. Research the available design patterns: singleton, factory, and observer.

2. Decompose this problem and develop a problem specification.

3. What patterns are emerging? Which design pattern would help you solve

this problem?

Singleton design pattern

A singleton object allows us to have one instance of an item with many other

items able to access it. You use singleton when you want to ensure there can only

be one instance of an item, such as a database.

A Figure 31 A stadium is one instance with many people able to access it

You can contextualize this by thinking of a football stadium where your favourite

team plays. There can only be one copy of that football stadium but you want

many different people to be able to access it otherwise the games would be

very quiet.

B3.2 Fundamentals of OOP for multiple classes

523

524

B3 Object-oriented programming

Similarly, if you are buying tickets for a concert, you only want there to be one

set of seats available, with many different people able to buy them. If there

were multiple different versions of the seats, your seats may be sold to more

than one person.

Uses in programming include storing data that everyone needs access to,

developing alog file for error messages, and creating config files.

Intent

The intent of the singleton design pattern is to allow global access to one

resource but ensure that there is only one instance of that resource that

everyone is accessing.

Motivation

Ensuring a class has one single instance is usually a file or a database type structure.

In the past, global variables have been used to create a global resource but this can

be complicated and can lead to errors such as accidental deletion of data or multiple

entries of the same type, leading to unreliable data. Using global variables to store

essential datais also not a good idea because it is hard to track where the variable

is being referenced from, it is challenging to track where changes are made, and it

leads to further possibilities of data being overwritten. The singleton method allows

us to create a single instance of the structure with multiple access in a robust manner.

Solution

The singleton pattern makes use of the following features.

* The constructor is private so the class cannot be instantiated.

* Astaticinstance of the object is created.

« Static accessor/setter methods are created to access and manipulate the

members of the class.

Structure

SingletonClass

-instance: SingletonClass

- SingletonClass()

+ static getinstance(): SingletonClass

A Figure 32 UML diagram for Singleton class

The UML diagram in Figure 32 shows the structure of a Singleton class. A private

instance of the class is declared. We then use a static accessor method static

getInstance() thatis used to access the instance of the class. The constructor

is private and only used once when the instance is created.

B3.2 Fundamentals of OOP for multiple classes

Singleton design in Java

The following code shows a class that uses the singleton design pattern.

Following the example about tickets for a concert, the class has the number of

seats available and the option to purchase seats or find out how many seats are

available. The constructor method is called once and sets the number of seats.

A private static instance of the class is created and this instance is used to make

global references to the same resource.

Singleton classin Java

1. public class Singleton {

2

3 private static Singleton singInstance = new
Singleton();

4. private int seatsAvailable;

Sc

6. private Singleton() {

7.

8. seatsAvailable = 100;

9. }
10.

11. public static Singleton getInstance() {

12.

13 return singInstance;

14. }
13, public void sellSeats(int x) {

16.

177 seatsAvailable = seatsAvailable - x;

18. }
19. public int getSeatsAvailable() {

20.

211, return seatsAvailable;

22. }

23. },

The main method, as shown below, helps to develop a better understanding

of the singleton design method. An object that makes reference to the static

instance is created and used to sell tickets. A second object that makes reference

to the static instance is created and used to sell tickets as well as enquiring into

how many tickets remain on sale. The tickets left are the number of tickets minus

the first and second object reference, showing that both objects are making

reference to the same global resource.

525

526

B3 Object-oriented programming

Main method in Java

1. public class SingletonMain {

2.

S public statie void main(String[] args) {

4.

5 Singleton mySingleObject = Singleton.
getInstance();

6.

o mySingleObject.sellsSeats(10);

8. mySingleObject.sellSeats(20);

9.

10. Singleton myNewSingleObject = Singleton.
getInstance();

11.

17 myNewSingleObject.sellSeats(5);

13.

14. System.out.println(myNewSingleObject.
getSeatsAvailable());

15. }

16. }

Output:

65

Singleton design in Python

The code below shows a class that uses the singleton design pattern. Following

the example about tickets for a concert, the class has the number of seats

available and the option to purchase seats or find out how many seats are

available. The constructor method is called once and sets the number of seats.

A private static instance of the class is created and this instance is used to make

global references to the same resource.

Singleton class Python

1. class Singleton:

2. _instance = None

3.

4. def new_ (cls):

Sa if cls. instance is None:

6. cls. instance = super(Singleton,
cls). new_ (cls)

7. cls._instance.seats_available = 100

8. return cls._ instance

9.

10. def sell seats(self, number):

11. self.seats_available -= number

12.

3, def get seats available(self):

14. return self.seats_available

B3.2 Fundamentals of OOP for multiple classes

The main method shown below helps to develop a better understanding of the

singleton design method. An object is created that references the static instance:

this is used to sell tickets. A second object is created that references the static

instance: this is used to sell tickets as well as checking how many tickets remain

on sale. The number of tickets left is the original number of tickets minus the first

and second object reference. This shows that both objects are referring to the

same global resource.

Singleton implementation Python

1.

2o if name == " main_ ":

o

4. singleton_object = Singleton()

5.

6. singleton object.sell seats(10)

o singleton_object.sell seats(20)

8.

9. new_singleton object = Singleton()

10.

11. new_singleton_object.sell seats(5)

12.

13 print(new_singleton_object.get_seats
available())

Output:

65

Advantages of the singleton design pattern

* Helps to keep strict control over shared resources.

* Guarantees that only one instance of the class will be available for use.

* Thereis only ever one instance of the global resource.

Disadvantages of the singleton design pattern

* Difficult to test.

* There are multiple items accessing the same data item.

* Difficult to delete the instance of the class when no longer required.

Factory design pattern

The factory design pattern allows you to think about having a common design

object across all instances. However, the instance decides what kind of object it

is. It is commonly implemented using interfaces.

Imagine a school that has students at three stages: primary school, middle school

and high school. Primary school, middle school and high school students are

similar but they do have qualities that make them different. The factory method

would allow you to have a common student interface but the subclass then

decides whether it is a primary school student, middle school student or high

school student.

527

528

B3 Object-oriented programming

A Figure 33 A student class

Another example is a program dealing with one type of product that is very

specific, but if it becomes successful the manufacturer may wish to expand their

offering and have different products for sale. The factory pattern would allow

them to have a common interface for products and then, depending on the type

of subclass created, the product would act in different ways.

Intent

The intent of the factory design pattern is to allow easy expansion of programs.

A common interface is provided for the objects, and specialisms are added

through subclasses. Any number of new objects can be added.

Motivation

Afactory class is created that contains variables and methods associated with being a

factory, as well as methods used to create each of the products. Products are usually

implemented using an interface. Although it may seem silly to move the constructor

to the factory class, this enables the factory to keep a track of the products it has

created and all products can be manipulated from directly within the factory class,

reducing complexity. For this to work correctly, all products must have the same base

class. For this reason an interface is often used. The factory method should be used

when you are unsure of the exact products you will be working with. This method can

be used to build libraries of products ready for use. It also encourages code reuse.

Solution

The factory pattern uses the following code features.

* Aninterface for the product class to ensure a common base class between all

products.

* Products that are instantiated (concrete) are different implementations of the

interface.

* The factory class is used to produce new products. The return type of the

create method must match the product interface.

* The factory method can have a central repository of all new instances created

which allows centralized management.

B3.2 Fundamentals of OOP for multiple classes

Structure

Factory

<<interface>>

- Instance variables Product
——————— >

+ Methods - Instance variables

- createProduct():
Product + methods()

A A

|
|

| | === 1 |

ConcreteProductOne Concrete ProductOne ProductTwo

ProductTwo

- Instance variables - Instance variables

+createProduct(): + createProduct(): + methods() + methods()
product product

A Figure 34 The structure of the factory design pattern

Factory designin Java

The factory design pattern starts with an interface. The interface contains methods

(only methods) common to all concrete products you wish to make. The interface

does not contain a constructor. The constructor is implemented in the classes

that implement the interface. The example below follows the student example.

All methods common to all students are contained within the interface.

Example code in Java

1. public interface Product {

Ze public String getName();

o public int getGrade();

4. public String getHomeroom();

e public String getInfo();

6. }

The subclasses allow you to implement different versions of the interface

depending on the specifications of the concrete product. Concrete products

must contain all of the methods specified in the interface but they can also

contain their own. The word “implements” shows that the class implements the

interface. The subclasses also need to specify the variables required and must

contain a constructor method. The example continues the student example.

Concrete product one contains the interface information as well as items specific

to the middle school student. Concrete product two contains the interface

information as well as items specific to the high school student.

529

530

B3 Object-oriented programming

Concrete product one (a model for a middle school student) in Java

1. public class ConcreteProductOne implements Product {

2 private String name;

3o private int grade;

4. private String homeroom;

S private String languageChoice;

6. public ConcreteProductOne(String name, int
grade, String homeroom, String languageChoice)

7. this.name = name;

8. this.grade = grade;

9. this.homeroom = homeroom;

10. this.languageChoice = languageChoice;

11. }

12, public String getName() {

1Lz return name;

14. }

s, public int getGrade() {

16. return grade;

17. }

18. public String getHomeroom() {

19. return homeroom;

20. }

Zl ., public String languageChoice() {

27 o return languageChoice;

23. }

24. public String getInfo() {

25 return "Name: " + name + ", Grade: " +
grade + ", Homeroom: " + homeroom + ",

Language Choice: " + languageChoice;

26. }

27. }

Concrete product two (a model for a high school student) in Java

1. public class ConcreteProductTwo implements Product {

2 private String name;

S private int grade;

4. private String homeroom;

5 private int currentPredicted;

6. public ConcreteProductTwo(String name, int
grade, String homeroom, int currentPredicted)

7o this.name = name;

8. this.grade = grade;

9. this.homeroom = homeroom;

B3.2 Fundamentals of OOP for multiple classes

10. this.currentPredicted = currentPredicted;

11. }

T2 public String getName() {

13. return name;

14. }

15 public int getGrade() {

16. return grade;

17. }

18. public String getHomeroom() {

19. return homeroom;

20. }

21. public int currentPredicted() {

AP oy return currentPredicted;

23. }

24. public String getInfo() {

25 . return "Name: " + name + ", Grade: " +
grade + ", Homeroom: " + homeroom + ",

Current Predicted: " + currentPredicted;

26. }

27. }

Once you have the interface and the subclasses, you need to have a factory class

to control the creation of each product. The factory class contains two methods

for creating products: one method for creating concrete product one and one

method for creating concrete product two. Each method takes in the specific

variables for the subclass they are instantiating.

Factory class in Java

1. public class Factory {

2 public Factory() {

3. }
4. public Product createOne(String name, int

grade, String homeroom, String language) {

5. return new ConcreteProductOne(name, grade,
homeroom, language);

6. }
o public Product createTwo(String name, int

grade, String homeroom, int predicted) {

8. return new ConcreteProductTwo(name, grade,
homeroom, predicted);

9. }
10. }

The main method contains an array list to store all instances of the product that

have been created. This allows users to control all instances from the same

place. Each item is classed as a Product as it makes use of the product interface.

However, each instance of the product acts in accordance with the type of

product it has been declared as.

531

B3 Object-oriented programming

@ Main method in Java

1. import java.util.ArrayList;

2. public class MainMethod {

I public static void main(String[] args) {

4. Factory myFactory = new Factory();

S ArrayList <Product> myStudents = new
ArrayList <Product>();

6. myStudents.add(myFactory.
createOne("Hannah", 7, "7LS", "German"));

7. myStudents.add(myFactory.
createTwo("Wesley",11, "11KM", 39));

8. for (int i = 0; i < myStudents.size(); i++)

{
9. System.out.println(myStudents.get(i).

getInfo());

10. }

11. }

12. }

Factory design in Python

The factory design pattern starts with an interface. The interface contains methods

(only methods) common to all concrete products you wish to make. The interface

does not contain a constructor. The constructor is implemented in the classes that

implement the interface. The example below follows the student example.

All methods common to all students are contained within the interface. In Python,

the concept of an interface is typically realized through abstract classes, made

possible by the ABC module (ABC for Abstract Base Classes). The @abstractmethod

decorator requires that each derived class must implement these methods.

Factory design pattern in Python

f1ps from abc import ABC, abstractmethod

2

L class Product (ABC):

4. fabstractmethod

Sa def get_name(self):

6. pass

7/

8. @abstractmethod

9. def get_grade(self):

10. pass

11.

12. @abstractmethod

13. def get homerocom(self):

14. pass

15.

16. @abstractmethod

107 def get_info(self):

18. pass

532

B3.2 Fundamentals of OOP for multiple classes

The subclasses allow you to implement different versions of the interface

depending on the specifications of the concrete product. The concrete product

must contain all of the methods specified in the interface but they can also

contain their own. The word “implements” shows that the class implements the

interface. The subclasses also need to specify the variables required and must

contain a constructor method. The example continues the student example.

Concrete product one contains the interface information as well as items specific

to the middle school student. Concrete product two contains the interface

information as well as items specific to the high school student.

Concrete product one in Python

1. class ConcreteProductOne(Product):

Z e def init (self, name, grade, homeroom,
language_choice):

3. self.name = name

4. self.grade = grade

5. self.homeroom = homeroom

6. self.language choice = language choice

7.

8. def get name(self):

9. return self.name

10.

11. def get_grade(self):

12. return self.grade

13.

14. def get homerocom(self):

15. return self.homerocom

16.

17. def get_info(self):

18. return f"Name: {self.name}, Grade: {self.
grade}, Homeroom: {self.homeroom},
Language Choice: {self.language_choice}"

19.

20.

O Concrete product two in Python

1. class ConcreteProductTwo(Product):

2P def init (self, name, grade, homeroom,
current predicted):

3. self.name = name

4. self.grade = grade

5. self.homeroom = homeroom

6. self.current predicted = current predicted

7.

8. def get name(self):

9. return self.name

10.

11. def get grade(self):

533

534

B3 Object-oriented programming

12. return self.grade

13.

14. def get homeroom(self):

15. return self.homeroom

16.

17. def current predicted(self):

18. return self.current predicted

19.

20. def get_info(self):

21. return f"Name: {self.name}, Grade: {self.
grade}, Homeroom: {self.homeroom}, Current
Predicted: {self.current predicted}"

22.

Once you have the interface and the subclasses, you need to have a factory class

to control the creation of each product. The factory class contains two methods

for creating products: one method for creating concrete product one, and one

method for creating concrete product two. Each method takes in the specific

variables for the subclass it is instantiating.

Factory class in Python

1. class Factory:

2. def create_one(self, name, grade, homeroom,

language):

ELp return ConcreteProductOne(name, grade,
homeroom, language)

4.

S def create_ two(self, name, grade, homeroom,

predicted):

6. return ConcreteProductTwo(name, grade,
homeroom, predicted)

The main method contains a list to store all instances of the product that have

been created. This allows users to control all instances from the same place. Each

item is classed as a Product as it makes use of the product interface. However,

each instance of the product acts in accordance with the type of product it has

been declared as.

Factory main in Python

f1ps def main():

Z g my factory = Factory()

3o

4. my_students = []

55

6. my students.append(my_factory.create_
one("Hannah", 7, "7LS", "German"))

7o my_students.append(my_factory.create
two("Wesley", 11, "11KM", 39))

8.

9. for student in my_ students:

10. print(student.get_info())

B3.2 Fundamentals of OOP for multiple classes

e;ll.

12. if _name == "_main_ ":

13. main()

Advantages of the factory design pattern

* You avoid composition relationships between the factory and the concrete

products.

* You have all the code in one place, which makes the code easier to maintain.

* You can develop new products without breaking any existing code.

Disadvantages of the factory design pattern

* The code may become over complex because you need to have many

subclasses to create the concrete products.

Observer design pattern

In a system, it is important that different objects are kept up to date with changes in

other objects. This is because most systems are interdependent. The observer pattern

allows us to keep interested objects up to date with other object developments.

A Figure 35 Staying up to date

In the real world, if you like to know what is happening in your local area you have

several options. You could check social media and hope to follow the correct

accounts, you could buy the local newspaper and hope they are covering the

events you are interested in, or you could find out from friends. This can become

time consuming and costly. Another thing you could do is subscribe to an event

website and they will send you an email when exciting things are happening.

This is similar to the observer design pattern.

Another example is when you listen to music using a music app. The app could tell

you about every artist that is playing a concert near you, but you would get a lot of

updates, many of them about artists you are not interested in. The music apps do

not do this. They “subscribe” you to artists they think you are interested in and push

these notifications out to you. Again, this is similar to the observer pattern.

535

536

B3 Object-oriented programming

The observer pattern has an object that is the publisher, sharing details about

events, and subscribers—objects that wish to know about the event.

Intent

The observer design pattern allows objects that wish to be informed of updates

to be informed of updates without having to check for themselves and without

other objects being subjected to unwanted notifications.

Motivation

If you get too many notifications about items then it becomes overwhelming

and challenging to deal with. You may become disinterested because of the

volume of updates, switch off, and miss key information. Conversely, if you have

no notifications then you could spend too much time looking for information

to make decisions or find something you are looking for. From a commercial

point of view, companies want to find the balance between sending too many

notifications and not keeping users informed.

Solution

The observer pattern uses the following code features.

* Alist, to store a list of subscribers objects.

* Public methods, which allow subscriber objects to add and remove

themselves from the list.

* lteration of the list to notify subscriber objects of updates.

Structure

Subscriber

Subscriber Publisher

- subscribers []

+ addSubscriber(Subscriber)

+ removeSubscriber(Subscriber)

Subscriber

A Figure 36 Observer pattern

B3.2 Fundamentals of OOP for multiple classes

Observer design in Java

The code below shows a class that uses the observer design pattern in Java.

A publisher class is created that allows subscriber objects to subscribe for news.

The subscriber objects are added to a list and when a notification is needed an

email is sent to the users. Please note the implementation for the EmailSender

class has been hidden as it is outside of the scope of this course.

Publisher class in Java

1. public class Publisher {

2

3o ArrayList <Subscriber> subscribers = new
ArrayList <Subscriber>();

4.

S public Publisher() {

6.

7. }

8.

9. public void subscribe (Subscriber s) {

10.

11. subscribers.add(s);

12. System.out.println("You have been
subscribed");

13.

14. }

15. public void unSubscribe(Subscriber s) {

16.

177 int index = -1;

18. for (int i = 0; i < subscribers.size();
it+) {

19. if (subscribers.get(i).getName().
equals(s.getName())) {

20 index = i;

21. }

22. }

23.

24. if(index > -1) {

25 subscribers.remove(index) ;

26. System.out.println("you have been
removed");

27. }

28. }

29.

30. public void notifySubscribers(String message) {

31. (]

537

538

B3 Object-oriented programming

32. for(int i = 0 ; i < subscribers.size();
it+) {

33.

34. String mailer = subscribers.get(i).
getEmail();

25, String eMessage = message;

36. EmailSender email = new
EmailSender (eMessage, mailer);

27

38. }

39.

40. }

41.

42. }

The main method as shown below helps to develop a better understanding

of the observer design method. Subscriber classes are created and added to

the subscriber list within the instance of the publisher object. If you wish to

unsubscribe then you can be removed from the list by passing in the object.

If you wish to notify subscribers, you can write a message and send it to the

subscribers.

Main method in Java

1. public class MainMethod {

2.

S public statie void main(String[] args) {

4.

o Publisher publish = new Publisher();

6.

7o Subscriber x = new Subscriber("Fabian
Schwarz", "F_Scwarz@test.com");

8. Subscriber y = new Subscriber("Abbie
Blanc", "A Blanc@test.com");

9. Subscriber z = new Subscriber("Lorenzo
Verde", "L _Verde@test.com");

10. String message = "Gigs coming up this
week: karaoke saturday, blues monday";

11.

162 publish.subscribe(x);

13 publish.subscribe(y);

14. publish.subscribe(z);

15, publish.notifySubscribers (message);

16. publish.unSubscribe(x);

7

18. }

19.

20. }

B3.2 Fundamentals of OOP for multiple classes

Observer design in Python

The code below shows a class that uses the observer design pattern in Python.

A publisher class is created that allows subscriber objects to subscribe for news.

The subscriber objects are added to a list and when a notification is needed an

email is sent to the users. Please note the implementation for the EmailSender

class has been hidden as it is outside of the scope of this course.

Publisher class in Python

e class Publisher:

2 def init (self):

I self.subscribers = []

4.

e def subscribe(self, subscriber):

6. self.subscribers.append(subscriber)

7o print("You have been subscribed")

8.

9. def unsubscribe(self, subscriber):

10.

SINTS index = -1

12.

13 for i, s in enumerate(self.subscribers):

14. if s.get name() == subscriber.get
name():

13, index = i

16. break

17.

18. if index != -1:

19. del self.subscribers|[index]

20 print("You have been removed")

21. else:

22 print ("Subscriber not found")

230

24. def notify subscribers(self, message):

25 for subscriber in self.subscribers:

26. email = subscriber.get email()

27.

28. EmailSender.send email (message, email)

The main method as shown below helps to develop a better understanding

of the observer design pattern. Subscriber classes are created and added to

the subscriber list within the instance of the publisher object. If you wish to

unsubscribe then you can be removed from the list by passing in the object.

If you wish to notify subscribers, you can write a message and send it to

the subscribers.

539

540

B3 Object-oriented programming

O Main method in Python

il def main():

2. publisher = Publisher()

g

4. subscriber x = Subscriber("Fabian Schwarz",
"F_Scwarz@test.com")

5. subscriber y = Subscriber("Abbie Blanc",
"A Blanc@test.com")

6. subscriber z = Subscriber("Lorenzo Verde",
"L Verdef@test.com")

7.

8. message = "Gigs coming up this week: karaoke
saturday, blues monday"”

9.

10. publisher.subscribe(subscriber x)

i, publisher.subscribe(subscriber y)

12 publisher.subscribe(subscriber_ z)

13.

14. publisher.notify subscribers(message)

15.

16. publisher.unsubscribe(subscriber_ x)

17.

18. if name == "_ main_ ":

19. main()

Advantages of the observer pattern

* You can introduce new subscribers without having to change the publisher

code.

* The publisher class has a simple purpose of adding subscribers and notifying

subscribers.

* Tocreate a new list you can create a new instance of the subscriber class.

Disadvantages of the observer pattern:

* Thereis no ordering within the subscribers.

* You cannot have priority subscribers in this situation which can limit some

applications.

As you have read through the design patterns, you may recognize that some

of the code you have written follows some aspects of the code provided.

Most people use elements of design patterns when coding, especially when

utilizing encapsulation, inheritance, and abstract classes. Design patterns are

formalized versions of logical programming rules divided into useful guides to

help you solve problems.

B3.2 Fundamentals of OOP for multiple classes

@ Thinking skills and social skills
Design patterns feature heavily in most of the software you have used. In this

task, work in small groups to create a concept map summarizing the material

in this unit and showing how different design patterns relate to real-life

situations. You will need sticky notes, large pieces of paper, and coloured

pens or pencils.

1. Discuss real-life situations where you have seen a design pattern in action.

Agree on two situations you will use.

2. Briefly reflect on how you collaboratively made your choice, and how or if

you were able to take everyone's opinions into account.

3. Using one large piece of paper for each situation, complete the following

steps.

* Make a list of the key words in this unit and write them on the sticky

notes. These are the nodes of your concept map.

* Write the title of the design pattern at the centre of the paper.

* Arrange the nodes (sticky notes) on the paper around the title. Order

them from general to more specific terms.

* Draw lines between the pairs of nodes to represent the connections

between them.

* Write a brief statement along each connection line to describe how

the key words are linked.

4. Consider how you will share the work within your group.

Complete all the steps to create your concept maps.

6. Share your concept maps with your class. Change or develop your

diagrams based on the feedback you receive.

7. Individually, reflect on your role in your group. Identify one IB leamer

profile attribute that you developed during this task.

This task is inspired by the Harvard Project Zero Visible Thinking Routine,

known as Generate-Sort-Connect-Elaborate. Find more information here:

pz.harvard.edu > Resources > Thinking Routines Toolbox.

% Linking questions

1. Inwhat ways can OOP be applied to database development (A3)?

2. 1s OOP necessary for all programming, or only in modelling complex

situations (B2)?

3. How can design patterns in OOP facilitate the architecture of scalable and

maintainable machine learning models (A4)?

4. How can the principles of encapsulation and information hiding be

applied to secure network communication (A3)?

541

B3 Object-oriented programming

End-of-topic questions

Topic review
1. Using your knowledge from this topic, B3, answer the guiding question as

fully as possible:

Is object-oriented programming (OOP) an appropriate paradigm for

solving complex problems? [6 marks]

Exam-style questions
2. Outline the difference between a class and an instantiation of

aclass. [2 marks]

3. Describe one advantage of using a class to store data. [3 marks]

4. Describe two advantages of object-oriented programming. [4 marks]

5. ldentify one scenario when object-oriented programming may be

a disadvantage. [2 marks]

6. Constructa UML diagram for the following class.

Fruit

type of fruit //storesthe name of the fruit

origin // storesthe country of origin

cost // storesthe cost perkg [4 marks]

7. Explainthe purpose of the static variable in the following class. [3 marks]

Book

- title: String

- author: String

- borrowed: Boolean

- waitinglist: Boolean

- booksBorrowed: static int

+ getTitle()

+ getAuthor()

+ getBorrowed()

+ setBorrowed(Boolean b)

+ getWaitList()

+ setWaitList(Boolean b)

+ getNumberOfBooksBorrowed|()

8. Identify two features of an encapsulation class. [2 marks]

9. Describe two advantages of using encapsulated code. [4 marks]

10. Evaluate the use of the private and protected modifier when

using classes. [4 marks]

11. Define the term dynamic when discussing data structures. [2 marks]

End-of-topic questions

12. Identify two features of inherited code. [2 marks]

13. Sketch a UML diagram to show the relationship between drink, coffee,

fizzy drink and water. [3 marks]

14. Outline two benefits of utilizing inheritance. [4 marks]

15. Explain the limitations of using private as a maodifier in a superclass. [3 marks]

16. Define, in coding, the term polymorphism. [2 marks]

17. ldentify two features of polymorphic code. [4 marks]

18. Describe two differences between static and dynamic polymorphism. [4 marks]

19. QOutline two benefits of utilizing polymorphism. [4 marks]

20. Identify two features of abstracted code. [2 marks]

21. Describe how the abstract class and subclasses are interpreted by

the compiler. [4 marks]

22. Explain the difference between an aggregated and

composition relationship. [4 marks]

23. Outline the purpose of a design pattern. [2 marks]

24. Explain how the singleton design pattern can aid a

designer developing a database storing customer information. [5 marks]

25. Explain how the factory design pattern can be used to enhance

maintenance and future growth in a program. [5 marks]

26. A developer wishes to create a program to keep people informed of

local news events. Explain how the observer design pattern could

aid the development. [5 marks]

Example Higher Level Exam Question (Java)

Bike to Work month is a month dedicated to raising awareness for the environment

by encouraging people to cycle to work. Prizes are available for the top performing

individual (best total number of kilometres) and the top performing team (best
average number of kilometres).

1. Each team entering the competition can have up to four team members.

The attributes for the TeamMember class are listed below.

= Name // The name ofthe participant competing for the team.

* bikeDays // The numberof days the participant cycled to work

that month.

* kilometres // Thetotal number of kilometres the participant travelled

that month.

a. Constructa UML diagram for the TeamMember class. [4 marks]

An extract of the Team class is shown.

public class Team {

private String name;

543

B3 Object-oriented programming

private int totalKilometres;

private int totalBikeDays;

private TeamMember [] theTeam;

private int teamSize;

public Team (String name) {

this.name = name;

totalKilometres = 0;

totalBikeDays = 0;

theTeam = new TeamMember[4];

}

public String getName() {

return name;

}

public int getTeamSize() {

return teamSize;

}

public double getAverage() {

//code missing

}

public int getTotalKilometres() {

// code missing

}

public int getTotalBikeDays() {

// code hidden

}

public TeamMember getTeamMember (int x) {

return theTeam[x];

}
public void addTeamMember (TeamMember x) {

if (teamSize < 4) {

theTeam[teamSize] = x;

teamSize = teamSize + 1;

}
else {

System.out.println("Sorry the team is full");

Y}

The instance variables in the Team class have been declared as private.

b. Outline the implications of using the modifier private. [2 marks]

In object-oriented programming there are many types of relationships

between classes.

c. Identify the relationship between Teamand TeamMember. [1 mark]

End-of-topic questions

A new team called “Team Maths"” would like to enter the competition.

d. Construct the code to initialize this new Team object. [3 marks]

The competition is encouraging people to “leave the car at home”. One of the

team prizes will be awarded to the team completing the most kilometres.

a. Constructthe getTotalKilometres () method which will return the

total number of kilometres for the team.

A main method is constructed and an extract shown below.

1. Team [] bikeToWork = new Team [3];

3. bikeToWork[0] = new Team("Team Design");

4. DbikeToWork[l] = new Team("Team Science");

5. bikeToWork[2] new Team("Team Support");

7. bikeToWork[0].addTeamMember (new
TeamMember ("Catherine"));

8. DbikeToWork[0].addTeamMember (new
TeamMember ("Rosie"));

9. bikeToWork[0].addTeamMember (new
TeamMember ("Nandor")) ;

10. bikeToWork[1l].addTeamMember (new
TeamMember ("Barbara"));

[4 marks]

11. bikeToWork[l].addTeamMember (new TeamMember ("Alex"));

12. bikeToWork[2].addTeamMember (new
TeamMember ("William"));

13.

14. TeamMember x = new TeamMember("Scott");

15. bikeToWork[0].addTeamMember (x);

b. State the output from the following code.

I. System.out.println(bikeToWork[1]

.getName());

ii. System.out.println(bikeToWork[O0]

.getTeamMember(3).getName());

Anocther team prize is awarded to the team with the best average

kilometres over the month.

c. Constructthe method getHighestTeamName (Team []

bikeToWork) thatwill return the name of the team with

the highest number of kilometres.

A special prize is awarded to the individual on any team with

the highest average.

d. Construct the method getBestIndividual

(Team [] bikeToWork) thatwill return the name of

the individual with the best average kilometres.

[1 mark]

[1 mark]

[4 marks]

[5 marks]

545

B3 Object-oriented programming

Example Higher Level Exam Question (Python)

Bike to Work month is a month dedicated to raising awareness for the environment

by encouraging people to cycle to work. Prizes are available for the top performing

individual (best total number of kilometres) and the top performing team (best

average number of kilometres).

1. Eachteam entering the competition can have up to four team members.

The attributes for the TeamMember class are listed below.

* Name // The name of the participant competing for the team.

* bikeDays // The number of days the participant cycled to work that month.

* kilometres // The total number of kilometres the participant travelled

that month.

a. Construct a UML diagram for the TeamMember class. [4 marks]

An extract of the Team class is shown.

from TeamMember import TeamMember

class Team:

def __ init__ (self, name):

self.name = name

self.totalKilometres = 0;

self.totalBikeDays = 0;

self.theTeam = []

self.teamSize = 0

def getName(self):

return self.name

def getTeamSize(self):

return self.teamSize

def getAverage(self):

//code missing

def getTotalKilometres(self):

//code missing

def getTotalBikeDays (self):

//code hidden

def getTeamMember (self,x):

return self.theTeam[x]

def addTeamMember (self, x):

if self.teamSize < 4:

self.theTeam.append(x)

self.teamSize = self.teamSize + 1

else:

print ("Sorry the team is full")

The instance variables in the Team class have been declared as private.

b. Outline the implications of using the modifier private. [2 marks]

End-of-topic questions

In object-oriented programming there are many types of relationships

between classes.

c. ldentify the relationship between Team and TeamMember. [1 mark]

A new team called “Team Maths” would like to enter the competition.

d. Construct the code to initialize this new Team object. [3 marks]

The competition is encouraging people to “leave the car at home”. One of the

team prizes will be awarded to the team completing the most kilometres.

a. Constructthe getTotalKilometres () method

which will return the total number of kilometres for the team. [4 marks]

A main method is constructed and an extract shown below.

from Team import Team

from TeamMember import TeamMember

bikeToWork = []

bikeToWork. append (Team("Team Design"))

bikeToWork. append (Team("Team Science"))

bikeToWork. append (Team("Team Support"))

bikeToWork|[0] .addTeamMember (TeamMember ("Catherine"))

bikeToWork[0] .addTeamMember (TeamMember ("Rosie"))

bikeToWork[0] .addTeamMember (TeamMember ("Nandor"))

bikeToWork[1] .addTeamMember (TeamMember ("Barbara"))

bikeToWork[1l].addTeamMember (TeamMember ("Alex"))

bikeToWork[2] .addTeamMember (TeamMember ("William"))

x = TeamMember ("Scott")

bikeToWork[0].addTeamMember (x)

b. State the output from the following code.

i. Print (bikeToWork[1l].getName()) [1 mark]

il. Print(bikeToWork[0].getTeamMember (3)

.getName()) [1 mark]

Ancther team prize is awarded to the team with the best average kilometres

over the month.

c. Constructthe method getHighestTeamName (Team []

bikeToWork) that will return the name of the team with

the highest number of kilometres. [4 marks]

A special prize is awarded to the individual on any team with the

highest average.

d. Constructthe method getBestIndividual (Team [] bikeToWork)

that will return the name of the individual with the best average kilometres.

[5 marks]

547

a data

datai

items

inventory, ng items, ms when you do

if specific item or how man

with yo ntory (c

managed behind tl

anizing data that tells yc

ing information) but not

-ause it does not get

ether. This helps pre

o (such as manage an inventory) without getting stuck on the

details of how ganiz rything right aw

T
H
Y

Fundamentals of ADTs

Syllabus understandings

B4.1.1 Explain the properties and purpose of ADTs in programming

B4.1.2 Evaluate linked lists

B4.1.3 Construct and apply linked lists: singly, doubly and circular

B4.1.4 Explain the structures and properties of binary search trees (BSTs)

B4.1.5 Construct and apply sets as an ADT

B4.1.6 Explain the core principles of ADTs

B4.1.1 Explain the properties and purpose of

ADTs in programming
ADTs are important tools in software development, offering a blend of

encapsulation, abstraction and modularity that aids in the design, implementation

and maintenance of complex software systems. They allow programmers to

work at a higher level of abstraction, focusing on what operations are performed

rather than on how they are implemented. This improves both the quality and

productivity of software development efforts.

A Figure1 How should a computer efficiently store a player’s inventory? Why is it

important to consider what operations will be performed on data?

550

B4 Abstract data types (ADTs)

Table 1 Properties of ADTs

An ADT includes a collection of operations that are allowed to be performed on the data. For instance,
Operations .)
an% a queue ADT would allow operations such as enqueue, dequeue, i sEmpty and peek. ADTs restrict

behaviours any other operations. For example, you could not sort this data because a queue does not have a sort

operation.

ADTs focus on what operations are performed, not how these operations are implemented. This

Abstraction abstraction allows the user to use the data without understanding the underlying complexities.

For example, you can use a queue without needing to worry about how it is implemented.

Encapsulation

ADTs encapsulate the data, ensuring that it can only be accessed or manipulated through its defined

operations. This prevents external interference and misuse of the underlying data. Inthe queue

example, you would use the available operations, but no other operations would be available.

Modularity

ADTs contribute to the modularity of code. Since the implementation details are hidden, different

implementations of the same ADT can be swapped without affecting the rest of the program.

This property is important for developing large and complex software systems, allowing for easier

maintenance and updates. For example, an ADT which sorts collections (sortCollection) might

no longer fit in memory. You can change the storage from primary memory to disk storage without

changing the operations for the user. Users will still sort collections, with no need to know about the

underlying change.

Reusability

The abstract nature of ADTs makes them highly reusable across different programs and projects.

Since they define operations at a high level, the same ADT can be applied to various contexts

where similar operations are needed, regardless of the specific details of the data. For example, the

sortCollection ADT can be used across different projects.

Table 2 Purposes of ADTs

Simplification of

complex systems

By abstracting away the details of data storage and manipulation, ADTs allow developers to focus on

higher-level problem-solving and algorithms.

Code reusability

and maintenance

The use of ADTs encourages the writing of more generic and reusable code that can be maintained

and updated with less effort. This is because changes to the implementation of an ADT do not require

changes to the code that uses it, as long as the interface remains the same.

ADTs play an important role in software design, particularly in object-oriented programming, by

EZZ?nnceLnjiEOf helping to define clear interfaces for components of a system. This leads to better-designed systems

9nq with clear separation of concerns.

Facilitation :) h i B) :
of data ADTs define a set of operations for data manipulation without exposing the details of how the data is

manipulation
stored or maintained, making it easier to implement complex data structures in a consistent manner.

Improvement of

code portability

Since the implementation details are abstracted away, code using ADTs can be more easily ported

to different platforms or languages, as the underlying data structures can be reimplemented without

changing high-level code.

Topic B3 covers object-ariented

programming.

Computer scientists and software engineers generally do not use abstract

data structures when working with small amounts of data or making infrequent

changes to data. For example, if you have 100 integers in an array, and you

are making two or three changes every minute, you do not need to be

overly concerned with the data structure you are using. However, if you have

10,000,000 integers in an array, and you are making 1,000 changes a second

(or searching through the array 100 times per second), then you should carefully

think about which data structures you are using. Another use case for ADTs is in

a memory-constrained environment such as an embedded device.

B4.1 Fundamentals of ADTs

ADTs are defined by the specific set of operations that can be performed on

this data. These operations form the ADT's interface, clearly specifying which

operations are supported and how they should be executed. This interface

abstraction is a key aspect of ADTs, as it hides the details of the implementation

from the user, emphasizing the principles of data encapsulation and

operation abstraction.

Operations typically associated with ADTs are designed to manage and

manipulate the encapsulated data in ways that are consistent with the ADT's

intended purpose. The primary categories of operations associated with ADTs

are detailed in Table 3.

Table 3 Associated operations of ADTs

Operation | Description Example

Access Enable retrieval of data elements from Queue: peek

the ADT. P

Insertion Facilitate the addition of new data Queue: enqueue

elements to the ADT. -endas

. Allow for the removal of existing data)
Deletion clements from the ADT. Queue: dequeue

Searching, sorting and iterating are common operations but the efficiency of

those operations depends on the ADI. For example, a queue is an ADT in which

the data elements are kept in order and the only operations on the ADT are the

addition of data elements to the rear terminal position, known as enqueue,

and removal of data elements from the front terminal position, known as

dequeue. Therefore, there is no need to search, sort or iterate through a queue.

However, a binary search tree ADT does require iterating, sorting and searching.

Each ADT is characterized by a specific set of operations, designed to facilitate

its interaction with data elements in a manner which aligns with its intended

purpose.

In business computing, queues serve as a useful ADT for modelling

customer service systems—such as call centres or ticketing systems—

where service requests must be handled in an orderly manner. A queue

ADT allows businesses to manage service requests on a first-come,

first-served basis, ensuring fairness and efficiency in customer service

operations. Implementing a queue helps in optimizing response times

and managing workload peaks, thus improving customer satisfaction

and operational efficiency.

TOK

Abstract data types hide the

complexity of implementation.

People using ADTs do not

need to understand how ADTs

function. If a programmer uses a

stack data structure to create an

“undo” system, they do not need

to understand the underlying

allocation of memory, the specific

algorithms for pushing or popping

elements, or how the stack

manages its elements internally.

Instead, they can rely on the

well-defined interface provided

by the stack ADT, which allows

them to perform operations like

adding or removing elements

without worrying about the

low-level details. This abstraction

enables programmers to focus

on higher-level design and logic,

improving code modularity and

maintainability, and reducing the

risk of errors.

To what extent does the abstraction

provided by ADTs influence our

understanding and manipulation of

complex data structures in software

development?

Queues and binary search trees are

discussed in section B4.1.6.

551

552

B4 Abstract data types (ADTs)

There is more information about

constant time operations and

efficiency in section B2.4.1.

B4.1.2 Evaluate linked lists
A linked list is a data structure consisting of a sequence of elements, each

contained in a node. The defining feature of a linked list is that each node contains

a pointer to the next node in the sequence, forming a chain-like structure.

About linked lists

There are different types of linked lists, each with specific characteristics. A linked

listis a data structure that can be used to implement various ADTs, such as lists,

stacks, or queues, depending on how it is used and the operations provided.

Table 4 Advantages of linked lists

Dynamic size
Unlike arrays, linked lists are dynamic in size. This means they can grow or shrink during runtime, which is

advantageous for applications where the data size is not known beforehand or can change.

Efficient Adding or removing elements in a linked list is efficient because these operations do not require shifting

insertions and | elements, as is the case with arrays. You only need to update the pointers, which is a constant time

deletions operation O(1), assuming you have a direct reference to the node you are inserting or deleting.

Memo Linked lists allocate memory as needed, which can lead to more efficient memory usage compared

efficienry with arrays, which must allocate memory upfront. This is especially true for large data sets where not all

=4 allocated memory may be used.

Linked lists can easily be modified to become doubly linked lists (where each node points both forwards

Flexibility and backwards) or circular linked lists (where the last node points back to the first), allowing for more

complex and flexible data structures.

Table 5 Disadvantages of linked lists

Access time

Accessing an element in a linked list is O(n) because, in the worst case, you may need to traverse the

entire list to find the element. This is less efficient than arrays, which offer constant time access O(1)

through indexing.

Each element in a linked list must also store a pointer to the next (and possibly previous) element, which
Memo) . . | .
overher:d is additional memory overhead (the amount of available memory required to perform the function)

compared with arrays.

No random Because of their sequential access nature, linked lists are not suitable for applications that require

access frequent, random access to elements.

. Operations on linked lists can be more complex to implement and understand, especially for beginners Complexity p p p . €5p Yy g :
due to the need to manage pointers correctly and prevent issues like memory leaks or dangling pointers.

When to use linked lists

Linked lists are suited for applications where:

* thesize of the data set changes dynamically

* insertions and deletions at arbitrary positions are frequent

* data needsto be added and deleted in a maintained order

* memory utilization efficiency is critical, and the overhead of pointers is

acceptable compared with the cost of reallocating and copying large arrays.

Linked lists offer an alternative to arrays for certain types of problems, particularly

those involving dynamic data sets and a need for efficient insertions and deletions.

B4.1 Fundamentals of ADTs

However, their disadvantages, especially concerning access times and memaory

overhead, make them less suitable for applications requiring fast, random access

to elements.

In a task manager or operating system process

scheduler, each running application or process can

be represented as a node in a singly or doubly linked

list, with each node containing information about

the process, such as its process ID, state (running,

waiting, or suspended), and other relevant metadata.

This linked list facilitates the efficient scheduling and

management of processes by the operating system.

How it works

Process scheduling: The operating system can

traverse the linked list to select the next process to run,

based on scheduling algorithms (such as round robin

and priority scheduling). The linked list structure allows

for easy addition and removal of processes as they start

and terminate, respectively.

e tab s

e

& Nomarspirmbeeis]

B e 226

W inbed]1) Irvrastion Baares T rg

I W ardussy Cois Fowmcalier o

e e

© 605 Gaeer Gb0

[Svasam st opta

B 1t coernree

; .M&-}amtapnn

A M O-Dise

[W lweavne Anzos Mansger

W W P M,

b tenas lort N datang.

I O urld Saavine

v W Mmnlun Lete cmlancibable

C L Savh = T Saada.

¢ Gl M= 0

¢ I NiSaras

Slaide

in section A1.3.3.

Dynamic process management: WWhen a new

application is launched, the operating system creates

a new process node and inserts it into the list at the

appropriate position, based on its scheduling priority

or other criteria. If a process needs to be terminated,

it can be removed from the list, and the pointers of the

adjacent nodes are updated accordingly to maintain

the list's integrity.

This implementation allows the operating system

to efficiently manage multitasking, ensuring that

system resources are allocated fairly among all

running processes and that user and system tasks are

executed smoothly. The use of a linked list for process

management exemplifies how dynamic data structures

can optimize core functions of complex systems such

as operating systems.

oD 3 RIE pasiser o PLU o

A Figure 2 Task Manager in the Windows operating system. With hundreds of changing tasks demanding resources many

times a second, a linked list is a good data structure to manage rapidly changing tasks

Scheduling algorithms are covered
=1
L

553

B4 Abstract data types (ADTs)

Insertion The operation of adding

a new element to an abstract data

type (ADT). The specifics of how

insertion is performed depends on

the type of ADT.

Deletion The operation of

removing an element from an ADT.

The process of deletion can vary

significantly depending on the type

of ADT.

Traversal The operation of visiting

each element ofan ADT ina

specific order. Traversal allows the

examination or modification of each

element.

Search The operation of finding an

element within an ADT that matches

a given criterion.

B4.1.3 Construct and apply linked lists:

singly, doubly and circular
Constructing and applying linked lists—including singly, doubly and circular

linked lists—is an important skill in computer science.

Singly linked lists

Asingly linked list is a collection of nodes where each node contains data and

a pointer to the next node in the sequence. This structure allows for efficient

insertion and deletion of elements.

pointer

value

A Figure 3 Asingly linked list

Characteristics of a singly linked list

Each node in a singly linked list contains data and a reference to the next node.

The first node is known as the head. The last node, commonly referred to as the

tail node, points to None (or null), indicating the end of the list.

Operations on a singly linked list

Insertion: Can be O(1) if performed at the beginning or O(n) at the end. If a tail

pointer is maintained, this also allows for O(1) insertion at the end.

Deletion: Time complexity varies. It is O(1) for deleting the head node and O(n)

for nodes elsewhere, as this requires finding the preceding node.

Traversal: Visiting all nodes in the list has a time complexity of O(n), as it involves

sequentially accessing each node from the head to the end of the list.

Search: Searching for a specific node by its value has a worst-case time

complexity of O(n), as it may require traversing the list from either end until the

desired node is found.

Example of singly linked list in Java

1. public class Node{

2.

3o // instance variable to store the data in this
case an integer

4. // instance variable to store the pointer

5 private int data;

6. private Node pointer;

Te

.)

B4.1 Fundamentals of ADTs

9.

10.

11.

12.

13.

14.

15.

16.

17/ o

18.

19.

20.

21.

2373 o

23.

24.

25,

26.

27 o

28.

29.

30.

31.

32.

SIS

34.

35.

36.

3375

38.

39.

40.

41.

42.

43.

44 .

45.

46.

public Node() {

//default constructor

}

public Node (int d) {

data = d;

pointer = null;

}

public Node head = null;

public Node tail = null;

public void addNode(int data) {

//Create a new node

Node newNode = new Node(data);

//Checks if the list is empty

if(head == null) {

//If list is empty the new node becomes the
head and the tail

head = newNode;

tail = newNode;

}

else {

//newNode will be added after the tail

tail.pointer = newNode;

//newNode will become new tail of the list

tail = newNode;

}

//display all items in the linked list

public void displayList() {

//Node current node set to the head

Node current = head;

if(head == null) {

555

556

B4 Abstract data types (ADTs)

47. System.out.println("List is empty");

48. return;

49. }

50.

il . System.out.println("Items within the list ");

Lo while(current != null) {

Bl //Prints each node and then gets the next
node using the pointer

54. System.out.print(current.data + " ");

55. current = current.pointer;

56. }

57 }

58. }

Example of adding nodes and displaying singly linked list in Java

1. public class LinkedListMain {

B

3in public static void main(String[] args) {

4.

Sa Node singleLinkedList = new Node();

6.

e //add items to list

8. singleLinkedList.addNode(1);

9. singleLinkedList.addNode(2);

10. singleLinkedList.addNode(3);

ik singleLinkedList.addNode(4);

12. singleLinkedList.addNode(5);

L3 singleLinkedList.addNode(6);

14. singleLinkedList.addNode(7);

15, singleLinkedList.addNode(8);

16. singleLinkedList.addNode(9);

07 -

18. // display items in the list

19. singleLinkedList.displayList();

20.

21, }

22. }

B4.1 Fundamentals of ADTs

Example of singly linked list in Python

1. class Node:

2. def init (self, data):

3. self.data = data

4. self.next = None

Se

6. class SinglyLinkedList:

7 def init (self):

8. self.head = None

9.

10. def append(self, data):

11. if not self.head:

12. self.head = Node(data)

13. else:

14. current = self.head

15. while current.next:

16. current = current.next

17. current.next = Node(data)

18.

19. def display(self):

20. elements = []

21. current = self.head

22. while current:

230 elements.append(current.data)

24. current = current.next

25.

26. return elements

27.

28. # Create a new instance of SinglyLinkedList

29. my linked list = SinglyLinkedList()

30.

31. # Append data to the linked list

32. my linked list.append(10)

33. my_ linked list.append(20)

34. my linked list.append(30)

35. my_ linked list.append(40)

36.

517 o # Display the contents of the linked list

38. print(my_linked list.display())

557

558

B4 Abstract data types (ADTs)

Doubly linked lists

Doubly linked lists extend singly linked lists by allowing each node to have a

reference to both the next and the previous node. This bidirectional linkage

facilitates more versatile traversal and manipulation.

A Figure 4 Adoubly linked list

Characteristics of a doubly linked list

Each node in a doubly linked list contains data, a pointer to the next node

(similar to singly linked lists), and an additional reference to the previous node.

This dual referencing facilitates backward traversal, enhancing the list's flexibility.

The first node is called the head, and the last node is called the tail. Unlike singly

linked lists, the tail in a doubly linked list provides a direct reference to traverse

the list backward, starting from the last element. The reference to the next node

of the tail and the reference to the previous node of the head point to None

(or null), indicating the boundaries of the list.

Operations on a doubly linked list

Insertion: Inserting at the beginning (before the head) or at the end (after the

tail) can both be done in O(1) time, as direct references to both the head and tail

nodes are typically maintained. Inserting a node between two nodes is also O(1),

provided you have a reference to the node after or before where the insertion is

to take place. However, if you need to find a specific position starting from the

head or tail, it could take up to O(n) due to traversal.

Deletion: Deleting the head or tail node can be achieved in O(1) time, thanks to

direct access to both ends. Deleting a node from the middle of the listis O(1) if

you already have a reference to the node to be deleted. If not, finding the node

to delete will require traversal from either the head or the tail, resulting in O(n)

time complexity in the worst case.

Traversal: Traversal can be performed in both directions, forward (from head to

tail) and backward (from tail to head), each with a time complexity of O(n). This

bidirectional traversal is a significant advantage over singly linked lists, offering

greater flexibility in navigating the list.

Search: Searching for a specific node by its value has a time complexity of O(n)

in the worst case, as it may require traversing the list from either end until the

desired node is found.

Doubly linked lists provide enhanced functionality over singly linked lists,

particularly with the ease of insertion and deletion operations at both ends of the

list and the ability to traverse the list in both directions. These capabilities make

doubly linked lists a powerful data structure for applications requiring frequent

and flexible modifications to a collection of elements.

B4.1 Fundamentals of ADTs

Example of doubly linked list in Java

1. public class Node{

2

e // instance variable to store the data in this
case an 1integer

4. // instance variable to store the previous node
and next node

Be private int data;

6. private Node previous;

7. private Node next;

8.

9. public Node() {

10. //default constructor

11. }

12 public Node (int d) {

13. data = d;

14. }

15.

16. public Node head = null;

17. public Node tail = null;

18.

19. public void addNode(int data) {

20. //Create a new node

21. Node newNode = new Node(data);

22.

23. //Checks if the list is empty

24. if (head == null) {

25 5 //If list is empty the new node becomes the
head and the tail

26. head = newNode;

27 o tail = newNode;

28. }

29. else {

30. //new Node will be added after the tail

1 tail.next = newNode;

32. //new nodes previous will become the tail

33. newNode.previous = tail; e

559

B4 Abstract data types (ADTs)

34. //newNode will become new tail of the list

35. tail = newNode;

36. // set the next tail to null

37 5 tail.next = null;

38. }

39. }

40.

41. //display all items in the linked list

42. public void displayList() {

43.

44. //Node current node set to the head

45. Node current = head;

46.

47. if(head == null) {

48. System.out.println("List is empty");

49. }

50.

Gl System.out.println("Items within the list ");

7)o while(current != null) {

53 //Prints each node and then gets the next
node using the pointer

54. System.out.print(current.data + " ");

=5, current = current.next;

56. }

57. }

58.

59. public void displayReverseList() {

60.

61. Node current = tail;

62. if (tail == null) {

63. System.out.println("List is empty");

64. }

65. System.out.println("Items within the list ");

66. while(current != null) {

67. //Prints each node and then gets the next node
using the pointer

68. System.out.print(current.data + " ");

B4.1 Fundamentals of ADTs

e 69. current = current.previous;

70. }

71.)}

72. }

Example of adding nodes and displaying doubly linked list in Java

1. public static void main(String[] args) {

2 Node doubleLinkedList = new Node();

o //add items to list

4. doubleLinkedList.addNode(1);

B doubleLinkedList.addNode(2);

6. doubleLinkedList.addNode(3);

o doubleLinkedList.addNode(4);

8. doubleLinkedList.addNode(5);

9. doubleLinkedList.addNode(6);

10. doubleLinkedList.addNode(7);

il doubleLinkedList.addNode(8);

12. doubleLinkedList.addNode(9);

13.

14. // display items in the list

13, doubleLinkedList.displayList();

16. doubleLinkedList.displayReverseList();

17. }

Example of doubly linked list in Python

1. class Node:

2. def _ init (self, data):

3. self.data = data

4. self.next = None

5 self.prev = None # Add a reference to the
previous node

6.

7. class DoublyLinkedList:

8. def init (self):

9. self.head = None

10. self.tail = None # Keep track of the tail
to make appending easier e

561

562

B4 Abstract data types (ADTs)

11.

12.

ISP

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

235

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

def append(self, data):

new_node = Node(data)

if not self.head:
new node becomes the head and tail

self.head = new_node

self.tail = new_node

else: # Otherwise, add new node to the
end and update tail

self.tail.next = new_node

new_node.prev = self.tail

self.tail = new _node

def display(self):

elements = []

current = self.head

while current:

elements.append(current.data)

current = current.next

return elements

def display reverse(self): # Additional
operation to display list in reverse

elements = []

current = self.tail

while current:

elements.append(current.data)

current = current.prev

return elements

Create a new instance of DoublyLinkedList

my_doubly linked list = DoublyLinkedList()

Append data to the doubly linked list

my_doubly linked list.append(10)

my_doubly linked list.append(20)

my_doubly linked list.append(30)

If the list is empty,

B4.1 Fundamentals of ADTs

45. my doubly linked list.append(40)

46.

47. # Display the contents of the doubly linked list

48. print("Forward:", my doubly linked list.display())

49. # Display the contents of the doubly linked list
in reverse

50. print("Reverse:", my doubly linked list.display_
reverse())

Circular linked lists

A circular linked list is a variation where the last node points back to the first node, C E

forming a circle. It can be implemented as either a singly linked list or a doubly

linked list. A Figure5 Acircular linked list

Characteristics of a circular linked list

A circular linked list is a variation of the linked list data structure in which the

last node’s next pointer is not null (or None) but instead points back to the first

node (head) of the list. This creates a circular structure that allows for an endless

traversal of the list. Circular linked lists can be singly or doubly linked. They are

useful for applications requiring cyclic traversals, such as round-robin scheduling.

Operations on a circular linked list

Insertion: The circular nature of the list means the last node’s next pointer (in

a singly circular list) or both the next and previous pointers (in a doubly circular

list) loop back to the head. This circular linkage impacts how insertions are

approached. Inserting a new node before the head can still be done in O(1)

time. For a singly circular list, the new node becomes the new head, and its

next pointer must point to what was the head node. The last node’s next pointer

(which previously pointed to the old head) must be updated to point to the new

head. In a doubly circular list, additional adjustments are made to the previous

pointers to maintain the circular linkage. Inserting a node after the tail in a circular

linked listis O(1). The new node must be linked such that it follows the original

tail and the head follows it, maintaining the circular structure. Inserting between

nodes is O(1) provided you have direct references to the nodes between which

the new node will be inserted. Without direct references, you must traverse

the list from the head to find the correct insertion point, resulting in O(n) time

complexity due to traversal.

Deletion: Deleting the head node is an O(1) operation. The head's next pointer

(in singly linked lists) or both the next and previous pointers (in doubly linked

lists) must be adjusted to the second node, which becomes the new head.

Additionally, the tail’s pointers must be updated to maintain the circular structure.

Deleting the tail node also requires adjusting the circular links, ensuring the new

tail correctly points back to the head. This operation is O(1) if you maintain a

reference to the node preceding the tail (more straightforward in a doubly linked

list). Deleting a node in the middle is O(1) if you have a reference to the node.

Otherwise, finding the correct node requires O(n) time due to traversal.

563

B4 Abstract data types (ADTs)

Traversal: The cyclical nature of circular linked lists means traversal can

technically continue indefinitely. To traverse the list once, you can start at

the head and continue until you circle back to the head. Traversal has a time

complexity of O(n).

Search: Searching for a specific node by its value involves traversing the list from

the head and comparing each node’s value to the target. The time complexity is

Of(n) in the worst case, as it may require traversing the entire list to find the desired

node or to determine that the node is not present.

Example of circular linked list in Java

1. public class Node{

2.

g // instance variable to store the data in this
case an 1nteger

4. // instance variable to store the previous node
and next node

5. private int data;

6. private Node previous;

o private Node next;

8.

9. public Node() {

10. //default constructor

11. }

2P public Node (int d) {

13. data = d;

14. }

15.

16. public Node head = null;

17. public Node tail null;

18.

19. public void addNode(int data) {

20. //Create a new node

21. Node newNode = new Node(data);

22.

23. //Checks if the list is empty

24. if(head == null) {

25 o //If list is empty the new node becomes the
head and the tail

26. head newNode;

27. tail = newNode;

B4.1 Fundamentals of ADTs

28.

29.

30.

31.

a2

SIS

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44 .

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

// create reference back to head

newNode.next = head;

}

else {

//new Node will be added after the tail

tail.next = newNode;

//new nodes previous will become the tail

newNode.previous = tail;

//newNode will become new tail of the list

tail = newNode;

// set the next tail back to head to close
circle

tail.next = head;

}

}

//display all items in the linked list

public void displayList() {

//Node current node set to the head

Node current = head;

if(head == null) {

System.out.println("List is empty");

System.out.println(" Items within the list ");

do {

//Prints each node and then gets the next
node using the pointer

current = current.next;

System.out.print(current.data + " ");

} while(current != head) ;

}

565

B4 Abstract data types (ADTs)

Example of adding nodes and displaying circular linked list in Java

1. Node circularLinkedList = new Node();

2. circularLinkedList.addNode(1);

3. circularLinkedList.addNode(2);

4. circularLinkedList.addNode(3);

5. circularLinkedList.addNode(4);

6. circularLinkedList.addNode(5);

7. circularLinkedList.addNode(6);

8. circularLinkedList.addNode(7);

9. circularLinkedList.addNode(8);

10. circularLinkedList.addNode(9);

12. circularLinkedList.displayList();

Example of circular linked list in Python

1. class Node:

2P def _ init (self, data):

S self.data = data

4. self.next = None # Only reference to the
next node

5

6. class CircularSinglyLinkedList:

7. def init (self):

8. self.head = None

9.

10. def append(self, data):

11. new_node = Node(data)

12. if not self.head: # If the list is empty

13. self.head = new_node

14. self.head.next = self.head # Points
to itself, making the list circular

15. else:

16. current = self.head

B4.1 Fundamentals of ADTs

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Zi%io

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

while current.next != self.head:
Traverse until you find a node whose
next is the head

current = current.next

current.next = new_node

new_node.next = self.head # New node
points back to the head

def display(self):

elements = []

if not self.head:

return elements # Return an empty
list if the list is empty

current = self.head

while True:

elements.append(current.data)

current = current.next

if current == self.head: # If we’ve
looped back to the head, stop

break

return elements

Create a new instance of CircularSinglyLinkedList

my_circular singly linked list =
CircularSinglyLinkedList()

Append data to the circular singly linked list

my_circular singly linked list.append(10)

my_circular singly linked list.append(20)

my_circular singly linked list.append(30)

my_circular_ singly linked list.append(40)

Display the contents of the circular singly
linked list

print("Circular Singly Linked List:", my_circular_
singly linked list.display())

TOK

When working with version control

systems such as Git, understanding

the underlying data structure can

provide valuable insights into its

efficiency and functionality. Git

fundamentally uses a linked list

structure to manage the history of

commits. Each commit in Git points

to the previous commit, forming

a chain or linked list of changes.

This structure allows for efficient

branching, merging and navigating

through the commit history.

Given this context, we can explore

how logic and reasoning are

applied in selecting linked lists over

other data structures such as arrays.

Key factors to consider include

dynamic size, memory utilization

and access time. Understanding

why Git opts for a linked list

structure can shed light on the

broader decision-making process

in choosing appropriate data

structures for specific tasks.

567

B4 Abstract data types (ADTs)

A Figure 6 A binary search tree

In computer science, graphs are used extensively as an ADT to model

and solve problems related to network routing and connectivity.

For example, in internet infrastructure, routers and the connections

between them can be represented as vertices and edges of a

graph, respectively. This ADT facilitates algorithms for finding the

shortest path, optimizing network traffic, and ensuring data packets

are efficiently routed from source to destination. Graph ADTs are

foundational in understanding and improving the backbone of

internet communication.

B4.1.4 Explain the structures and properties

of binary search trees (BSTs)
A binary search tree (BST) is a node-based binary tree data structure where each

node has a unigue key and at most two children, with the following properties.

Left child property: The key in any node in the left subtree is less than the key in

its parent (and any other node in its right subtree).

Right child property: The key in any node in the right subtree is greater than the

key in its parent (and any other node in its left subtree).

BSTs are abstract data structures widely used for organizing and managing

sorted data efficiently. A BST allows for fast data retrieval, insertion and deletion

operations, making it highly suitable for various applications, including database

management and memory allocation systems.

Structure of a BST

The structure of a BST has the following properties.

1. Node structure: Each node in a BST contains some key components.

* Key: The value or data that is used to order the nodes within the tree.

* Leftchild: A pointer or reference to the left child node, which contains a key

less than the node's key.

* Right child: A pointer or reference to the right child node, which contains a

key greater than the node’s key.

* Parent (optional): Some implementations also include a pointer to the parent

node for easier traversal and manipulation.

2. Root node: The topmost node in a BST, from which every other node

is accessible.

3. Leaf nodes: Nodes with no children. These mark the boundaries of the tree.

B4.1 Fundamentals of ADTs

Properties of a BST

A BST is optimized for binary search operations, making searching, insertion and

deletion operations efficient.

Defining properties

Ordered structure: In a BST, for any given node N, all elements in N's left

subtree are less than N, and all elements in N's right subtree are greater

than N. This ordering holds for every node within the tree, ensuring the entire

structure remains sorted.

Dynamic size: BSTs are dynamically sized, allowing for the addition (insertion)

and removal (deletion) of nodes. This adaptability makes the BST capable of

adjusting to changes in the data set’s size over time.

Balanced vs unbalanced trees: For optimal efficiency a BST should be

balanced, meaning the tree’s depth is minimized, and the Ollog n) search time is

maintained.

Efficient operations

Search: The BST supports binary search with a time complexity of O(log n) in

the best and average cases. However, in the worst case—typically when the tree

becomes linearly skewed—the complexity degrades to O(n). Note: A linearly

skewed BST occurs when the tree takes the form of a linear chain of nodes,

because all elements are inserted in either ascending or descending order. This

structure resembles a linked list, resulting in operations degrading to O(n) time

complexity, losing the efficiency of a balanced BST.

Insertion: To insert a new node in a BST, the tree is searched to find the correct

position for the new node, so that the tree's order—where all nodes to the left of a

parent are smaller and all nodes to the right are larger—is maintained.

Deletion: Deleting a node from a BST requires careful adjustments to preserve

the tree’s structure. This process varies depending on the node’s children.

Deleting a node with no children is straightforward. Deleting a node with a single

child requires linking that child to the rest of the tree, and deleting a node with

two children often involves finding a successor, to maintain order.

TOK

In the game “twenty questions”,

one player thinks of an object, and

the other tries to guess what it is

by asking yes-or-no questions. The

most efficient strategy involves

asking questions that systematically

narrow down the possibilities.

For example, starting with broad

categories (“Is it an animal?”)

and progressively moving to

more specific attributes (“Is it a

mammal?”) mirrors the way humans

naturally categorize and retrieve

information.

This strategy is similar to the

principles and structures of binary

search trees. In a BST, each node

represents a decision point, where

data is categorized based on

whether it falls to the left (less than)

or right (greater than) of the current

node. This hierarchical structure

allows for efficient searching,

insertion and deletion, reflecting

the logical way humans break

down information to retrieve it

quickly.

How do the principles and

structures of BSTs reflect the ways

in which humans categorize and

retrieve information efficiently?

Imagine you have a digital music playlist that can

automatically sort songs not just by their names but

also by other criteria such as genre, release year, or

artist popularity. Now, think of organizing these songs

using a binary search tree to make finding and playing

any song very efficient.

Starting point (root): The root of your BST is a song

that splits your playlist into two roughly equal parts

based on your sorting criteria, for example the release

year. Songs released before this year go to the left,

and those after go to the right.

Dividing further: Each “node” or song in this tree

does the same thing—it divides the list into older

songs to the left, newer to the right. This way, each

step halves the number of songs you need to look

through.

Finding a song: Want to play a song from 20157

Start at the root and choose left or right based on

the year, narrowing down your search quickly. This

operation lets you find songs faster than scrolling

through a linear list, especially if you have thousands

of songs.

569

B4 Abstract data types (ADTs)

E Sketching a BST as a tree diagram

570

Worked example 1

Constructing a BST with integers

Enter a set of numeric data into a BST and then sketch the resulting tree. Data set: 40, 20, 60, 10, 30, 50, 70

Solution
Step 1: Data is entered sequentially into a BST.

Start with the first number, 40, as the root of your BST.

Step 2: Insert 20 into the BST.

Compare 20 with the root (40).

20 is less than 40, so move to the left child of 40.

Since there is no left child, insert 20 as the left child

of 40.

Step 3: Insert 60 into the BST.

Compare 60 with the root (40).

60 is greater than 40, so move to the right child.

Since there is no right child, insert 60 as the right

child of 40.

Step 4: Insert 10 into the BST.

Compare 10 with the root (40), move to the left

because 10 < 40.

Compare 10 with 20, move to the left because

10< 20.

Insert 10 as the left child of 20.

Step 5: Insert 30 into the BST.

Compare 30 with the root (40), move to the left because

30 < 40.

Compare 30 with 20, move to the right because 30 > 20.

Insert 30 as the right child of 20.

Step 6: Insert 50 into the BST.

Compare 50 with the root (40), move to the right because

50> 40.

Compare 50 with 60, move to the left because 50 < 60.

Insert 50 as the left child of 60.

Step 7: Insert 70 into the BST.

Compare 70 with the root (40), move to the right because

70 > 40.

Compare 70 with 60, move to the right because 70 > 60.

Insert 70 as the right child of 60.

(40)
(20)

B4.1 Fundamentals of ADTs

Remember, for any given node, all values in the left subtree are less than the

node’s value, and all values in the right subtree are greater.

Worked example 2

Constructing a BST with names

Enter the list of names in this data set into a BST and sketch the resulting tree.

Data set: Emma, Noah, Olivia, Liam, Ava, Ethan, Sophia

Solution

Step 1: Data is entered sequentially into a BST.

Start with the first name, Emma, as the root of your BST.

Step 2: Insert Noah into the BST.

Compare N in Noah to Ein Emma. N in Noah comes after E

in Emma (itis “greater” in position in the alphabet). Step 5: Insert Ava into the BST.

Put N on the right, because N > E. Compare Ava with Emma. A is alphabetically before E,

@ so Ava moves to the left of Emma.

Step 3: Insert Olivia in the BST.

Step 6: Insert Ethan into the BST.

Compare Ethan with Emma. The first letter is the same, so

compare the second letters. Ethan moves to the right of

Emma, because T > M.

Compare Ethan with Noah. Move Ethan to the left of Noah

because E<N.

Compare Ethan with Liam. Move Ethan to the left of Liam

@ because E <L.

Step 4: Insert Liam into the BST. @ @

Lin Liam comes after E in Emma, L > E, so Liam moves to

the right of Emma. @ @

Lin Liam comes before N in Noah, L <N, so Liam moves to

the left of Noah. @

Compare O in Olivia to E in Emma. O in Olivia comes after

E in Emma (is greater in position in the alphabet), O > E. So

Olivia moves to the right of Emma.

Compare O in Olivia to N in Noah. O in Olivia comes after

N in Noah (is in greater position in the alphabet), O > N, so

Olivia moves to the right of Noah.

571

B4 Abstract data types (ADTs)

Step 7: Insert Sophia into the BST.

Compare Sophia to Emma. S > E, so move Sophia to the

right of Emma.

Compare Sophia to Noah. S > N, so move Sophia to the @ @

right of Noah.

Compare Sohpia to Olivia. S > O, so move Sophia to the

right of Olivia.

Enter each data set into a BST and then sketch the resulting tree.

Dataset1: 35, 26, 28,92, 41, 53,99, 10

Data set 2: Carol, Farah, Ben, Claire, Anya, Brian

Data set 3: Managua, Apia, Bishkek, Muscat, Riga, Accra, Paramaribo

o Data set 4: 1A91, 152E, 21CF, 10F8, 23BC, 1D1D
You learned about hexadecimal in
section A1.2.1. Data set 4 contains numerical values written in hexadecimal. What might you

need to do to place these hexadecimal numbers into a BST? Discuss with a

partner if you wish.

In computational biology, trees—particularly binary trees—are

employed as an ADT to model evolutionary trees and to analyse

genetic sequences. This approach helps in understanding the

evolutionary relationship between different species or strains of viruses.

For instance, a binary tree can represent the hierarchical clustering of

gene sequences, aiding in the identification of evolutionary ancestors

and the prediction of evolutionary paths. This use of trees enables

biologists and researchers to infer species evolution and track the

mutation of viruses over time.

B4.1.5 Construct and apply sets as an ADT
A setis a collection of distinct elements or objects, with no particular order

and no duplicate entries. In computer science, sets are used to efficiently store

distinct elements and perform operations such as union, intersection, difference

and subset checks. In programming, sets are often implemented to quickly test

membership or add and remove elements, ensuring that each element appears

only once within the collection.

For example, a set could hold the email addresses of all subscribersto a

newsletter, ensuring no duplicate addresses are stored.

572

B4.1 Fundamentals of ADTs

In Python, a set is commonly referred to as a set, while a Java set is commonly

referred to as a HashSet.

Example of creating a set in Python

3. # Using the set() constructor

4. my_set = set([1, 2, 3, 4, 5])

5. print(my_set)

6.

7. # Using curly braces

8. my set2 = {1, 2, 3, 4, 5}

9. print(my_set2)

10.

11. # Creating an empty set

12. empty_set = set()

13. print(type(empty_set))

1. # In Python, please do not instantiate a set using
empty curly braces, it will create a dictionary
instead.

2

Each language’s idioms and practices are different, but the basic operations of a

set are similar.

Table 6 Common set operations in Java and Python

Operation | Java Python

add(E e)
. . e add (element)

Addition 2:1;:2;?(9 specified element to the set if it is not already Adds an element to the set.

remove(Object o
Removal (0b3)

Removes the specified element from the set if it is present.

remove (element)

Removes an element from the set. Raises a

KeyError ifthe element is not present.

Membership | contains (Object o)

testing Returns true if the set contains the specified element.

element in set

Evaluates to true if the element is in the set.

size()
Set size .

Returns the number of elements in the set.

len()

Returns the number of elements in the set.

573

574

B4 Abstract data types (ADTs)

Example of union, intersection, difference and subset
checks in Java

19.

20.

25

22,

23.

24.

25,

26.

27.

28.

29.

30.

// Create a new hash set of integers

HashSet <Integer> myHash = new HashSet <Integer>();

myHash.add(1);

myHash.add(2);

myHash.add(3);

myHash.add(4);

myHash.add(5);

HashSet<Integer> myHash2 = new HashSet<Integer>();

. myHash2.add(4);

. myHash2.add(5);

. myHash2.add(6);

. myHash2.add(7);

. myHash2.add(8);

// code for union of the hashsets

. myHash.addAll (myHash2);

. System.out.println("Union of hash set 1 and 2: " +
myHash) ;

// code for intersection of hashsets

myHash.retainAll (myHash2);

System.out.println("Intersection of hash set 1 and
2: " + myHash);

// code to find difference between two hashsets

myHash.removeAll (myHash2) ;

System.out.println("Difference of hash set 1 and 2:
" + myHash);

// code to find if myHash2 is a subset of myHash

boolean subset = myHash.containsAll(myHash2);

System.out.println("myHash2 is a subset of myHash?
" + subset);

B4.1 Fundamentals of ADTs

Example of union, intersection, difference and subset
checks in Python

1. # Example sets

2. set.a= {1, 2, 3, 4, 5}

3. set b={4, 5, 6, 7, 8}

4.

5. # Union: Combine the elements of both sets (no
duplicates)

6. union set = set_a.union(set_b)

7. print("Union of A and B:", union_set)

8. # Expected Output: Union of A and B: {1, 2, 3, 4,
5, 6, 7, 8}

9.

10. # Intersection: Find elements present in both sets

11. intersection_set = set_a.intersection(set_b)

12. print("Intersection of A and B:", intersection_
set)

13. # Expected Output: Intersection of A and B: {4, 5}

14.

15. # Difference: Find elements in set A that are not
in set B

l6. difference_set = set a.difference(set_b)

17. print("Difference of A and B (elements in A but not
in B):", difference_set)

18. # Expected Output: Difference of A and B (elements
in A but not in B): {1, 2, 3}

19.

20. # Subset: Check if set A is a subset of set B

21. is_subset = set a.issubset(set_b)

22. print("Is A a subset of B?", is_subset)

23. # Expected Output: Is A a subset of B? False

24.

25. # Additional example for subset

26. set ¢ = {1, 2, 3}

27. is_subset _c_in a = set_c.issubset(set_a)

28. print("Is C a subset of A?", is subset c_in a)

29. # Expected Output: Is C a subset of A? True

575

B4 Abstract data types (ADTs)

This example illustrates how sets as an ADT can

efficiently manage and manipulate collections of

unique items, such as social connections.

In a social media application, each user has a list of

friends, which can be represented as a set.

This set includes unique identifiers (IDs) for each

friend, ensuring no duplicate friendships.

Uniqueness: A user cannot be friends with the same

person more than once, mirroring a set’s characteristic

where each element is unique. When a new friendship

is formed, the system checks if the friend's ID already

exists in the user’s friends set. If not, it is added.

Efficient membership testing: \WWhen viewing

another user’s profile, the system can quickly check

if this user is in the current user’s set of friends to

appropriately display options such as “Send Message”

or “Add Friend”. This operation is efficient even with

a large number of friends, because of the set’s fast

membership testing.

Adding and removing friends: When a user makes a

new friend or unfriends someone, the system performs

an addition or removal operation on the set of friends.

These operations are straightforward and efficient

with sets.

Intersection for mutual friends: To find mutual

friends of two users, the system can compute the

intersection of their friends’ sets.

This set operation quickly identifies common

elements, highlighting mutual friendships.

Union for suggested friends: To suggest potential

new friends, the system might look at the union of the

friend sets of a user’s friends, excluding those already

in the user’s set, and potentially filtering further based

on other criteria.

B4.1.6 Explain the core principles of ADTs
Hash tables are a fundamental data structure used in computing to store

key-value pairs. They offer efficient retrieval, insertion, and deletion

operations, typically with an average time complexity of O(1).

The underlying mechanics of hash tables

The efficiency and performance of a hash table depend on three main aspects:

the hashing function, collision resolution strategies, and the load factor.

Hashing function

The hashing function is the backbone of a hash table. It takes a key as input and

calculates an integer index that determines where the key—value pair should be

stored in the table. A good hashing function has a few essential characteristics.

Deterministic: The same key always results in the same index.

Uniform distribution: |t spreads keys evenly across the table, minimizing the

likelihood of collisions.

Efficient: It computes the hash value quickly to speed up the access time.

The choice of a hashing function can significantly impact the performance of a

hash table. It should minimize collisions and evenly distribute keys to utilize the

table's storage space effectively.

576

B4.1 Fundamentals of ADTs

Collision resolution strategies

A collision occurs when two keys hash to the same index. Since each slotina

hash table can hold only one entry, the table must have a strategy for resolving

these collisions. Common collision resolution strategies include the following.

Separate chaining: This method stores multiple elements at the same index

using a more complex data structure, such as a linked list or a binary search tree.

Each cell of the hash table becomes a bucket that holds multiple entries, which

are searched sequentially or via the secondary structure’s search algorithm to find

a specific key.

Open addressing: In open addressing, all elements are stored within the

hash table itself, and a collision is resolved by finding another slot for one of the

colliding items. Techniques for open addressing include the following.

* linear probing: Sequentially searches for the next available slot.

* Quadratic probing: Searches for the next slot by adding a quadratic function

of the number of attempts to the original hash.

* Double hashing: Uses a second hashing function to determine the interval

between probes.

Each collision resolution method has its trade-offs regarding performance,

memory usage and implementation complexity.

Load factor

The load factor of a hash table is a measure that indicates how full the table is.

Represented by the character lambda, A, it is defined as the ratio of the number

of stored elements to the total number of slots (buckets) available:

number of entries

" total number of buckets

The load factor is a critical factor affecting the performance of a hash table. A low

load factor means that the table is underutilized, resulting in wasted memory.

Conversely, a high load factor increases the likelihood of collisions, which can

degrade the average access time to O(n) in the worst case (especially with

separate chaining and poorly distributed keys).

To maintain efficient operation, hash tables often resize dynamically. When the load

factor crosses a certain threshold (e.g., 0.7), the hash table’s capacity is increased,

and all existing entries are rehashed according to the new size. This process helps

keep the load factor in check but involves additional computational overhead.

Understanding these underlying mechanics is essential for leveraging hash tables

effectively in software development. By carefully designing the hashing function,

choosing an appropriate collision resolution strategy, and managing the load

factor, developers can ensure that their hash tables perform well across a wide

range of scenarios.

The underlying mechanics of sets

To understand the underlying mechanics of sets, particularly in how they store

and manage data, you need to examine their implementation, operations and

typical use cases.

578

B4 Abstract data types (ADTs)

The implementation of sets can vary, but one common underlying mechanismis

the use of hash tables. This choice leverages the efficiency of hash tables for quick

lookups, insertions and deletions, typically offering average time complexity of

O(1) for these operations. In this implementation, the elements themselves are

treated as keys with no associated values, or alternatively, the values are simply

ignored.

Sets support several key operations, each of which is designed to manage or

query the collection of unique elements efficiently. These operations include the

following.

Insertion: Adds a new element to the set if it is not already present. The operation

first checks if the element exists in the set, which can be done efficiently if the

setisimplemented using a hash table. If the element is not found, itis added to

the collection.

Deletion: Removes an element from the set if it exists. This involves searching for

the element and, if found, removing it from the underlying data structure.

Membership testing: Checks whether a specific element exists in the set. This is

a fundamental operation for sets and is typically very efficient, especially with an

implementation based on hash tables.

Intersection, union, difference: Allow for combining or comparing sets in

various ways. The intersection of two sets contains only the elements that are

present in both sets, the union contains all elements that are in either set, and

the difference contains elements that are in one set but not the other. These

operations can be implemented efficiently, especially when the underlying data

structure supports quick membership testing.

HashMap in Java and dict in Python

Java implementation: HashMap

|ava’s HashMap class from the java.util package offers hash functionality.

set (key, value)

In Java, the HashMap uses the put method to add or update a key-value pair,

forexample, hashMap.put (key, value).

get (key)

The get method functions similarly to Python'’s, returning the value associated with

the specified key, or nul1l if the map contains no mapping for the key.

delete(key)

|ava uses the remove method to delete a key-value pair, for example,

hashMap.remove (key). This method returns the value previously associated

with the key, or nul1l ifthe map contained no mapping for the key.

keys()
The closest equivalent in Java is hashMap . keySet (), which returns a Set view

of the keys contained in the map.

values()

This is similar to the Python method and is achieved with hashMap.values (),

which returns a Collection view of the values contained in the map.

B4.1 Fundamentals of ADTs

items ()

In Java, this is accomplished with hashMap.entrySet (), returning a Set view

of the mappings contained in this map. Each element in this set is a key—value pair

represented by Map .Entry.

clear()

The method works the same as in Python, removing all of the mappings from

this map.

Python Implementation: dict

In Python, the dictionary (dict) is a built-in data structure that implements hash

functionality.

set (key, wvalue)

In Python, setting a key-value pair is achieved through assignment, for example,

dict[key] = wvalue. Ifthe key exists, its value is updated; otherwise, a new

key—value pair is added.

get (key)

This operation is accurately described. Python dictionaries also offer a get

method that returns the value for a given key. If the key is not found, None is

returned, or a specified default value if provided, for example,

dict.get(key, default).

delete(key)

The correct operation in Python to remove a key-value pairisdel dict[key].

Alternatively, the pop method can be used, for example, dict.pop(key),

which also returns the value of the deleted key.

keys(), values(), items()

These methods return view objects in Python that reflect the current state of the

dictionary, meaning if the dictionary changes, the view reflects these changes.

They can be iterated over to retrieve keys, values, or key—value pairs, respectively.

clear()

This method works as described, removing all items from the dictionary.

Imagine a system that automates loan approvals or hiring decisions. Such

a system needs to process large amounts of data quickly and accurately.

Data structures such as BSTs are often employed in these scenarios to ensure

that information can be organized and retrieved efficiently. However, the way

data is organized in a BST—based on comparative values—can also introduce

or amplify biases if the underlying data is not balanced or representative of the

population.

This raises important ethical considerations. While BSTs offer significant

benefits in terms of efficiency, they can also inadvertently reinforce biases.

For instance, if sensitive information is categorized in a way that leads to

disproportionate outcomes for certain groups, the system'’s efficiency comes

at the cost of fairness.

Reflecting on these ethical implications is crucial when designing systems that

manage sensitive or critical information, ensuring that the pursuit of efficiency

does not overshadow the need for equity and justice in data organization.

579

B4 Abstract data types (ADTs)

Software engineering frequently utilizes hash tables as an ADT for

efficient data retrieval, especially in database indexing and caching

mechanisms. A hash table ADT provides a way to store key—value pairs,

allowing for rapid data access through unique keys. This is critical in

databases where quick loockup, insertion and deletion of records are

essential for performance. By using hash tables for indexing, databases

can achieve constant time complexity O(1) for these operations under

ideal conditions, significantly enhancing the speed and scalability of

data-driven applications.

Z Linking questions

1. What role do stacks and queues play in handling CPU interrupts and

polling (A1)?

2. Can ADTs be used to manage data (A2)?

How can ADTs be used to optimize file-processing operations like read

and write (B2)?

4. CanaBST play a role in the quicksort algorithm (B1)?

End-of-topic questions

End-of-topic questions

Topic review
1. Using your knowledge from this topic, B4, answer the guiding

question as fully as possible:

Which ADTs are most appropriate for different situations?

Exam-style questions
2. Define an abstract data type (ADT).

3. Explain the purpose of abstract data types (ADTs) ADTs

in programming.

4. Describe the importance of encapsulation in ADTs.

Distinguish between a queue and a stack in terms of

their operations.

Explain how a linked list differs from an array.

7. Evaluate the use of linked lists in programming.

a. Construct and apply a singly linked list to store a series

of integers.

b. Constructa method to add a new integer to the list.

9. Explain the structures and properties of binary search

trees (BSTs).

10. Evaluate the advantages and disadvantages of using a BST

over a linked list.

11. Sketch a BST after inserting the following elements: 50, 30,

70, 20, 40, 60, 80.

12. Discuss the use of ADIs for managing large data sets.

|6 marks]

[2 marks]

[4 marks]

[3 marks]

[4 marks]

[3 marks]

[4 marks]

[3 marks]

[2 marks]

[4 marks]

[6 marks]

[4 marks]

[4 marks]

581

The internal assessment (IA) is an applied computational thinking process, giving

you the opportunity to apply the skills and tools you have learned during the

DP computer science course. You will spend about 35 hours in class (and about

the same amount of time outside of class) creating a computational solution and

detailing your process as well as the solution itself. Pay special attention to the

application of computational thinking, which should be evident in your report.

The maximum word count for the report is 2,000 words, but this does not

include charts, diagrams, code samples, tables, references, bibliography

or headers.

The A is assessed against five criteria. For standard-level students, the |A s

weighted as 30% of your final mark. For higher-level students, it is 20%.

The criteria are the same for both standard level and higher level.

Criterion Number of marks

A Problem specification 4

B Planning 4

C System overview 6

D Development 12

E Evaluation 4

Total 30

A Table1 Assessment criteria for the |A

Criteria A, B, C and E are process-oriented. For example, describe how

you arrived at your solution. Criterion D assesses your understanding of the

concepts involved in the development of the |A. For example, showcase your

programming skills and explain your programming decisions.

Choosing a suitable problem
You have a free choice of topic, but the choice you make could affect your marks.

In identifying a problem, the student can select to apply to the problemany

topic in computer science that interests them. It does not have to be directly

related to the specified themes in the syllabus.

The problem chosen should require a software solution with sufficient complexity

to be commensurate with the level of the DP computer science course. It

should also require sufficient innovation for the student to demonstrate their

organisational skills, algorithmic thinking and ability to code their algorithms.

Source: Computer science guide, IB. Emphasis is the author's.

Internal assessment (1A): The computational solution

What does “sufficient complexity to be commensurate with the level of the DP

computer science course” mean? The best method to select a topic of sufficient

complexity for your IA is to become curious (an inquirer) about a topic which

really interests you within computer science and then explore it deeply. Itis

important to not focus solely on what a user does but rather how the underlying

system works.

Possible |A topic Description

Data visualization with spreadsheets Collecting a small data set (for example, survey results, school sports statistics) and

using Python or Java to create charts and graphs.

Small business inventory system Creating a CRUD system for a small business to manage inventory (or customers,

orders, sales, and so on).

Automated data gathering via AP Gathering data from an API (perhaps stock prices, weather, country information or

NASA) and displaying results visually and programmatically.

Al-powered chatbot Exploring natural language processing and creating a chatbot that can interact with

users in a meaningful way.

Cryptography and security Investigating different encryption algorithms and developing a secure

communication application.

Simple game development with

procedural generation

Creating a simple game that uses procedural generation for levels or content,

exploring algorithms like Perlin noise or cellular automata.

Big data analytics Analysing large data sets to extract meaningful insights (in biology or business).

Sentiment analysis on social media Building a tool to analyse the sentiment of social media posts, exploring machine

learning models and text analysis.

Internet of Things (loT) for smart

agriculture

Developing an loT-based system to monitor soil moisture, temperature and other

parameters to optimize farming practices.

Digital twins for industrial

applications

Exploring the concept of digital twins and creating a digital replica of a process to

optimize performance and predict maintenance needs.

Adaptive learning platforms Developing an educational platform that adapts to the learning style and pace of

individual students, using machine learning to personalize content.

Virtual assistants for accessibility Building a virtual assistant designed to aid people with disabilities, exploring how a

computer program can enhance accessibility and independence.

Speech recognition and voice

control

Building a system that uses speech recognition to control devices or applications,

exploring the challenges of accurate voice processing.

Network packet sniffer Constructing an application to view incoming and outgoing network packets on a

device using libraries such as libcap.

Building a second brain Building a personal arganization system which tracks everything from homewaork,

contacts and appointments to diet and sleep. This will primarily focus on database

relations.

Medical diagnosis system Building a system which uses machine learning to diagnose medical conditions.

(There is more to this than simply a collection of “if ... then” statements!)

Resource allocation algorithms Building a system which efficiently uses resources (perhaps a lunch serving area, a

limited availability sports court, or a time to meet with a teacher).

Colour analyser Building a tool which uses a camera to analyse nuanced colours and suggest or

overlay complementary colours.

A Table2 Example A topics

Internal assessment (1A): The computational solution

Problem specification (Criterion A)
The problem specification is the foundation for the development of the solution.

Term Definition

Problem The problem scenario is a clear description of the problem,

scenario including its measurable solution requirements. The

description should relate directly to the problem, whether this

is in the world around us, in another field of knowledge, orisa

current issue in computing.

Success These are measurable outcomes derived from the solution

criteria requirements that indicate the successful development of the

product.

Computation | The computational context is the specific area of computing

contexts that you select to use in the solution.

A Table 3 Key terms for problem specification

A student greatly enjoys playing the video game Minecraft. They are

especially curious about how the terrain is procedurally generated.

Every time the student starts a new game the terrain is different, making

for a different challenge each time the game is played.

The student spends some time talking with their teacher and

researching procedural generation. They stumble upcn Perlin noise,

which is a mathematical technique for creating pseudo-random values

used to create textures. The student decides to write an IA about

procedural generation using a custom Perlin noise algorithm.

Problem statement

My IA project will involve creating a custom Perlin noise algorithm to

procedurally generate terrain similar to that in Minecraft. My project

will focus on understanding and implementing Perlin noise to produce

varied and realistic terrain features, such as hills, valleys and plains.

Measurable solution requirements

[will implement a custom Perlin noise algorithm in Python, ensuring

it can generate a 2D terrain map. The algorithm should be capable

of producing distinct terrain features, including hills, valleys and

plains, with smooth transitions between them. The solution must

accept a random seed input, ensuring that different terrain maps

are generated with each run while maintaining reproducibility for

the same seed. The generated terrain must be visualized using a

suitable graphical representation, such as a heatmap or a 3D plot,

to effectively demonstrate the algorithm’s output. The algorithm

should generate the terrain map within a reasonable time frame

(e.g., less than 5 seconds for a 256 x 256 grid).

Success criteria

* Accuracy: The custom Perlin noise algorithm must correctly

generate smooth and continuous pseudo-random terrain that

reflects realistic geological features.

» Variety: Fach generated terrain map should be distinct and

varied, showcasing the ability of Perlin noise to create diverse

landscapes.

» [Efficiency: The algorithm should run efficiently, generating the

terrain map within the specified time frame.

* Reproducibility: The terrain generation process should be

reproducible with the same seed input, ensuring consistent

results for given seeds.

* Visualization quality: The visual representation of the terrain

must be clear and accurately reflect the underlying terrain data.

Computational context

I am exploring the area of procedural generation, focusing on terrain

generation using Perlin noise. Procedural generation is a method

in computer graphics for creating data algorithmically rather than

manually, allowing for vast and diverse worlds to be generated

efficiently. Perlin noise is a gradient noise function, widely used in

procedural texture generation due to its ability to produce natural-

looking textures. By understanding and implementing this technique,

I aim to gain insights into the broader field of procedural content

creation, which has applications in gaming, simulations, and more.

Hints and tips: Problem specification

Internal assessment (I1A): The computational solution

Carefully read the rubric for section A. Compare the 1-2 mark band with the 3-4

mark band. Your goal should be to exceed every descriptor in the highest band.

Marks Level descriptor

0 The response does not reach a standard described by the

descriptors below.

1-2 The response:

* outlines a problem scenario

* states limited success criteria

* outlines the nature of the solution in a computational

context.

3-4 The response:

* describes the problem scenario in terms of its measurable

solution requirements

* states appropriate success criteria

* explains the choice of computational context for the

solution.

A Table 4 Marksand level descriptors for internal assessment section A

Internal assessment (1A): The computational solution

Ensure you confer with your computer science teacher. A key idea here is

choosing any topic within computer science and applying computational

thinking to explore it deeply. Students occasionally forget to pay close attention

to the command terms, which are important guidelines to tell you how deeply

you need to explain an idea.

Planning (Criterion B)
The planning ofthe product must be consistent with the problem specification in

criterion A.

* This criterion assesses how the problem scenario has been decomposed into

component parts.

* The plan should address the requirements of the solution, in terms of the

success criteria, and include a proposed chronclogy for the steps involved in

planning, designing, developing, testing and evaluating the solution.

* Anplancan be presented in different forms, but diagrams such as Gantt and

Agile charts can effectively support the planning process.

* The plan may include any relevant research, such as the use of existing

code libraries.

Term Definition

Decomposition | Breaking down the problem scenario (identified in

criterion A) into smaller, more manageable sub-problems

or components. The decomposition can be effectively

constructed using diagrams.

Reasonable Break the problem down into essential components that

decompasition | support the construction of a plan.

A Table 5 Key terms for planning

1. Understanding Perlin noise and procedural generation

* Research Perlin noise and its mathematical foundations.

* Study examples of procedural terrain generation.

* FExplore the relationship between Perlin noise and realistic

terrain features.

2. Algorithm design

= Design a custom Perlin noise algorithm to generate a

2D array of noise values.

* Implement smooth transitions between different terrain

features (hills, valleys, plains).

* FEnsure the algorithm accepts a random seed for

reproducibility.

3. Implementation in Python

* Wite the custom Perlin noise algorithm in Python.

* Test the algorithm to ensure it generates smooth and

continuous pseudo-random terrain.

4. Visualization

* Choose appropriate visualisation techniques

(e.g., heatmap, 3D plot).

* Implement visualization to display the generated

terrain map.

5. Performance optimization

* Optimize the algorithm to generate terrain within a

reasonable time frame (less than 5 seconds fora

256 x 256 grid).

6. \Validation and testing

* \Validate the accuracy and variety of the generated terrain.

* Test reproducibility by generating terrain with the same

seed multiple times.

* Fvaluate the visual representation to ensure clarity and

accuracy.

Plan addressing success criteria

1. Accuracy

* Develop and test the Perlin noise function to generate

smooth and continuous pseudo-random values.

* Implement gradient and interpolation techniques to

produce realistic terrain features.

* \Validate generated terrain against known geological

features for realism.

2. Variety

* [Ensure the Perlin noise algorithm can generate diverse

terrain types.

* Introduce parameters to control terrain features

(e.g., frequency, amplitude) to enhance variety.

* Test multiple seeds to verify distinct terrain maps.

3. Ffficiency

* Optimize the algorithm for performance (for example,

using efficient data structures and minimizing

computational overhead).

* Benchmark the algorithm’s execution time, aiming for

less than 5 seconds for a 256 X 256 grid.

* Profile the code to identify and address performance

bottlenecks.

4. Reproducibility

* Implement seed-based randomness to ensure

reproducibility.

* Test the algorithm with fixed seeds to confirm consistent

results.

* Document the seed usage and its impact on terrain

generation.

Internal assessment (IA): The computational solution

Internal assessment (1A): The computational solution

5. Visualization quality

Select and implement effective visualization techniques

(e.g., matplotlib for heatmaps, plotly for 3D plots).

Ensure the visual representation accurately reflects terrain

data (e.g., colour gradients for elevation).

Validate the visualization with sample data to confirm

clarity and accuracy.

Detailed plan

1. Research and conceptualization

Week 1: Study Perlin noise theory and procedural

generation techniques.

Week 2: Explore Python libraries for noise generation and

visualization (e.g., numpy, matplotlib, plotly).

2. Algorithm design and implementation

Week 3: Design the custom Perlin noise algorithm.

Week 4: Implement the algorithm in Python, ensuring it

generates a 2D noise map.

Week 5: Develop smooth transitions between terrain

features using gradient and interpolation techniques.

3. Visudlisation development

Week 6: Research visualization methods for 2D and 3D

terrain maps.

Week 7: Implement heatmap visualization using matplotlib.

Week 8: Implement 3D plot visualization using plotly.

4. Optimization and testing

Week 9: Optimize the algorithm for performance, targeting

less than 5 seconds for a 256 X 256 grid.

Week 10: Conduct performance benchmarks and profile

the code.

Week 11: Test the algorithm for accuracy, variety and

reproducibility with different seeds.

5. Final validation and reporting

Week 12: Validate the visual representation of the terrain.

Week 13: Compile and analyse results, ensuring all success

criteria are met.

Week 14: Write the IA report, documenting the design,

implementation, testing and findings.

T
a
s
k
s

Research visualization methods for 2D and 3D terrain maps A

Explore Python libraries for noise generation and visualization -

Internal assessment (I1A): The computational solution

Gantt chart for custom perlin noise algorithm project

Write the |A report

Compile and analyze results

Validate the visual representation of the terrain 4

Test the algorithm for accuracy, variety and reproducibility

Conduct performance benchmarks and profile the code 4

Optimize the algorithm for performance

Implement 3D plot visualization using plotly

Implement heatmap visualization using matplotlib

Develop smooth transitions between terrain features -

Implement the algorithm in Python A

Design the custom Perlin noise algorithm

5 & S A O & o
P & RS~
S R S A S DR SRS SU SIS S S, S

Dates

A Figure1 Gantt chart for custom Perlin noise algorithm project

Hints and tips: Planning

Here is the rubric for section B. As with section A, you should compare mark

bands so you understand what is required.

Marks | Level descriptor

0 The response does not reach a standard described by the descriptors below.

1-2 The response:

* constructs a partial decomposition of the problem scenario

e constructs a plan that addresses some of the success criteria of

the solution.

3-4 The response:

* constructs a reasonable decomposition of the problem scenario

* constructs a plan that addresses the success criteria of the solution.

A Table 6 Marks and level descriptors for internal assessment section B

The success criteria you developed in section A are now driving your IA. Make

sure that each of the success criteria is reasonably decomposed and included in

your plan. Your plan will help you manage your time and successfully complete

your project.

Internal assessment (1A): The computational solution

System overview (Criterion C)
The system overview of the product must be consistent with the problem

specification in criterion A and the planning in criterion B.

* The system overview should include a system model with the key

components, their relationships, the rules governing their interaction, and

the algorithms required by these components and the user interface.

* The system overview should be clear enough to enable a third party to

recreate the product.

* The system model will provide the information for a viable testing strategy.

The recommended word count for this criterion is 300 words.

Term Definition

System The model consists of diagrams that show the components of the system and how they are connected. The

model system model will include the design of the user interface. A complete system model does not include the

algorithms for each of the components.

Algorithms | These can be presented in different forms, including natural language, flowcharts or pseudocode. They

should address the individual components of the system model.

Testing This is a systematic approach for evaluating whether the computational solution works as intended. The

strategy testing strategy should ensure that code functions correctly and handles unexpected or incorrect inputs.

This can be represented effectively in a table with proposed test data and expected outcomes.

A Table 7 Keyterms for system overview

Input module

|
Perlin noise generator

!
Terrain feature generator

|
Visualization module

l
Performance optimization module

!
Testing and validation module

A Figure 2 An overview of major parts of the system

Internal assessment (IA): The computational solution

Random Range: Validate
> 0t0 9999 —> | — Seed valid

Type:

Terrain plains, Generate
—> N e i — Proceed

parameters| |mountains, terrain

forest

Range:

Gridsize > 1x1to

100 X 100

i) Set grid & Grid

boundaries initialized

A Figure 3 An overview of the input module process

A Figure 4 An overview of Perlin noise generation process

A Figure 5 An overview of the terrain generation process

Natural language of the Perlin noise generation algorithm

1. Define the “fade” function. 2. Define the “lerp” function.

* Input: Avalue “t". * Input: Avalue “t” and two values “a” and "b".

* Process: Calculate and return “t *t *t * * Process: Calculate and return the linear

(t*({t*6-15)+10)". interpolation of “a” and “b” based on “t”,

whichis “‘a+t*(b-a)". .

Internal assessment (1A): The computational solution

3. Define the “grad” function.

Input: A “hash” value and coordinates “x”
and ",

Process:

1. Calculate “h” as “hash” AND 3.

o
2. Determine “u” as “x” if the least

significant bit of “h” is O, otherwise “—x”.

3. Determine “v" as “y" if the second least

significant bit of “h” is O, otherwise “—y”.

&
4. Returnthe sum of “u” and “v".

4. Define the “perlin_noise” function.

Input: Coordinates “x” and “y”, and an

optional “seed” value (default is O).

Process:

1. Setthe random seed to the given “seed”.

2. Create a permutation array containing

integers from O to 255.

3. Shuffle the permutation array.

4. Create an extended permutation array

p"“ by concatenating the permutation

array with itself.

5. Calculate “xi” as the integer part of “x”

AND 255.

o
6. Calculate “yi” as the integer part of “y

AND 255.

7. Calculate “xf” as the fractional part of “x”.

"o
8. Calculate “yf” as the fractional part of “y".

9. Compute “u” by applying the “fade”

function to “xf".

10. Compute “v” by applying the “fade”

function to “yf".

11. Calculate gradient values.

- “n00” using the “grad” function

with hash value “plp[xi] + yi]” and

coordinates “xf” and “yf".

— “n0O1” using the “grad” function with

hash value “plp[xi] + yi + 1]” and

coordinates “xf" and “yf —1".

— “nl0” using the “grad” function with

hash value “plp[xi + 1] + yil” and
coordinates “xf— 1" and “yf".

- “nl1” using the “grad” function with

hash value “p[p[xi + 1] +yi + 1]" and

coordinates “xf— 1" and “yf —1".

12. Perform linear interpolation.

a
- “x1” as the result of “lerp” function

with inputs “u”, “n00”, and “n10".

- “x2" asthe result of “lerp” function

with inputs “u”, “n01”, and “n11".

13. Return the result of the “lerp” function
uowow

with inputs “v”, “x1”, and “x2".

Natural language for terrain generation algorithm

1. Define the “generate_terrain” function.

e [Input: An optional “seed” value (default is 0),

a “size” value (default is 256), and a “scale”

value (default is 100.0).

Generate linear space.

* Create alinearly spaced array “lin” from O to

5, with a length of “size” and excluding the

endpoint.

Create a meshgrid.

* Create a meshgrid “x” and “y” using the

linear space array “lin”, which will provide a

grid of coordinates.

Generate Perlin noise.

* Callthe “perlin_noise” function using “x” and

y" coordinates scaled by the “scale” value,

and with the given “seed”.

* Store the resulting noise values in the variable

“noise”.

Normalize the noise values.

* Normalize the “noise” values to a range

between Oand 1.

e Calculate “terrain” as the normalised “noise”,

where each value is adjusted by subtracting

the minimum noise value and dividing by the

range of noise values (maximum noise value

minus minimum noise value).

Return the terrain.

* Qutput the “terrain” array.

Natural language for the visualisation algorithm

1. Import libraries.

* Importthe “pyplot” module from the

“matplotlib” library.

* |mport "Axes3D" from the “mpl_toolkits.

mplot3d” module.

2. Define the “plot_heatmap” function.

* |nput: A “terrain” array.

* Process:

1. Display the “terrain” array as an image

using the “terrain” colour map.

2. Add acolour bar to the side of the image

for reference.

3. Setthe title of the plot to “Terrain

Heatmap”.

4. Display the plot.

3. Define the “plot_3d” function.

* Input: A “terrain” array.

* Process:

1. Create a new figure.

2. Add a 3D subplot to the figure.

3. Generate a meshgrid “x” and “y" using the

range of the “terrain” array dimensions.

4. Plotthe 3D surface using the “terrain”

array with the “terrain” colour map.

5. Setthetitle of the plot to “3D Terrain Map”.

6. Display the plot.

Internal assessment (I1A): The computational solution

Testing strategy

2.

4.

5.

Accuracy testing

Verify that the generated terrain maps

accurately reflect realistic geological

features.

Compare generated terrain with known

samples to ensure smooth and continuous

terrain.

Variety testing

Generate multiple terrain maps using

different seeds.

Ensure each map is distinct and showcases

diverse landscapes.

Performance testing

Benchmark the algorithm’s execution time

to ensure it meets the less than 5 seconds

requirement for a 256 x 256 grid.

Profile the code to identify and resolve any

performance bottlenecks.

Reproducibility testing

Use fixed seeds to generate terrain maps.

Verify that the maps are identical for the same

seeds, ensuring reproducibility.

Visualisation testing

Validate the visual representation for clarity

and accuracy.

Ensure that the heatmap and 3D plot

accurately reflect the underlying terrain data.

Internal assessment (1A): The computational solution

Hints and tips: System overview

Here is the rubric for section C. As with the previous sections, you should

compare mark bands so you understand what is required.

Marks Level descriptor

The response does not reach a standard described by the descriptors

below.

The response:

* outlines a limited system model

* identifies algorithms for the components of the system model

* identifies a testing strategy for at least one success criterion.

3-4 The response:

* constructs a system model that is not complete

* constructs algorithms for the components of the system model

that lead to partial functionality of the product

* outlines a testing strategy that aligns with at least three success

criteria.

5-6 The response:

* constructs a complete system model

* constructs algorithms for the components of the system model

that enable the product to perform

* describes a testing strategy that aligns with the success criteria.

A Table 8 Marks and level descriptors for internal assessment section C

Start by constructing a flowchart of a broad overview of your system. For each

major sub-part of your system, you should include a flowchart diagramming

how it works. A relational database will need an ERD diagram. If you use OOP,

please include UML diagrams. A great way to test your diagrams for clarity is to

ask a friend to explain how your program works (only using diagrams). Listen very

carefully! If your friend does not understand something, it could mean part of

your flowchart should be clarified.

Your algorithms can be pseudocode or natural language. Again, for each major

subsystem you should have algorithms. Finally, ensure you have a test for each

success criteria. Pay careful attention to the command term. There is a difference

between “outline a testing strategy” and “describe a testing strategy”.

Internal assessment (I1A): The computational solution

Development (Criterion D)
The development of the product must be consistent with the problem

specification in criterion A, the planning in criterion B and the system overview

developed in criterion C.

This section includes a video, which is used to showcase the functionality

of your program and of the product. The video should also show examples

of the testing of the product. The deployment of the testing strategy and its

effectiveness must be described in the documentation, with examples of the

testing seen in the video.

The development of the solution must justify the structure of the product,

state why it is appropriate, and demonstrate the techniques used to develop

the product based on the algorithms constructed in criterion C. These

techniques may include loops, data structures, existing libraries and the

integration of software tools.

The testing strategy must include testing for correctness, reliability and

efficiency. The testing must be described and justified in the documentation

with supporting examples seen in the video.

Terms Definition

Implementation

and coding of the

algorithms

code submitted as an appendix.

Techniques in the criteria refer to the process of programming algorithms using code. The

documentation must highlight key elements of code that are important for the efficient functioning of

the algorithms. Any code presented in the solution must include relevant comments, be consistent

and be readable. Code excerpts included in the documentation must be referenced to the full source

A Table9 Keyterms for development

In this project, | aimed to create a custom Perlin noise

algorithm to procedurally generate terrain similar to that

in Minecraft. The development process involved several

key steps.

1. Algorithm implementation

* Perlin noise generation: The core of the

project was the implementation of a custom

Perlin noise algorithm. This was achieved by

defining functions for fading (“fade”), linear

interpolation (“lerp”), and gradient calculation

(“grad”). The “perlin_noise” function used

these helper functions to generate a smooth

and continuous pseudo-random terrain.

* Terrain generation: Using the Perlin noise

algorithm, | generated a 2D array of noise

values. These values were then normalised to

produce varied terrain features such as hills,

valleys and plains. The “generate_terrain”

function accepted parameters for seed,

size and scale to customise the terrain

generation process.

2. Visualization

Heatmap: The “plot_heatmap” function

was implemented to visualize the terrain as

a heatmap using “matplotlib”. This provided

an intuitive way to see the variations in terrain

elevation.

3D Plot: To offer a more detailed view,

a "plot_3d" function was created that

rendered the terrain in 3D using “mpl_toolkits.

mplot3d”. This visualization highlighted the

3D structure of the generated terrain.

Internal assessment (1A): The computational solution

Evaluation of choices

1. Algorithm choice

Perlin noise: Perlin noise was chosen due to

its ability to create smooth, continuous and

natural-looking textures. It is a widely used

technique in procedural content generation,

particularly in games and simulations.

However, one drawback is that Perlin noise

can be computationally intensive for large

grids, which might affect performance on less

powerful systems.

Python and NumPy: Python, along with

NumPy, was selected for its simplicity and

powerful numerical processing capabilities.

These choices allowed for efficient handling

of large arrays and mathematical operations.

A limitation of this choice is that Python, being

an interpreted language, might not be as fast

as compiled languages like C++ for extremely

large data sets or real-time applications.

2. Implementation details

NumPy operations: Utilising NumPy for array

operations and random number generation

ensured that the algorithm was both efficient

and scalable. The use of element-wise

operations (“np.where”) in the gradient

function was critical for handling arrays

correctly. A potential drawback is that NumPy

operations, while efficient, can sometimes

lead to increased memory usage, which might

be a concern for very large terrain maps.

Parameterization: Allowing parameters

such as seed, size and scale provides flexibility

and control over the terrain generation

process, enabling the creation of diverse and

varied landscapes. However, the complexity

of managing multiple parameters can

increase, requiring careful tuning to achieve

the desired results.

3. Visualization Tools

Matplotlib and MPL Toolkit: These libraries

were chosen for their robust visualization

capabilities. Matplotlib’s “imshow” and MPL

Toolkit's “plot_surface” functions were ideal

for creating clear and informative heatmaps

and 3D plots, respectively. A limitation is that

while these libraries are powerful, they may

not be the most performant for real-time or

interactive visualizations compared to other

tools like “Bokeh” or “Plotly”. Additionally,

generating high-resolution 3D plots can be

resource-intensive, potentially leading to

slower performance on older hardware.

Testing strategy justification

The testing strategy was designed to align with

the success criteria of accuracy, variety, efficiency,

reproducibility and visualization quality.

Accuracy testing

Visual inspection: By generating multiple

terrain maps and visually inspecting them, |

ensured that the terrain features appeared

smooth and realistic.

Comparison with known features: The

generated terrain was validated against

known geological features to confirm

its realism.

Variety testing

Multiple seeds: By testing the algorithm with

different seeds, | verified that each terrain

map was distinct and varied. This showcased

the algorithm’s ability to produce diverse

landscapes.

Performance testing

Execution time: The algorithm’s execution

time was measured to ensure it met the target

of generating a 256 X 256 terrain grid in less

than 5 seconds. Code profiling helped identify

and address performance bottlenecks.

Reproducibility testing

Fixed seeds: Using fixed seeds, | repeatedly

generated terrain maps to confirm that the

same seed produced identical results. This

guaranteed the reproducibility of the terrain

generation process.

Visualization testing

Clarity and accuracy: The heatmap and 3D

plot visualizations were validated to ensure

they accurately represented the underlying

terrain data. Sample data was used to confirm

the visual clarity and effectiveness of the plots.

The chosen techniques, tools and testing strategies

collectively ensured that the custom Perlin noise

algorithm produced accurate, varied and visually

appealing terrain maps efficiently and reproducibly.

Internal assessment (I1A): The computational solution

Hints and tips: Development

Here is the rubric for section D. As with the previous sections, you should

compare mark bands so you understand what is required.

Marks | Level descriptor

0 The response does not reach a standard described by the descriptors below.

1-3 The response:

constructs a product with very limited functionality

constructs a product using no appropriate techniques to implement the algorithms

states the choices made to implement the algorithm

states the testing strategy used.

4-6 The response:

constructs a product that has limited functionality

constructs a product using at least one appropriate technique to implement the algorithms

outlines the choices made to implement the algorithm

states the effectiveness of the testing strategy.

7-9 The response:

constructs a product that has partial functionality

constructs a product that uses some appropriate technigues to implement the algorithms

explains the choices made to implement the algorithm

describes the effectiveness of the testing strategy.

10-12 | The response:

constructs a fully functional product

constructs a product that uses appropriate techniques to implement the algorithms

evaluates the choices made to implement the algorithm

justifies the effectiveness of the testing strategy.

A Table 10 Marks and level descriptors for internal assessment section D

In this section, you are demonstrating your product, evaluating the technical

decisions you made, and evaluating the testing strategy.

In the video, you should show a success criterion, and then show that success

criterion working in your program. Then, go to another success criterion and do

the same thing. Your video should also include examples of testing. You do not

need to describe the testing in the video.

In this section, make sure you discuss the advantages and disadvantages of each

algorithm you used. Considering all the possible advantages and disadvantages,

discuss why you made specific technical choices (for example, why you used a

relational database instead of a flat file or NoSQL database).

Remember, you are justifying the effectiveness of the testing. Prove that the test is

testing what you say it is testing!

Internal assessment (1A): The computational solution

Evaluation (Criterion E)
The evaluation of the product must be consistent with the problem specification

and success criteria in criterion A.

1. Accuracy

Perlin noise function: The Perlin noise

function was successfully developed and

tested to generate smooth and continuous

pseudo-random values. Gradient and

interpolation techniques were effectively

implemented to produce realistic terrain

features.

Validation: The generated terrain was

validated against known geological features,

ensuring realism. This criterion was fully met

as the terrain features such as hills, valleys

and plains appeared natural and continuous.

2. Variety

Diverse terrain types: The algorithm

successfully generated diverse terrain types.

Parameters such as frequency and amplitude

were introduced and effectively controlled to

enhance variety.

Multiple seeds: Testing with multiple seeds

verified that distinct and varied terrain maps

were produced each time. This criterion was

fully met, demonstrating the algorithm’s

capability to create diverse landscapes.

3. Efficiency

Performance optimization: The algorithm

was optimized for performance by using

efficient data structures and minimizing

computational overhead. However, while the

execution time was generally under 5 seconds

fora 256 x 256 grid, performance varied

depending on the hardware, indicating room

for further optimization.

Benchmarking and profiling: Code

profiling helped identify and address

performance bottlenecks. This criterion was

mostly met, but additional fine-tuning could

further improve efficiency.

4. Reproducibility

Seed-based randomness: Seed-based

randomness was implemented to ensure

reproducibility. Fixed seeds consistently

produced identical results, confirming the

reproducibility of the terrain generation

process.

Documentation: The usage and impact

of seeds on terrain generation were well

documented. This criterion was fully met,

ensuring that the terrain can be reliably

reproduced with the same seed.

5. Visualization quality

Visualization techniques: Effective

visualization techniques were implemented

using “matplotlib” for heatmaps and “plotly”

for 3D plots. These tools provided clear and

informative visual representations of the

terrain.

Validation: The visual representations were

validated with sample data to confirm clarity

and accuracy. This criterion was fully met,

as the visualizations accurately reflected the

underlying terrain data with appropriate

colour gradients and elevation details.

Justification for improvements

1. Efficiency enhancements

Further optimization: Although the

algorithm was generally efficient, further

optimization could improve performance,

particularly on lower-end hardware. Exploring

parallel processing or more advanced

optimization techniques could reduce

execution time.

Alternative libraries: Investigating

alternative libraries or tools that offer better

performance for large data sets or real-time

applications could enhance overall efficiency.

2. Advanced visualization

* Interactive visualizations: While the current

visualizations are effective, incorporating

more interactive elements using libraries like

“Bokeh” or advanced features of “Plotly”

could enhance user experience.

* High-resolution support: Improving

support for high-resolution 3D plots

can ensure smoother performance and

better visualization quality, especially on

higher-end systems.

Hints and tips: Evaluation

Here is the rubric for section E. As with all the previous sections, you should

compare mark bands so you understand what is required.

Internal assessment (I1A): The computational solution

3. Userinterface improvements

Enhanced Ul: Developing a more user-

friendly interface for controlling parameters

such as seed, frequency and amplitude could

make the tool more accessible. This could

include sliders, input fields and real-time

updates.

Additional features: Adding features

such as saving and loading configurations,

exporting terrain data and providing detailed

documentation or tutorials could improve the

usability and appeal of the product.

* evaluates the extent to which the success criteria were met

¢ justifies improvements to the product.

Marks | Level descriptor

0 The response does not reach a standard described by the descriptors

below.

1-2 The response:

* states the extent to which the success criteria were met

* describes improvements to the product.

3-4 The response:

A Table11 Marks and level descriptors for internal assessment section E

Ensure you evaluate every single success criteria. Remember, “evaluate” refers

to weighing the advantages and disadvantages and then arriving at a conclusion.

Improvements should be justified—explain why an improvement would make the

product better.

Format of the syllabus
The syllabus format (Figure 1) provides a lot of information that can help you

when studying.

* The guiding question frames the topic and helps you to understand the

inquiry you should complete when studying the topic.

* FEach topicis divided into subtopics. These tell you what you will learn about

in each unit.

* Each subtopicis split into learning statements. These tell you the specifics

of the computer science course. The bullet points below each learning

statement identify what you should know and be able to do after studying the

work covered by the leaming statement.

* Linking questions show you the related content across the computer

science course, as well as links to theory of knowledge (TOK).

This course guide follows a similar structure as well as providing you with worked

examples, the content in the real world and approaches to learning skills.

The number of hours identified on the syllabus indicates to your teacher how

long they should spend in class teaching the topic. This is not an indication of

how long you should spend on the topic. You may need to put in significant time

and effort to ensure you know and understand the many different topics in the

course. You need to be able to understand all aspects of the syllabus included in

the level you are taking.

Much of the information you study is linked in some way. For example, knowing

how data warehouses use tools to extract information can help support your

understanding of machine learning.

External assessment outline

At standard level, 70% of your grade will come from external assessment.

At higher level, this increases to 80%. This is a significant percentage of your

final grade. Therefore, it is essential for you to be fully prepared.

For both standard level and higher level, there are two papers. These will

be completed over two days: paper 1 on day one and paper 2 on the next

examination day.

External assessment: Paper 1 and Paper 2

—— B3 Object-oriented programming (OOP)

Standard level: 7 teaching hours Higher level: 23 teaching hours.

Guiding question

Is object-oriented programming (OOP) an

appropriate paradigm for solving complex

B3.1.1 Evaluate the fundamentals of OOP.

* Model real-world entities using OOP concepts:

classes, objects, inheritance, encapsulation,

polymorphism

B3.2 Fundamentals of OOP for multiple classes

B3.2.5 Explain commonly used design patternsin OOP. (HLonly) —| thisis a higher

* The key design patterns such as singleton, factory and observer | level only topic

Recommended

number of

teaching hours

Guiding question—after studying

this unit, you should be able

to answer this in depth
v

Learning statement—what\

you will learn through

studying this unit)

Clarifications— * The advantages and disadvantages of using OOP in various programming scenarios
what you

should know B3.1.2 Construct a design of classes, their methods and behaviour.

and be able * Classes and their methods, based on application requirements
to do after
studying * The use of unified modelling language (UML) class diagrams to represent class

the learning relationships, attributes and methods, to aid in effective software design and planning

statement

HL indicates

* The application of design patterns in solving recurring

programming challenges

Linking questions

In what ways can OOP be applied to database development (A3)?

Is OOP necessary for all programming, or only in modelling complex situations (B2)?

How can design patterns in OOP facilitate the architecture of scalable and maintainable machine

learning models (A4)?

How can the principles of encapsulation and information hiding be applied to secure network

communication (A3)?

A Figure 1 Part of the unit plan for topic B3 Object-oriented programming (OOP), showing

all the features within the guide

The external examinations test three assessment objectives (AOs).

¢ AOI: Demonstrate knowledge and understanding.

« AO2: Apply and use knowledge.

e AQO3: Construct, synthesize, analyse and evaluate.

For each of the assessment objectives, you may be asked to respond to a range

of short and extended response questions. You may also be asked to outline a

solution to an appropriate problem. Although the questions may look similar,

the command term used in the question can help you identify the level of

response required.

External assessment: Paper 1 and Paper 2

Term AO | Definition Things to include in your response

Calculate |2 Obtain a numerical answer You need to show all stages of you working out. For example,

showing the relevant stages in the | if you were asked to calculate the hexadecimal representation

working. of a binary number, you need to show the answer and the

intermediate stages.

Compare |3 Give an account of the similarities | If you were asked to compare clustering to classification when

between two (or more) items or analysing data in a data warehouse, you might choose three

situations, referring to both (all) of | features and compare both techniques against these features for

them throughout. the given scenario.

Construct |3 Display information in a If you see a construct question in computer science, you will

diagrammatic or logical form. either have to draw a diagram you have studied or answer using

the coding language you have studied.

Deduce 3 Reach a conclusion from the You must provide an answer and justify that answer using the

information given. information that has been presented to you.

This format may be useful here.

Point: what you have decided

Evidence: what led you to this decision

Explain: why you made this decision.

Define 1 Give the precise meaning of Give a glossary style definition for the word you have been asked

aword, phrase, concept or to define.

physical quantity. Example

Recursion: when an algorithm calls itself with updated

parameters until the base case is met.

Describe 2 Give a detailed account. These are “tell me what you know” style questions. For example,

if you were asked to describe reinforcement learning, you might

give a definition of reinforcement learning with one or two

examples of what it could be used for.

Discuss 3 Offer a considered and balanced | These ask you to make a balanced argument. For example,

review that includes a range of if you were asked to discuss why distributed databases may

arguments, factors or hypotheses. | be an appropriate solution in this scenario, you would offer

Opinions or conclusions an advantage of a distributed database while acknowledging

should be presented clearly a possible disadvantage before stating why in this situation it

and supported by appropriate would still be best.

evidence.

Distinguish | 2 Make clear the differences You must make the difference between the ideas very clear.

between two or more concepts For example, if you were asked to distinguish between static

of items. and dynamic data structures, you would identify that static data

structures cannot change size at runtime while dynamic data

structures can.

Estimate 2 Obtain an approximate value. Given the presented data, you may be asked to estimate a value

and state why you researched that value.

Evaluate 3 Make an appraisal by weighing Within an evaluate question you are expected to come to a

up the strengths and limitations. conclusion. Therefore, you would offer one or two advantages

for an idea, one or two disadvantages, and then state which you

would choose in the given situation and why.

External assessment: Paper 1 and Paper 2

Term AO | Definition Things to include in your response

Explain 3 Give a detailed account including | When answering an explain question, it is important you

reasons or causes. emphasize the why. For example, if the question asks you to

explain why a linked list would be useful in this situation, explain

what a linked list is, explain the benefits of using a linked a list,

and then explain why you need these benefits in this situation.

|dentify 2 Provide an answer from a number | You need to choose an answer from a list of a possible answers

of possibilities. and, whenever possible, give a brief outline for your choice.

Justify 3 Give valid reasons or evidence to | When asked to justify, you must provide reasons for your

support an answer or conclusion. | response. For example, if you were asked to justify which data

mining technique you would use in a specific situation, you have

to say which technigue you would choose and then provide

reasons for this linked to the scenario.

Label 1 Add labels to a diagram. You will be provided with a diagram and you must label the parts

of the diagram correctly.

List 1 Give a sequence of briefanswers | If you are asked to list, then you only write the stages or items.

with no explanation. You do not need to explain your thinking. For example, you may

be asked to list the stages in a binary search. You do not need to

justify your response, just list the stages in order.

Outline 2 Give a brief account or summary. | When asked to outline, you do not need to provide reasons.

An example may be to outline the structure of an artificial neural

network (ANN). You will not have to provide reasoning.

You would only need to give a brief outline of how the neurons

are organized and why they are organized this way.

Sketch 3 Represent by means of a diagram | This requires you to draw the item you have been asked to,

or graph (labelled as appropriate). | showing its shape. An example might be sketching the resulting

The sketch should give a general | binary tree, in which case you cannot just write the values—you

idea of the required shape or also have to show them in a tree-like structure.

relationship, and should include

relevant features.

State 1 Give a specific name, value When responding to a state question you only need to write the

or other brief answer without word or sentence. For example, state the data type required to

explanation or calculation. store a person’s age.

A sufficient answer would be: integer.

Suggest 3 Propose a solution, hypothesis or | Propose a solution to a problem with an explanation of the

other possible answer. reasons behind your choice.

To what 3 Consider the merits or otherwise | Consider the positives and negatives of what you have been

extent of an argument or concept. asked. Describe the positives and describe the negatives before

Opinions and conclusions making a conclusion explaining what you think.

should be presented clearly

and supported with appropriate

evidence and sound argument.

Trace 2 Follow and record the actions of | Write down the variables in the algorithm and the decisions

an algorithm. being made. Write down the values of the variables and the

decisions being made at each stage of the algorithm showing

clearly the result or output.

A Table1 Command terms used in computer science exams

External assessment: Paper 1 and Paper 2

Outline of assessment

Standard level Higher level

Paper 1: 1 hour 15 minutes Paper 1: 2 hours

Weighting: 35% Weighting: 40%

Marks available: 50 Marks available: 80

Paper 2: 1 hour 15 minutes Paper 2: 2 hours

Weighting: 35% Weighting: 40%

Marks available: 50 Marks available: 80

Examination explanations
It is essential that you check when and where your examination occurs. It is

a good idea to arrive early so you have time to prepare yourself for the exam.

Entering the exam room in a calm frame of mind always helps you to do your best.

Paper 1—Theme A: Concepts of computer science

The two sections of paper 1 assess the content you have learned in theme A

and the material within the case study. All students complete the standard-level

material. There is additional higher-level material for students doing the higher-

level course.

Paper 1 Section A

Section A of paper 1 covers topics from theme A, concepts of computer science,

from the following units:

* Al Computer fundamentals

* A2 Networks

* A3 Databases

* A4 Machine learning

Each question in section A will focus on content from one unit (sometimes linking

to another unit). The questions will be presented in the following format.

* First, a scenario: a short introduction to a context in which the question paper

is being asked.

* There will then follow around two to five questions based on the scenario.

For example:

o Question 1: a short question related to the scenario

© Question 2: a slightly harder question related to the scenario

© Question 3: a hard question related to the scenario.

External assessment: Paper 1 and Paper 2

Example question

4 A school stores information about students within a database.

The parent/guardian evening view, MEETING, is an extract showing the

different appointments between students, parents/guardians and teachers.

The time represents the time of the meeting.

Student ID | Student Name | Parent/Guardian | Teacher ID Teacher Time Subject

Name Name

3948 Colin Stephan | Ray & Barbara 48 Dheepa 10:00 Maths

Marta 10:15 Spanish

4944 Tessa Allingham | Melanie 34 Dheepa 10:15 Maths

Michael 10:30 German

3399 Lucy Simons Rayissa 23 Ole 10:00 Music

(a) Constructa SQL SELECT query to list the name of students and

(b)

(c)

(d)

parents/guardians who have appointments to meet with

maths teachers.

The database view, MEETING, can be represented using the following notation:

MEETING(Student ID, StudentName, Parent/GuardianName, TeacherlD,

TeacherName, Time, Subject)

Construct the database in third normal form (3NF) for the three

entities in the MEETING view extract.

The school has multiple people accessing the system at the same time.

Atomicity needs to be applied to the database to ensure no errors occur.

Describe how atomicity manages transactions within the database.

The school stores data regarding students’ grades and medical issues on

the database.

Outline one ethical issue regarding this data within the database.

Section A of paper 1 aims to assess your knowledge and understanding as well

as your ability to apply the work you have studied in theme A. There are 38 marks

available on the standard-level paper and 56 marks available on the higher-level

paper.

Remember the following.

All questions are compulsory.

There will be questions testing AOT, AO2 and AO3.

When working through the questions, take your time, read the question

carefully, and look for clues in the question to help you identify what you

need to do. If you rush, you may misinterpret the question.

Consider using of a highlighter to identify key terms and phrases. For example:

State . reason _ is carried out before- aCNN [1]

Make sure you answer the question in a manner expected by the command

term. A description of these can be found in Table 1.

(3]

(3]

(3]

External assessment: Paper 1 and Paper 2

* [fyou find a question that you are unsure how to answer, make a note on the

page and move on to the next question. You can come back to this question

if you have time at the end of the exam.

* Take time before the end of the exam to review your answers. Fill in any gaps.

There is no negative marking, so you lose nothing from an educated guess!

Paper 1 Section B—Case study

Section B of paper 1 is based on a previously encountered case study. The case

study is a scenario that allows you to study current developments, emergent

technologies, and ethical issues in computer science, and you will be given class

time to do this. Your teacher may guide the class through the investigation or you

may complete the investigation yourself. Your teacher will receive the case study

in the June before your exam (for both May and November candidates).

The case study allows you to investigate concepts you have learned throughout the

computer science course in a real-world context. Higher-level students will study

four challenges in detail and standard-level students will study two challenges.

By the end of the case study investigation, you should be able to:

* show an understanding of how the systems in the case study work

* show an understanding of computational thinking fundamental to the

systems in the case study

* apply concepts from the course syllabus in the context of the case study

* explain how scenarios in the case study may be related to other scenarios

¢ discuss the impacts and ethical issues relevant to the case study

* evaluate, formulate and justify strategies based on the information from

the case study itself, your own research, and new stimulus provided in the

examination paper.

You will be given a clean copy of the case study in the exam. The case study

(section B of the exam) is worth 12 marks at standard level and 24 marks at

higher level.

At standard level, you will be expected to answer around three case study

questions. At higher level, you will be expected to answer four or five shorter

questions and one longer question.

Examples of possible questions about the material in the case study.

Outline one other potential consequence of ...

Outline two ways that a X improves the performance of ...

To what extent do the benefits of X outweigh the risks of Y ...

Describe two advantages of ...

Describe two strategies that could be used to ...

For the case study section of your exam, you might find it helpful to:

* highlight key terms that will help you to remember what information to

include in your answer.

* plan out your answer to longer questions before starting your response.

Paper 2—Theme B: Computational thinking and
problem-solving

There are two options for paper 2, allowing you to complete the paper using the

Java programming language or the Python programming language. You should

not attempt both! The paper will consist of all the content you have learned in

theme B of the course. This includes the following units:

* Bl Computational thinking

* B2 Programming

* B3 Object-oriented programming (OOP)

* B4 Abstract data types (HL only)

Each question in paper 2 will be based around computational thinking,

programming and problem-solving. Question 1 covers computational thinking,

giving you a chance to show you understand OOP concepts and can develop

algorithms without coding. The remaining questions will cover coding in either

Java or Python.

It is likely that you will be given one or two scenarios and asked to code solutions

to problems within the scenario as well as answering questions about OOP

concepts.

Example questions

* State one reason why a flowchart could be used to represent a program.

* Complete the trace table where x=14.

* State the Big O notation for the given algorithm.

* Sketch the stack resulting from the following operations:

push(1)
push(5)
push(40)
peek()

pop()
pop()
push(2)

* |dentify two consequences of declaring an attribute as private.

* Construct the method addStudent ()

* Qutline how a HashSet can be used to ensure only one email is sent to

each address.

Paper 2 aims to assess your knowledge and understanding as well as your ability

to apply what you have learned about theme B.

External assessment: Paper 1 and Paper 2

External assessment: Paper 1 and Paper 2

Remember the following.

Read each question carefully.

When reading a question, identify what it is asking and what tools you

need to answer it. This is particularly important with coding questions. Take

a moment to identify what methods you need, what you need to output

or return, and what tools you need to do this (for example, if statements,

loops, lists).

Use a highlighter to select the key terms in the question.

Spend time writing down the steps involved in the solution before translating

this into code. You might be surprised at how helpful this step is!

Make sure your solution returns or outputs what is expected.

At standard level, you will only look at one class and perhaps reference a

driver class. If you have more than this, you may have made an error.

At higher level, you will deal with multiple classes. Think carefully about what

class the method is in and what you need to access to make it work.

If you find a question that you are unsure how to answer, make a note on the

page and move on to the next question. You can come back to this question

ifyou have time at the end of the exam.

Take time before the end of the exam to review your answers. Fill in any gaps.

There is no negative marking, so you lose nothing from an educated guess!

Study skills for the external assessment

@ Self-management skills

Removing distractions

When revising for your exams, focus on the task at hand.

It may help you to set up a study space that will help

you maintain your focus. Having a dedicated space will

help you to get into the “studying mindset”. You may

find it useful to minimize the applications open on your

computers and remove your phone from your desk. To

maximize your time, you may find it useful to set a timer,

complete the task you have set yourself and then reward

yourself with a little break.

Work out what conditions help you to revise most

efficiently, and establish this as your general study routine.

Don't wait until the end of the course to work this out!

Tracking your studies

As with all courses, the IB computer science course has

prescribed topics and content. You may find it useful to

keep track of your learning on a copy of the course guide

(digital or print).

* Highlight the sections you have covered in lessons.

* Add your own notes, identifying the topics you need

to spend time on at home and which topics you are

comfortable with.

The course guide is not sequential, so your teacher may

jump from topic to topic. If you are unsure, ask!

External assessment: Paper 1 and Paper 2

@ Communication skills

Recording information

There are many ways to record information so that you

remember it both in the short term and the long term. In

the computer science course, you will probably encounter

factual and conceptual information that is new to you.

Developing a note-taking system that works for you will be

essential to helping you to recall the information you have

learned closer to the examinations.

* Work with your preferred learning styles. Make notes

on paper, on your computer, using diagrams, or using

a mixture of different styles.

* Remember that you need to reproduce your

knowledge in exam conditions, so try to avoid

methods that you cannot use in an exam setting

(for example, listening to personal music, using large

gestures or dance). Make it practicall

Vocabulary skills

All academic disciplines have specialist vocabulary.

Computer science is no different and has an extensive

specialist vocabulary. You may find it useful to develop a

computer science glossary. Whenever you encounter a

new term, you can add this to your glossary and provide

a definition. Continued reading of the term within the

context and using the term yourself will help you to

develop your confidence using the new vocabulary.

* Seethe ATl feature on page 6 for more ideas on this.

* Remember to update your glossary throughout the

course.

@ Research skills
Information literacy

When completing your research for the case study, you

will need to exercise your information and media literacy

skills. This includes gathering sources, interpreting

information, evaluating the information, and then

communicating the knowledge through your exam

answers. You need to use media literacy skills to consult

online sources and identify the different perspectives

within the sources.

Identify the value of each source you use in your research

to determine whether it is reliable or not. Ask yourself the

following questions.

* Who wrote it?

e When was it written?

e With what purpose?

* What assumptions has the author made?

Planning

Take time to plan your research for the case study.

* Spend time reading through the case study carefully.

* Consider what questions you may be asked about it.

Reading through past papers will help you work out

the kind of questions you may be asked.

* Once you have an idea of the questions, begin to

identify research sources that might be useful. Your

teacher should help you with this, but planning

your own research will help you gain a deeper

understanding of the case study, which in turn will

enable you to respond to questions fully.

Case study sources

Case study sources will vary depending on the topic of the

case study and your knowledge of the topic. To identify

sources of research for the case study, you might consider

separating the areas of the case study into different topics

then identifying different sources for each topic. To find

sources, try the following steps.

* Consider your community. Is there anyone working in

the field or who has knowledge of the field you can

ask for help?

* What databases does your library have access to?

* (Canyou find scholarly articles covering the topics?

* What experiments can you complete that will help

you understand the topics in detail?

External assessment: Paper 1 and Paper 2

Computational thinking skills

Algorithmic thinking

To practice algorithmic thinking, you can complete the following tasks.

* Identify problems in your community. Then, identify the different objects

within the problem and model them using one of the system models you

have learned.

* Develop algorithms to complete a task without coding. Writing steps to

solve a problem helps you develop algorithmic thinking skills.

* Complete the problems identified in this book, using all the development

skills you have learned throughout the course.

* Thinking of yourself as a user of the system, consider what features you would

like within the system. Write down the steps of the algorithm to develop

those features.

Coding

As with any skills you learn, practising that skill will help you to master it. The best

thing you can do when coding is to practice. Here are some ideas to help you.

* Complete the tasks in the book. If you find them overwhelming, start with a

simple version and develop it in stages.

* When you complete a task, consider how you could improve the solution.

Then develop those improvements.

* Ifyou have developed an algorithm to solve a problem you have identified,

try to code the solution to the problem.

* Set yourselflittle challenges each week and try to complete them. Ask your

teacher or a friend for support if you need it.

+ Continue coding after the coding units have been completed. It is surprising

how natural coding will become if you practise it often for short amounts of

time.

Al is both your friend and your foe. Al can be useful if you need inspiration. But

if you do not understand the code Al produces, then you will not be able to

develop your own code or your own algorithmic thinking skills. Use Al wisely and

always cite your source.

Please note: there are academic guidelines regarding the use of Al within IB

courses. Please talk to your teacher or IB coordinator for more information.

Index
Page numbers in bold refer to tables; page
numbers in italic refer to figures.

ABC (abstract base dlass) 497
abstract data types (ADTs) 548-81

binary search trees 568-72
collision resolution 577

hashing function 576

linked lists 552-67
load factor 577

operations 551

principles 576-9
properties 550

purposes 549, 550
sels 572-6, 5/7-8

abstraction 68

abstract data types 550, 551
computational thinking 323, 326-8,
330,331

object-oriented programming
492-500

AC see accurnulator

access control lists (ACLs) 140
access controls 67, 70

see also firewalls
accessing, programming 517

accountability, Al systems 307, 310

accounting /4
accumulator (AC) 4
ACID (atomicity, consistency, isolation,

durability) properties, database
transactions 211-14, 233-4

ACLs see access control lists

ACP see atomic commit protocol

activation functions

artificial neural networks 294, 295

convolutional neural networks 303

actuators 86, 87, B8

address bus 5, 20

ADTs see abstract data types
advanced persistent threats (ATPs) 155

agents, machine leaming 285-8
convergence 288
examples 285, 287

exploration versus exploitation

trade-off 286-7, 288

feedback loop 287
learning process 287

aggregate functions, SQL 206-9

Average 206-7
Count 207
Maximum value 208

Minimum value 208

Sum 209
aggregation, class relationships 425, 501-5

Al see artificial intelligence

algebra see Boolean algebra

algorithmic thinking 610
algorithms 376406

Aprion algorithm 283-4

averaging 393-4
bias in 309, 364
Big O efficiency 3/6-80

binary search 382-5, 398-400,

45663
bubble sort 385, 386-8

call 359
control algorithms 86, 87

count occurrences 394-5
cubic algorithms 377
design 323, 328-9, 330, 331

factorial algorithms 377

faimess of 307
linear search 381-2, 455-6, 460

maximum value 395-6

minimum value 395-6
quadratic algorithms 377

quicksort 400-3
recursive algorithms 359, 396-406

routing algorithms 127
search for data 380-5
selection sort 385, 388-92

sorting 38596
summing 393

ALU see arithmetic logic unit

And command, 5QL 202

AND gate 51,52, 53
ANNs see artificial neural networks
anomalies 168, 180, 181, 22/-8

anonymity, intemet browsing 131
antivirus software /1
APls (@application programming interfaces)

340, 341
appending to file code 408-9
application layer, TCP/IP model 119, 120,

122-123

application-specific integrated circuits

(ASICs) 249
Apriorn algorithm 2834
AR see augmented reality

architecture 5

graphics processing units 67
networks 124-43

arithmetic logic unit (ALU) 4

arithmetic operations 17, 53

Array, Java 442

Arraylist, Java 350, 352, 355, 442-4,
447-9,477-8

artificial intelligence (Al)
accountability 307
algonthmic faimess 30/

bias 307

decomposition methods 325
environmental impact 308

ethical implications 30/-10
pervasive Al 312

privacy 308

risk mitigation 313
security 308

societal impact 308, 313

transparency 308, 313
see also machine leaming

artificial neural networks (ANNs) 292-300

activation functions 294, 295

dlassification example 293-4

components and terminology
292, 293

pattern recognition example 296-8

regression example 294-5
ASCI (Amencan Standard Code for

Information Interchange) 47, 50

ASICs see application-specific
integrated circuits

assembly language 90, 91
assessment

external assessment 600-10

internal assessment 582-99
association rule discovery 225-6

association rule leaming 282-5

association rule mining 283
asymmetric aryptography 160, 162

atomic commit protocol (ACP) 234

atomicity, databases 182, 211

AlPs see advanced persistent threats

attributes, databases 170, 176

audio, data storage 48-9

augmented reality (AR) 312

authentication, data/network security 156,
158, 231

automalic doors B8-9

autonomous vehicles 87
Average function, 5QL 206-7

averaging 393-4

back propagation, artificial neural networks

293,297,298
background operations /0

bandwidth, data transmission 148

bank account trensactions 212-13
Barker style, entity relationship diagrams 176
barriers 12

batch processing 407
behavioural design patterns 522

Between command, SQL 198

bias

Al systems 307, 310
in algorithms 309, 364

artificial neural networks 292

and data mining 227
gender bias 364
racial bias 364

in training data 308-9
big data, and databases 171

Big O efficency 376-80, 377
binary

data storage 4/-51

equivalents and conversions 39-42,
43,456

logic gates 51-5

number systern 38-9
strings and characters 47-8
subscript 38-9

binary encoding 49-51

binary executable 90

binary search algorithm 382-5, 398-400,
456-63

binary search trees (BSTs) 568-72, 579

Bitcoin 136
bitmap images 49
bits 39, 50

bit depths 49
Bitlorrent 136
blacklists 154, 159

blockchain 136

Boolean algebra 52, 63, 64-5

simplifying complex logic diagrams
and expressions 63-5

simplifying output expressions 58-61

Boolean data 338
Boolean expressions 56—7
Boolean operators 534

boot-up process 14

bots, customer service 321, 322

breakpoint debugging 346

broadcast address 122

B51s see binary search trees

bubble sort 385, 386-8, 464-72
budgeting 223
BufferedReader, Java 409-10

buses 4-5, 20

business computing 551
business environment

data mining 220, 223-8

file servers 130
online analytical processing 220-3

proxy servers 131
routers 112

virtual local area networks 140-141
wireless access points 113

bytecode 90

bytecode interpreters 95

bytes 39, 50

cache memory 12-15

calaulate function 371
call 359

Canva (graphic design platform) 32
cardinality, entities 170

Chs see certificate authorities
cascading, databases 180
casting 441

catch staternent, error handling 342-3

central processing unit (CPU) 3-6, 8-12, 67
buses 4-5, 20

cache memory 12-15
components 3,4, 5

core architecture 9
design philosophy 8
fetch—decode—execule oycle 15-19

graphics processing unit comparison

8-12
interrupts /8-81

latency 8

memaory access 10
memory interactions 13-15, 20-1

performance monitoring 72

pipelining 21-4
polling 78-81
power efficiency 10-11

primary memory 12-15

processing overhead 79
processing power 9-10

processor lypes 5

registers 4, 5,12, 13, 20-1

scheduling 70

centroids 279
certificate authorities (CAs) 161

CF see collaborative filtering
characters 47/-8,338

checksums 71

Chen notation style 176

CIDR see classless inter-domain
routing notation

dircuits, logic gate connection
and interaction 61

arcular linked lists 563-7

citation of sources vii
dasses 417, 418-19, 420, 422-5

abstract classes 492-500

aggregated relationship 425, 501-5
composition relationship 425, 506-10

creation/design of 431-3

inherited relationship 425
instance variables 418

instantiation of 420, 434

library class code 426-30

looping 519, 521

multiple classes, coding for 511-21
runner class 440

see also UML dass diagrams

dassification 238
artificial neural networks 2934

data mining 224
dassification techniques, in supervised

learning 268-75

classless inter-domain routing (CIDR)
nolation 141-3

client-server model 134-5
clock speed 9
cloud-based implementation 215-16

cloud computing 31-6, 104-5

choice of model 36
infrastructure as a service 34, 356

machine learning 249
platform as a service 33-4, 35, 36

software as a service 31-3, 35, 36

clustering techniques 238, 279-82
data mining 224-5

density-based spatial clustering 280

hierarchical clustering 280
K-means clustering 279

mean shift clustering 281

CNNs see convolutional neural networks
CO-Processors 5

code generation 92,93
code sequence 362

cading skills v, 610

collaborative filtering (CF) 271-3
collision resolution strategies, hash

tables 577

comments 450
Commit command, SQL 213

commutative law 64
comparelo method, |ava 464

comparison operators 464

COMPAS algorithm 309
compilation/compilers 90-7, 499, 500

definition 90

overview of process 93
compile-time polymorphism 481-4

compiled programming languages 93, 96

justir-ime compilation comparison 94
components 3, 4, 5, 86

composite key, databases 170
compaosition 425, 50610

compression 28-31

computational thinking 316-35, 607-8
abstraction 323, 326-8, 330, 331

611

612

Index

computational thinking (Continued)

algorithmic design 323, 328-9,

330, 331
data analysis 330

database design 331
decomposition 323, 324-5, 330,

331
machine leaming 330
network security 331

pattern recognition 323, 325-6,

330, 331
problem solving 330

problem specification 317-23
software development 330

study skills 610

concatenate 339
concalenalted key, databases 170

conceptual schemas 1734
concurrency control, databases 230
confirmation bias 227

congestion, networks 151

consent, Al systems 307

constraints, problem specification 318

content security policies (CSPs) 157
context switching, scheduling 77

control algorithms 86, 87

control bus 5, 20

control systems 86, B/-9

control unit (CU) 4

controllers 86
corvolutional neural networks (CNNs) 240,

242, 300-3
conceplts and terms 301

image classification 303

input data process 303
process 301

cookies 116-17

cores (processing units) 5,6, 7,8,9,10,23-4
Count function, SQL 207

count occurrences 394-5

CPU see central processing unit
creational design pattern 522

cross-platform development 96
cross-site scripting (X55) 156

crows foot style, entity relationship

diagrams 176
cryptocurrencies 136
cryptography 159-60, 160-1, 162

(C5Ps see content security policies
CU see control unit

cubic algorithms 377
curse of dimensionality 259-62

customer feedback systems 320-2

customer service
chatbots 321, 322

data mining 228

cyberattacks
countermeasures against 157-8
employees’ role 158

vulnerabilities to 156
see also network security; security

cyberbullying 310, 311

data analysis 330

data bus 5, 20

data deaning 219, 251-6
deandata 252

data quality impact 252-3
duplicate data 254
initial data 252

irrelevant data 254

missing data 255

outliers 254, 256

data compression 28-31

data consistency 210, 211, 213, 230

data control language (DCU) 192
data definition language (DDL) 191-2
data integrity 71, 211-14

data management 21/-19
data manipulation language (DML) 192
data mining 220, 223-8

association rule discovery 225-6

bias 227

classification 224
clustering 224-5
fraud detection 226, 228

markeling 224, 228
regression 225

sequential pattern discovery 226-8

data packets 110, 111-12
data partitioning, databases 231
data preprocessing 251-63

data cleaning 251-6
feature selection 256-8

normalization 255-6
standardization 256

data processing

logic gates 52
machine leaming 247, 248

data representation 38-46

binary and decimal integer
conversions 39-42

binary and hexadecimal integer

conversions 456
binary integers 38-9

hexadecimal and decimal integer
conversions 43-5

hexadecimal integers 42-3

terminology 39
data retrieval 51
data segmentation 149-51

data signal processors (DSPs) 5
data storage 4/-51, 67, 233
data structures 350-61

arrays and lists 351-8

firstin, first out 359-60

last in, first out 358-9

one-dimensional structures 442-6
stacks 358-9

static and dynamic structures 3501
two-dimensional structures 44/-50

data/lime dala types 178

data transmission 144-53
dala segmentation 149-51
IP addressing 144-7

packet switching 149-51

static and dynamic routing across

LANs 152-3
types of media for 14/-9

data lypes 337, 338, 491

see also abstract data types
data units, byte and bit equivalents 50
data visualization 261

data warehouses 217-23, 500

components of 218
data cleaning 219

data mining 220, 223-8
historical data 219

online analytical processing 220-3
as subject-oriented 218-19
as time-variant 219

database design 1/3-90
computational thinking 331
data types, relational databases 177-9

denormalization process 189-90

entity relationship diagrams 173-7
normalization 181-8

schemas 1/3-5
unnormal form 182, 183

database languages 1914

database programming 191-214
aggregate functions in SQL 206-9

calculations ondata 206-9

dala integrity 211-14
data updates using 5QL 204-6

dalabase development using SGL
193-5

database languages 191-4

queries in SQL 195-204
transactions 211-14

databases 166-/72
anomalies 168, 180, 181

atornicity 182, 211

calculations ondata 206-9

cardinality 170
cloud-based databases 215-16

compaosite key 170
concatenated key 170

dala consistency 210, 211, 213

dala integrity 211-14
data storage 21517

denormalization 189-90

durability 212
e-commerce database 185-8

entities 167, 169, 175, 210
flat file databases 167, 168-9

foreign keys 169, 180

in-memory databases 216-17

indexes 204-5
library database 18/7-8

medical records databases 16/
modality 170

multiuseraccess to 213
normalization 163, 181-8

NoSQL databases 215

performance overhead 214

platform as a service databases 215-16
primary keys 169, 170, 180

queries 210

recovery of data 213
relationships 170-1, 175-6

repeating groups 182
rollback 213

rows 205
scalability challenges 214
schemas 171, 173-5

security 231

social media 167
spatial databases 216

tables 1/0, 180, 193-4, 195
validation rules 231

views 209-10

virtual tables 209-10
see also database. . distributed

databases; relational databases;

SQL (structured query language)
DBSCAN see density-based spatial

dustering of applications with noise

DCU see data control language
DDL see data definition language

DDoS see distributed denial of service
deadlocks 83, 362

debugging 344-8, 464

breakpoint debugging 346
print statements 34/

step-by-step code execution 348

trace tables 344-5
decapsulation 149, 150

decimal 39, 338
equivalents and conversions 39-42,

43, 44-5

decision making support 52, 214, 222-3
dedision trees 269-71, 273-5, 278, 304
decode phase, fetch-decode—execute

oycle 17,23
decompaosition 323, 330, 331

deep leamning (DL} 238, 240, 241, 242,

245,247,248, 304
deletion

binary search trees 569
linked lists 554, 558, 563

sets 578

denormalization, databases 189-90

density-based spatial clustering of
applications with noise (DBSCAN) 280

dependent (response) variables 265
dequeve method 359, 360, 551

design pattemns, object-oriented
programming 521-41

device management /3, 82

DHCP see dynamic host configuration
protocol

dice function 222

dict, Python 579
difference checks 574, 575, 578

digital certificates 157, 159-60, 161-2

digital circuit symbols 63
digital infrastructure 104-8

digital signatures 161
dimensionality reduction 258-63

discrete categorical outcomes 268-75

disinformation 309
disk input/output operations, interrupts and

polling BO

Distinct command, 5QL 196
distributed databases 228-34

ACID transactions 2334

advantages/disadvantages 233

atomic commit protocol 234

concurrency control 230

data consistency 230
data partitioning 231

fault tolerance 232
fragmentation 229

global query processing 232

replication 229, 232-3
security 231
server coordinator 234

transparency 231-2
types of 229

distributed denial of service (DDoS) 156, 157
distributed systems 105-6

distributed version control system (DVCS) 567

DL see deep learning
DML see data manipulation language

documents, digital 162

domain name system (DNS) server 127-8
DORA (discovery, offer, request and

acknowledgment) process 129

dot notation 442, 51/-21

double loop 519, 521

doubly linked lists 558-63
downsampling 29

drill-down function 222

D5Ps see data signal processors
duck typing 491-2
duplicate data, removal of 254

DVCS see distributed version control system
DVD drives 26
DVES see dynamic voltage and

frequency scaling

dynamic data structure 350-1, 442-6

dynamic host configuration protocol (DHCP)
117-18,128-9

dynamic IP addresses 118, 146

dynamic polymorphism 484-91
dynamic routing 152-3

static routing comparison 153

dynamic voltage and frequency scaling
(DVFS) 11

e-commerce database 185-8

Eclipse IDE, Java 431

edge computing 106-7, 247, 248
edge devices 248, 249
educational environment

doud computing 104
machine learning 246
network segmentation 137

proxy servers 131

school databases 209

swilches 113
wireless access points 113

efficiency, scheduling 77

email 130, 157
embedded methods, feature selection 258

embedded multimedia cards ([eMMCs) 26

embedded systerns 80
emerging technologies, ethical issues 310-13
employee training, security testing 158-9

encapsulation 149, 150, 420, 435-72

abstract data types 550

advantages of 436
one-dimensional structures 442-6
repetition statements with objects

454-5
selection statements with objects
450-4

sorting with objects 46472

two-dimensional data structures
447-50

variable modifiers 436, 437, 438,

441

encryption 70, 75, 103, 159-60, 163, 231
engueue method 359, 360, 551

entities, databases 167, 169, 1701, 175,

180, 210
entity relationship diagrams (ERDs) 173-4

Barker style 176

Chen notation style 176

construction of 177
crows foot style 176

items within 1756
enums (enumerated data type) 179

Index

epsilon-greedy stategy 287

ERDs see entity relationship diagrams

error detection 51, 94, 95, 254

error handling, programming 342-4

Errors
deadlocks 83, 362

exception errors 342
incorrect inputs 362
infinite loops 362

logic ermors 342

program errors 342
Ethemet 110, 112,113

ethical considerations 307-13
binary search trees 579

emerging technologies 310-13

machine learning 307-10
online communication 309-10

ETL see extract, transform and load process

events 12, 79

exception handling 3424

execute phase, letch-decode-execute

cycle 17,23

execution, translation process 92,93

exploration versus exploitation trade-off
2867, 288

exponential complexity 377

extends keyword, Java 494-6
external assessment (Papers 1and 2) 600-10

extract, transform and load (ETL) process 219

Fl score, machine leaming models 2/6-7

factorial algorithms 377
factorial numbers 404

factory design pattern 527-35

fairness, scheduling 77, 82-3

fast adder 63

fault tolerance, databases 232

FCFS see first-come, first-served

feature selection 256-8

feedback, control systems 84

fetch-decode—execute cycle 16-19, 23

Fibonaca sequence 396-7

fibre-optic cables 14/, 148
field-programmable gate arrays (FPGAs) 249

HFO see first in, first out data structure

file processing 40/-15
file reading 409-10, 411
file writing 40/-9, 412

file servers 129-30
file systems 70, 71, 73, 82

filter methods, feature selection 257

filtering

network security 157

queries 195
finally block, error handling 343, 344

firewalls 70, 71, 75,109, 114, 154-5

first-come, firstserved (FCFS) 76, 77,78
first in, first out (FIFO) data structure 359-60
first normal form (1NF), databases 183, 184

flash drives 27
flat file databases 167, 1689

floppy disks 25
flowcharts 328, 331, 332-3

for loops 369-71, 452-3, 454

forecasting 223
foreign keys 169, 180, 220
forward propagation, artificial neural

networks 293, 295, 297

FPGAs see field-programmable gate arays
fragmentation, databases 229

fraud detection 226, 228

From command, 5QL 197

front function 359, 360

full adder 63

functions, programming 371-5

GAs see genetic algonthms
gateways 108, 114

gender bias 364
genetic algorithms (GAs) 288-91
genelic sequencing 8, 572

Git [distributed version control system) 567

global query processing 232

graphical user interface (GUI) 74
graphics processing unit (GPU) 5, 6-12,
248, 749

architecture 67
central processing unit comparison

8-12

design philosophy 8
graphics rendering 5, 7
high throughput 7, 8

instruction set architecture 9
memory access 10

parallel processing 6
power efficiency 10-11

processing power 9-10

scientific computing 8
simulations and modelling 8
video editing 8

video random access memory 7
Group By command, 5QL 199
group data, dustering lechniques 279-82

group permissions 70
guessing game 36/-9

GUI see graphical user interface

halfadder &1

half subtractor 61
harassment, online 310

hard disk drives (HDDs) 25, 26, 51
hash functions 163
hash tables 5/6-7, 578, 580
hashes 71

hashing 576
HashMap, Java 578-9

hate speech 310
Having command, 5QL 200
HDDs see hard disk drives

heat management, CPUs 11
heterogeneous databases 229
hexadecimal number system 39, 42-3

equivalents and conversions 43, 44-6

hierarchical clustering 280
high-performance computing centres (HPC)

250

home environment

hardware firewalls 109
network segmentation 137
routers 112

security systems B8
wireless access points 113

homogeneous databases 229

host address 138

HPC see high-performance computing centres
HR see human resources

HTTP see hypertext transfer protocol
HTTPS see hypertext transfer protocol secure

human resources (HR) 228
hybrid networks 126-7
hyperparameter tuning 27/5-8

hypertext transfer protocol (HTTP) 115-17,
131-2

digital certificates 161

response codes 116

slate management 117
hypertext transfer protocol secure (HTTPS) 117

hypervisor /5

1/0 (input/output) 67
IA see internal assessment
laa5 see infrastructure as a service

idempotent law 64

identity certificates 159-60
IDS see intrusion detection systems

if statements 363, 451-4, 477, 517
images

data storage in binary form 48

spatial hierarchies, machine learning
300-3

IMAP see internet message access protocol
in-memory databases 216-17
independent (predictor) variables 265

indexes/indexing

indatabases 204-5
hash tables for 580

inductive reasoning 396
industrial environment

gateways 108

modems 110
infinite loops 362

information literacy 609

infrastructure as a service (laaS) 34, 35-6
inheritance (in coding) 420, 473-80

injava 475-8
in Python 478-80

inherited relationship, classes 425

input-process-output (IPO) model 84-5

input spedfications 319-20
insertion

binary search trees 569
linked lists 554, 558, 563

sets 578
instance variables 418
instantiation 420, 434

instruction register (IR) 4

instruction set architecture (ISA) 9
integers 4/, 338

binary 38-9

binary search trees 570-1
binary to decimal conversion 39-41

binary to hexadecimal conversion
456

dedmal to binary conversion 41-2
decimal to hexadecimal conversion
44-5

hexadecimal 42-3

hexadecimal to binary conversion 46
hexadecimal to decimal conversion

434

intercept, linear regression 265, 266, 267

internal assessment (IA), computational

solution 582-99
internet 104, 115, 131, 205

internet layer, TCP/IP model 119, 121-2

internet message access protocol (IMAP)
130

internet protocol (IF) 144

internet service providers (ISPs) 112
Internet of Things (loT) 96

interpreted programming languages 91-2,
95,96

interpreters 90-7

interrupt handling 78-81
intersection, sets 574, 575, 578

intrusion detection systems (IDS) 157

intrusion prevention systems (IPS) 158
involution law 64

lol see Internet of Things
IP see intemet protocol

IPaddresses /5, 103, 117, 127-8, 144/

concealment of 131
dynamic IP addresses 118, 146
internet protocol 144

IP masquerading 155
IPv4 and IPvE addressing 144, 146

network address translation 146-7

private/public IP addresses 1456,
147

routers 110, 111-12

smartphones 129

static IP addresses 118, 146

subnetting 13/-40
IPO see inpul-process—output model
IPS see intrusion prevention systems

IR see instruction register
imgation control systems 88

15A see instruction set architecture

islnstance function, Python 479-80

15Ps see internet service providers

itern-based collaborative filtering 271,
272-3

Java
abstract dasses 493-7
aggregation 501-4

Array 442
Armaylist 350, 352, 355, 442-4,

447-9,477-8
averaging 393

binary search 383-4, 388-9, 456-60

breakpoint debugging 346
bubble sort 38/-8, 464-9
BufferedReader 409-10

classes 419, 431, 432
comments 450
comparelo method 464

composition 506-9

count occurrences 394

dala structure 350

data types 337, 338, 491
difference check 574

dot notation 517-19
dynamic 10 lists 442-4

dynamic 2D lists 4479

dynamic polymorphism 485-8
encapsulation 438-9
exception handling 342-3

extends keyword 494-6
factory design pattern 529-32

Fibonacci in 397

file append 408-9

file overwrite 408

file reading 409-10
file writing 40/7-9

forloop 370, 452-3, 454

guessing game 36/7-8
HashMap 5789
if statements 451-2, 477

inheritance (in coding) 475-8
instantiation of an object 434

intersection, sets 574

library 375

library class code 426-8

linear search 381-2, 4556

linked lists 554-6, 559-61, 564-6
lists 352-6

method headers 441
minimurm value 395
move method 485, 486-8

multiple classes 511-14, 516

observer design pattern 537-8

parameters 373
print statements 347

quicksort 402

random library 374
recursion in 405
Runner class 444

Scanner class 410-11
selection sort 389-90, 391-2

selection statements 364, 450-3

sets 573, 574

singleton design pattern 524-6

sorting 464
static 10 lists 442

static polymorphism 482-4

step-by-step code execution 348
strings 339-40
subset checks 574

summing 393

toString method 431, 4767, 484, 485

trace tables 345
two-dimensional lists 354-6

union, sets 574

varable modifiers 437
varables 491
while loop 3667

JavaScript 96
Join command, 5GL 200-1
|PEG 30, 31,50

just-in-time {JIT) compilation 94

K-means clustering 279
K-Nearest Neighbours (K-NN) 268-9,
271-3,304

Karnaugh maps (K-maps) 58-61
kemel size and stride, image classification 303
keyboard, interrupts and polling 79

keys, databases 180

LANSs see local area networks

large dala sets

association rule leaming 282-5

binary searches 385
lastin, first out (LIFO) data structure 358-9
latency 8,13, 15,79, 155

leased lines, wide area networks 102

left child property 568
lexical analysis 92-93

libraries 374, 375

library class code 426-30
library database 187-8

licence plate recognition systems 106
LIFO see last in, first out data structure

614

Index

Like command, SQL 201-2

linear regression 264-8, 294-5, 304

independent/dependent vanable
relationship 265

slope and intercept in regression
equation 265-7

linear search algorithm 381-2, 455-6, 460

linear time complexity 377
linked lists 552-3, 552, 554-67

aircular linked lists 5637

doubly linked lists 55863
in operating systems 553

singly linked lists 554-7
Linux, system log /2

lists 350, 351-8

one-dimensional lists 351-4, 442-6

two-dimensional lists 351, 354-6,

357, 447-50
for variables 418

livelock 83

load factor, hash tables 577

local area networks (LANS) 101, 151, 152-3
log linear 377

logarithmic time 377
logging 71-2, 74,155, 407

logic circuits, truth tables 54-61

logic diagrams 57-8, 61-5
Boolean algebra 63-5

combining gates to perform complex

logical operations 63
gate symbols 62

logic gate connection and interaction
inacircuit 61

processing of inputs to produce

outputs 62-3
logic errors 342

logic gates 51-5

AND gate 51, 52, 53
arithmetic operations 53

data processing 52

decision making 52
memory storage 53

MNAND gate 54
MNOR gate 54

NOT gate 53

ORgate 52,53
for a security systemn 52
symbols 53-4

XMNOR gate 54
XORgate 54

logical expressions, simplification of 57-8
logical schemas 173, 174

login, remote 161

logistic regression 304
looping structures 36671

double loop 519, 521

errors 362
for loops 369-71, 452-3, 454
guessing game 36/7-9

while loops 366-9
see alsorepetition statements

loss function 303
lossless compression 28, 29, 31

lossy compression 28-9, 31

loyalty cards 217, 239

MAC address table (forwarding table) 112,

151
MAC filtering 159
MAC (media access control) address 110,

129,159

machine code/instructions 90, 91

machine leaming 7, 236-315
accountability 310

accuracy of models 275

Al servers 248
algorithm performance 304-5
algorithm types 237-8

application-specific integrated
circuits 249

artificial neural networks 292-300

association rule leaming 282-5

bias 310

dlassification techniques 268-75
doud-based platforms 249
dustering techniques 279-82

computational thinking 330

continuous outcomes, prediction of
264-8

convolutional neural networks 300-3

dala preprocessing 251-63
dala processing 247, 248
data quality impact 252-3

decision trees 269-71, 273-5, 278,
304

deep learning 238, 240, 241, 242,

245,247,248, 304

development and testing 247, 248

dimensionality reduction 258-63
discrete categorical outcomes 268-75
and disinformation/misinformation 309

edge computing 247, 248
edge devices 248, 249
ethical implications 30/-10

evaluation of dlassification
models 275-7

Fl score of models 276-7
feature selection 256-8

field-programmable gate armays 249

genetic algorithms 288-91
graphics processing unit 248, 249
hardware requirements 24/-50

high-performance computing
centres 250

house sale prices model 259-62

hyperparameter tuning 275-8

K-Nearest Neighbours 268-9,

271-3, 304
large dala sels, association rule
leaming 282-5

large-scale deployment 247, 248

linear regression 264-8, 304
logistic regression 304

market basket analysis 239
medical imaging diagnostics 240
model selection and comparison

304-5

model training 247, 248

multi-ayer network modelling
292-300

natural language processing 240-1, 246

neural networks 304

object detection and classification
242-3

online communication 309-10

overfitting of models 2/7-8
precision of models 276

privacy concems 310
random forest 304

recall of models 276
reinforcement leamning 238, 243,

2858

robotics navigation 243-4
security 308
sentiment analysis 244-5

societal impact 313

spatial hierarchies in images 300-3
supervised leamning 238, 240, 241,

242,244
hyperparameter tuning 2/75-8

support vector machines 304
tensor processing units 249
training data 308-9

transfer learning 238, 240, 241, 245

underfitting of models 278
unsupervised leaming 238, 239

clustering techniques 2/9-82
varniability in algorithm performance 305

workflow 251

see also artificial intelligence

medical records databases 167
memory 12-15, 20-1, 24-7, 67, 70, 82, 261

memory access 10, 17

memory address 16
memory address register (MAR) 4

memaory cards 27

memory controller 14, 20
memary data register (MDOR) 4

memory management /2-3, 82
memaory storage, logic gates 53

memory usage, data structure 351
mesh topologies 125
method headers 441

method overriding, object-oriented

programming 480-92
MFA see multi-factor authentication

Microsoft Office 365 33

Microsoft Outlook 135
Microsoft Teams 32

minimum value 208, 395-6

misinformation 309

MitM see man-in-the-middle attacks
MLP see multi-layer perceptron
mobile networks 107

modality, entities 170

modems 109-10, 114

modifiers, variables 436, 437, 438, 441, 475

modularity, abstract data types 550
modularization 371-5

Moodle (learming management system) 33

mouse /9, BO-1

move method

inJava 485, 486-8

in Python 488-91
multi-core architecture 22, 23

multi-core processors 5, 22-4

multi-factor authentication (MFA) 158
multi-ayer networks 292-300

multi-ayer perceptron (MLP) 300
multicasting 115

multilevel queue scheduling 76, 77, 78

multiple dasses, coding for 511-21
multitasking 5, 81-2

MySQL, data types 177-9

NAND flash memaory 25

MNAMND gate 54
NAS see networked attached storage

devices

natural language processing (NLP) 2401, 246
network address translation (NAT) 146-7, 155
network communications, interrupts and

polling 80
network devices 108-14, 114, 121

network interface cards (NICs) 110, 114,

121,159
network interface layer 119, 121, 122

network protocols 108, 115-18,131-2

network routing 568

network security 154-64, 331

blacklists 154, 159
common vulnerabilities 156

content security policies 157

digital certificates 157, 159-62
distributed denial of service 156, 157

employee training 158-9
encryption 157, 159-60, 163

firewalls 70, 71, 75,109,114, 154-5

inputvalidation 157
intrusion detection systems 157
intrusion prevention systems 158

malware 155, 156, 157

multi-factor authentication 158

subnetting 13740

virtual local area networks 140-1

network stack 67
network topologies 124-7

networked attached storage (NAS)
devices 27

networking /5, 360
dient—server model 134-5
peer-to-peer model 135-6

networks 100-65

architecture 124-43
characteristics of 101-3

dloud computing 104-5
congestion reduction 151

data transmission 144-53

devices 108-14
digital infrastructure 104-8

distributed systems 105-6
edge computing 106-7
firewalls 109, 154-5

internet 104

local area networks 101, 151

mobile networks 107

personal area networks 102-3
protocols 108, 11518, 156

security 154-64

segmentation 136-43
servers 12/-33

topologies 124-7

virtual private networks 103
wide area networks 102

see also network....

neural nebworks 238, 240, 241, 304

see also artificial neural networks;

convolutional neural networks
nibble (unit of data) 39

NICs see network interface cards

MNLF see natural language processing
nodes

artificial neural networks 292, 293,

294, 295, 299-300
binary search trees 568

distributed systems 105
singly linked lists 554

non-playing character (NPC) 325, 417

norrstatic variables 425-30
non-volatile memory 12
NOR gate 54

normalization
dala preprocessing 255-6

databases 169, 181-8
NoSQL databases 215

Mot command, SQL 204

MNOT gate 53
NPC see non-playing character

numerical data types 178, 179

object-orented programming (OOF) 416-547
abstraction 492-500

advantages/disadvantages 421
aggregation 501-5

classes 41/, 418-19, 420, 422-5
design of 431-3

code reusability 473-80

compaosition 506-10
design patterns 521-41
encapsulation 420, 435-72

factory design pattern 527-35
inheritance (in coding) 420, 473-80
library class code 426-30

method overriding 480-92

multiple classes, coding for 511-21

observer design pattern 535-40
mail servers 130

malware 1585, 156, 157

marrin-the-middle (MitM) attacks 156
management reporting 222

MAR see memory address register

market basket analysis 239
market segmentation 281

marketing 222, 224,228, 282
maximum value 208, 395-6

MDR see memory dalta register

mean shift clustering 281
measurement bias 227

media access control (MAC) address 110, 129

medical diagnostics 240, 274-5

network address translation 155

password policies 157
phishing attacks 156, 158

public key certificates 159-60
security testing 158-9

software updates 157

virtual private networks 158
wireless security measures 159
see also security

network segmentation 13643
dassless inter-domain routing

notation 141-3
methodsof 137/-43

security 137

one-dimensional data structures

442-6

polymorphism 420-1, 480-92
repetition statements with objects
454-5

searching with objects 455-63
selection statements with objects
450-4

for a single class 417-72

singleton design pattern 523-7

sorting with objects 464-72
static and non-static variables and
methods 425-30

tools 420-1

two-dimensional data structures

447-50

UML class diagrams 423-5, 426, 431,

437,438, 506

objects 417, 420, 422
bubble sort 464-72

compaosition 506-10
data types 337
detection and classification 242-3

duck typing 491-2

instantiation of 434
observer design pattern 535-40, 536

one-dimensional (10) lists 351-4, 442-6
online analytical processing (OLAP) 220-3

online communication, machine learming

309-10
OOF see object-oriented programming

opcodes (operation codes) 4, 17
open addressing 577
operating systerns (O5) 66-83

abstraction 68

access control and permissions /0
accounting /4

antivirus software 71
command-ine tools 75

CPU scheduling 70

data integrity checks 71
deadlock 83

device management /3, B2

file systems /1, 73,82
functions of 68-75

graphical user interface 74
hashes 71

interrupts and polling /8-81

linked lists 553
logging /1-2

memory management /2-3

memory protection 70
multitasking 81-2

networking 75

patch management 71
performance monitoring 72

process isolation /0
process management 67, 68-9

resource allocation 81, 82

resource contention 83
resource monitoring/limits 82
resources managed by 67-8

rollback features /1
scheduling /73, 76-8

security /0, 71, 75
systern integrity 69

systemn resources 67

task management /2
task scheduling 82-3

update management /1

user and group permissions /0
virtualization 74-5

optical drives 267

Or command, SQOL 203

OR gate 52,53

Order By command, S0 198-9
05 see operating systems

outliers, management of 254, 256

output, control systems 84
output specifications 3201
overfitting 227, 260, 277-8

overwriting, file code 408

F2P see peer-lo-peer model

Paas5 see platform as a service

packets 70, 75, 110

data segmentation 149-51
routers 111-12

PANS see personal area networks

parallel processing 5,6, 7,10, 23

parameters 372-3, 441
parsers 90

parsing, stacks 359
passwords 157
patch management, software 71,157

pattern recognition

artificial neural networks 296-8

computational thinking 323, 325-6,
330,331

PC see program counter

peek method, stacks 358, 359

peer-to-peer (P2P) model 135
perceplrons 292, 293, 294, 295, 299-300

performance-critical applications 96

personal area networks (PANs) 102-3
personalized marketing 282
penvasive Al 312

phishing attacks 156, 158
physical schemas 173, 175

pipelining 21-4
pixels 48, 50

plagiarism vii

platform as a service (Paas) 33-4, 35, 36
databases 215-16

playlists 360, 381, 501-5, 569

polling 78-81,79
polymorphism, in classes 420-1
polymorphism (in coding) 480-92

dynamic polymorphism 484-91
static polymorphism 481-4

pop method, stacks 358, 359
portability, software 94,95

power efficiency 10-11

pre-emption, scheduling 77, 83
pricing strategies 282
primary keys 169, 170, 180

primary memory 12-15
primitive data types 337
print statements 347

printer queues 360

priority scheduling 76, 77, 78

privacy, Al systems 308, 310
private IP addresses 145-6, 145, 147

private modifiers, variables 436, 437, 438,

441, 475
private-key cryptography 162
problem spedification 317-23

problem statement 31/-18
process 68-9, 84
process isolation 70

process management 67, 68-9, 222, 553

process scheduling see scheduling

processing power 9-10
processing speed 15
program counter (PC) 4

programming 336415
accessing 517
algorithms 376406

arrays 351-8

averaging 3934
Big O notation 376-80

binary search 382-5, 398-400
bubble sort 385, 386-8

code sequence 362
count occurrences 394-5
data structures 350-61

data lypes 337, 338
deadlocks 362
debugging techniques 344-8

dynamic data structure 350-1

exception handling 342-4
file-processing operations 407-15

first in, first out data structure 359-60

flowcharts 328, 331, 332-3

functions 371-5
incorrect inputs 362
infinite loops 362

last in, first out data structure 358-9

libraries 374, 375

linear search 381-2

lists 350, 351-8
looping structures 36671

maximurm,/minimum value 395-6

modules 371-5
notation 63

parameters 372-3
queues 359-60
recursion 396406

repetition 366-71

scalability of algorithms 376-80
search for data 380-5

selection sort 385, 388-92
selection statements 363-6

sequence of code 362

sorting 385
slatic data structure 3501

strings 337, 338, 339-40

summing 393

variables 337-8
see also database programming;

object-oriented programming
programming languages 90-7, 90

applicability 95

compiled programming languages

93,94,96
interpreted programming languages

91-2,95,96
programs 68, 342

protected modifiers, variables 436, 437,

441,475
protocols

dynamic routing protocols 153

encrypted protocols 157
networks 108, 115-18, 156

proxy servers 131

publicIP addresses 145, 146, 147

public key certificates 159-60

public-key cryptography 160, 162
public modifiers, variables 436, 437, 441, 475

push method, stacks 358, 359

Python
abstract dasses 497-9

aggregation 504-5

averaging 394
binary search 384-5, 399-400,

460-3
bubble sort 388, 469-72

classes 419, 433

comments 450
composition 509-10

count occurrences 395

data structure 350
dala types 337, 338, 491

dict 579

difference checks 575
dotnotation 519-21

duck typing 491-2
dynamic 1D lists 445-6

dynamic polymorphism 488-91

encapsulation 439-40
exception handling 343, 344

factory design pattem 532-5

Fibonacdi in 397
file reading and writing 411-12

for loop 370, 371
guessing game 368-9

if staterments 4534

inheritance (in coding) 4/8-80
instantiation of an object 434
intersection, sets 575

isinstance function 4/9-80
library 375

library class code 428-30

linear search 382, 460

linked lists 557, 561-3, 566-7

lists 350, 352, 353, 357
method headers 441

minimum value 395

move method 488-91
multiple classes 514-16
observer design pattern 539-40

paramelers 373
quicksort 403

random library 374
recursion in 405

selection sort 390, 392

selection statements 365, 4534

sets 573, 575
singleton design pattern 5267

sorting 464
static polymorphism 484
strings 337, 340

subset checks 575
summing 393

trace tables 345
translation steps 92

tuples 357

two-dimensional lists 357
union, sets 575

variable modifiers 437

variables 338
whileloop 367

quadratic algorithms 377

Quality of Service (QoS) rules 109

quantization 48-9

quantum computing 311

quantum, scheduling 77
queries, in SQL see SQL (structured query

language), queries
queuves 359-60, 551

quicksort 400-3

racial bias 364
randormraccess memory (RAM) 13, 14,

16, 216
random forests 304

random library 374
read-only memory (ROM) 13, 14

reaHime systerms 80

recall (sensitivity), machine learning
models 276

recovery of data 213

recurrent neural networks (RNNs) 241
recursion 396406

binary search 398-400

quicksort 400-3
registers 4, 5,12, 13, 20-1

regression, data mining 225
reinforcement learning (RL) 238, 243,

2858

relational databases 169-72, 210

benefits and limitations 171

data duplication problem 180

data typesused in 1/7-9
table construction 180

relationships, entities 1/0-1, 175-6

rendering 5, 7
repealing groups, databases 182

repetition 366—71
for loops 369-71, 454

while loops 3669

replication, databases 229, 232-3

resource allocation 81, 82

resource contention 83

resource management /0
resource monitoring/limits 82

response codes, HTTP 116
retail environment

databases 167

wireless access points 113
RGB colour model 48

right child property 568

risk mitigation, Al systems 313
RL see reinforcement learning
RLE see run-ength encoding

RNNs see recurrent neural networks

robotic vacuum cleaners 285

robotics navigation 2434
rollup function 222

rollback 71, 213

ROM see read-only memaory
round robin, scheduling 76, 77, 78

route planning 289-91

routers/routing 110-12, 114, 151
algorithms 127
dynamic routing 152-3

static routing 152, 153

subnetting 140

routing table (data file) 151, 152
rows, in databases 205

run-length encoding (RLE) 28, 30, 31

runner class 440, 444

runtime polymorphism 484-91
Rust, translation steps 93

Saal see software as a service
sales reporting 222

sampling 48, 49

sandboxing 68

Savepoint command, S0L 213
Scanner class, Java 41011
scheduling 70, 73, 76-8, 82-3

first-come, first-served 76, 77,78

linked lists 553
multilevel queve scheduling 76,

77,78

priority scheduling 76, 77, 78
round robin 76, 77, 78

schemas, databases 171, 173-5, 210

scheme 117

scientific computing 8

615

Index

search/searching

binary search 382-5, 398-400,

456-63
binary search trees 569

linear search 381-2, 455-6, 460

linked lists 554, 558, 564

second normal form (2NF), databases
183, 184

secondary memory storage 24-7

secure socket layer (SSL) certificate 157

security
Al systems 308

applicationevel security 155
data security 231

dala transmission 148

databases 171
in distributed systems 106

edge computing 107
employee training 1589
file systems 70

internal threats 155

interrupts and polling 79
machine leaming 308

mail servers 130
mobile networks 107

network segmentation 137

operating systems 67, /0, 71,
73,75

sequential pattern discovery 228

web interactions 117
see also network security

security systemn, logic gates for 52
security testing 158-9

segmentation 82

data segmentation 149-51
network segmentation 136-43

Select command, SCGL 196

selection bias 227
selection sort 385, 38892

selection statements 3636

semantic analysis 92, 93

semantics 90

sensors 86
sentiment analysis 244-5

separate chaining 577

sequential pattern discovery 226-8
servers 127-33

distributed databases 234

domain name system server 12/-8
dynamic host configuration protocol

server 128-9
file servers 129-30

mail servers 130

proxy servers 131
web servers 131-2

sets 572-6

implementation of 578
mechanics of 577-8
set operations 573, 578

signatures, digital 161
signed integers 47

SIMD instructions 9, 10

simulations 8

single-core processors 5, 22

singleton design pattem 523-7
singly linked lists 554-7
Skype 32,136

5L see supervised leaming
slice function 222
slice, scheduling 77

slope, linear regression 265-6, 267

smartphones 129, 324, 480

social media 167, 223,227, 311, 576
society, and Al systerns 308, 313

software

digital signatures 161
firewalls 109
network security 156, 157

patch management /1, 157
portability 95

software engineering 96, 330, 522, 550,

580

software as a service (SaaS) 31-3, 35, 36

solid state drives (SSDs) 25-6

sort/sorting
bubble sort 385, 386-8, 46472

definition 385

selection sort 385, 388-92
sound waves 48, 49

spam email 130, 157

spatial databases 216
SQL (structured query language)

adding and modifying records ina
database 205-6

aggregate functions 206-9

Average 206-7
Count 207

Maximum value 208

Minimum value 208
Sum 209

dala language types 191-4

database development 193-5
alter a table 194

create a database 193
create a table 1934

delete a lable 194

modify data in a able 195
malicious SQL statements 156
queries 195-204, 210

And command 202
Between command 198
Distinct command 196

filtering 195

From command 197

Group By command 199
Having command 200
Join command 200-1

Like command 201-2
Mot command 204
Or command 203

Order By command 198-9
pattern matching 195
Select command 196

Where command 197

transaction control language

Commit command 213
Rollback command 213

Savepoint command 213

Start Transaction command 213
update operations 204-6
virtual tables in databases 209-10

55Ds see solid state drives

S5H (Secure Shell) 161
551 see secure socket layer certificate

stacks 358-9

standard library 90

standardization, data preprocessing 256
star topologies 124-5, 126
Start Transaction command, SQL 213

starvation (indefinite blocking) 77, 82, 83
static data structure 3501, 442

static IP addresses 118, 146

static polymorphism 481-4

static routing 152,153

static variables 425-30

step-by-step code execution 348
strings 4/-8, 337, 338, 33940

data types 178, 1/9
reversing 359

structured query language see SQL

study skills 608-10

subclasses 473
abstract classes 493, 494-6, 498-9

factory design pattern 529, 531, 533
move method 486-91

variables and methods 475, 47/6-9

subnet masks 118, 137-138, 141, 142,143
subnetting 13/7-40

subset checks 574, 575

Sum function, SQL 209
summing 393

superclasses 4/3, 474

move method 488-9
toString method 485

variables and methods 4/5-6, 4/8

supenvised leaming (SL) 238, 240, 241,

242,244

classification techniques 268-75
hyperparameter tuning 2758

support vector machines (SVM) 304

SurveyMonkey 32
switches 112-13, 114, 151

symmetric cryptography 159-60, 160-1
syntax analysis 92,93
synthetic data 266

system bus 20

system integrity 69
system logs 71-2, 74, 407

tables, databases 170, 180, 193-4, 195

task management 67, /2, 553

task scheduling see scheduling
1CL see transaction control language:

TCP see transmission control protocol

TCPF/IP model /5, 118-23
network device mapping to layers

114

role of layers 119
telecommunications, modems 110

temporal locality 14
tensor processing units (TPUs) 249

thermostats 87
third normal form (3NF), databases 184,
185-8

Thompson sampling 287

thrashing 83
threads, process 69

time penod data 221
TL see transfer learning

topologies see network topologies

toString method, Java 431, 476-7, 484, 485

TPUs see tensor processing units

trace tables 344-5

factorial numbers 404
surn of all natural numbers 405

traffic monitoring, firewalls 155

traffic signal control systems 88, 106
training data 224, 238, 307, 308-9

transaction control language (TCL) 192,
212,213

transactions, databases 211-14

transducers 86
transfer learning (TL) 238, 240, 241, 245

transform coding 30, 31

transformers, deep leaming 241
transistors 51

translation, interpreters and compilers 90,
92

bytecode interpreters 95

compiled programming languages
93,94, 96

interpreted programming languages

91-2,95, 96
just-in-time compilation 94

uses of 96

translation time 94,95

transmission control protocal (TCP) 115

transmission control protocol /intemet
protocol (TCP/IP) madel 114, 118-23

transparency

Al systerns 308, 313
distnbuted databases 231-2

transport layer, TCP/IP model 119, 120,

122-123
travelling salesperson problem (T5F) 289-91

genetic algorithm for 291
traversal, linked lists 554, 558, 564

truth tables 53-4, 54-61

Boolean expressions with inputs and
outputs 56-7

derived from logic diagrams 5/7-8

determining outputs from inputs for a
problem description 54-6

simplifying output expressions with

Boolean algebra and K-maps 58-61
try staternent, error handling 342-3

5P see travelling salesperson problem
tuples, Python 357

twisted pair cables 147,148

two-dimensional (20) lists 351, 354-6, 357,
447-50

two’s complement, signed integers 4/

UCB see upper confidence bound

UDFP see user datagram protocol
Ul see user interface

UL see unsupervised leaming

UML class diagrams 423-5, 426

composition relationships 506
design of classes 431

encapsulated class 437, 438
if staternents 517

singleton class 524
subclass use with an abstract class
493

for a superclass 474

underfitting, machine leaming models 278
undo functions 359

Unicode 47, 50

unified memory architecture 10, 11

union, sets 5/4, 575, 578

universal modelling language (UML) 423
unnormal form (UNF), databases 182, 183

unsigned integers 4/
unsupervised learning (UL) 238, 239

clustering techniques 279-82

update management/operations /1, 204-6

upper confidence bound (UCB) 287
USB flash drives 27

user-based collaborative filtering 271-2
user datagram protocol (UDP) 115

user interface (Ul) 67

user mode (user space) 70
user permissions /0

validation rules, databases 231

variables 337-8, 418, 491

casting 441
instance variables 418

modifiers 436, 437, 438, 441, 475

static and non-static variables 425-30
subclasses 475, 4769

superclasses 4/5-6, 478

video, binary encoding of 49-50
video editing 8

videogames 7, 93, 325, 548, 549

video random access memory (VRAM) 7
views [virtual tables) 209-10

virtual local area networks (VLANs) 140-1
virtual machines (VMs) 34, 74, 75

virtual memory 14, 72, 73, 82

virtual private networks (VPNs) 103, 158,
162

virtual reality (VR) 312

virtual tables, databases 209-10
virtualization 34, /4-5

VLANSs see virtual local area networks

VMs see virtual machines

vocabulary skills 609

Voice over Internet Protocol (VolP) 108
volatile memory 12

VPNs see virtual private networks

VR see virtual reality
VRAM see video random access memoaory

WANs see wide area networks
WAPs see wireless access points

washing machines 8/-8
web servers 131-2

website navigation 227

Where command, SQL 197
while loops 366-9
whitelists 157, 159

wide area networks (WANs) 102
Windows, Task Manager 553
wireless access points WAPs) 113,114

wireless network mesh 113

wireless technology 147, 148, 159

worldwide web (WWW) 104, 115,117
wrapper methods, feature selection 257-8

write signal 20

writeback phase 23

XNOR gate 54

XOR gate 54
X55 see cross-site scripting

zero-day exploits 156

Zoom 32

Oxford Resources for IB
Diploma Programme

2025 EDITION

COMPUTER
SCIENCE
COURSE COMPANION

Written by expert and experienced practitioners, and developed in cooperation

with the IB, this DP Computer Science course book provides:

e« A comprehensive and accurate match to the latest IB DP Computer Science

specification, delivering in-depth coverage of all content for both SL and HL

o Fully accessible code in both Python and Java, and advice for learners new

to coding

« Engaging real world examples, activities and questions, to apply

computational thinking and programming skills

e Thorough preparation for IB assessment, with dedicated sections for the

internal and external assessments, plus exam-style practice questions at the

end of each topic

e Complete alignment with the IB philosophy, with ATL skills and Theory of

Knowledge support woven throughout.

To enhance your teaching and leaming experience, use this course book

alongside your Kerboodle course. Kerboodle is a digital learning platform that

works alongside your print textbooks to create a supportive leaming environment > .

and to enable success in DP and beyond. -

‘l!'
20 evamON

COMPUTER
SCIENCE

QHFORD

9781382063975

UNIVERSITY PRESS i = /ib
email schools.enquiries.uk@oup.com

tel +44 (0)1536 452620 I |
WWW.oup.com C

